1
|
Wang B, Kes MBMJ, van Saparoea ACHVDB, Dugar G, Luirink J, Hamoen LW. Inactivation of the conserved protease LonA increases production of xylanase and amylase in Bacillus subtilis. Microb Cell Fact 2024; 23:335. [PMID: 39695615 DOI: 10.1186/s12934-024-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Bacillus subtilis is widely used for industrial enzyme production due to its capacity to efficiently secrete proteins. However, secretion efficiency of enzymes varies widely, and optimizing secretion is crucial to make production commercially viable. Previously, we have shown that overexpression of the xylanase XynA lowers expression of Clp protein chaperones, and that inactivation of CtsR, which regulates and represses clp transcription, increases the production of XynA. In the current study, we examined whether the same is the case for overexpression of the α-amylase AmyM from Geobacillus stearothermophilus by B. subtilis, and why XynA shows a different timing of secretion compared to AmyM. RESULTS Transcriptome analyses revealed that B. subtilis cells overexpressing AmyM exhibited a distinct profile compared to XynA overexpressing cells, however there were also similarities and in both cases expression of CtsR controlled genes was downregulated. In contrast to XynA, inactivation of CtsR did not improve AmyM production. Upregulation of other protein chaperones, including GroEL/ES and DnaJ/K, by inactivating their transcriptional repressor HrcA, had almost no effect on XynA yields and in fact considerably lowered that of AmyM. Despite using the same promoter, the production of XynA peaks well before AmyM reaches its optimal secretion rate. Transcriptome and ribosome profiling indicated that this is neither related to transcription nor to translation regulation. We show that the reduced secretion in the stationary phase is partially due to the activity of secreted proteases, but also due to the activity of the intracellular protease LonA. The absence of this protein resulted in a 140% and 20% increased production for XynA and AmyM, respectively. CONCLUSION The combination of transcriptome and ribosome profiling offered important information to determine at which cellular level production bottlenecks occurred. This helped us to identify LonA protease as an important factor influencing enzyme production yields in B. subtilis.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, Amsterdam, 1098 XH, The Netherlands
| | - Mariah B M J Kes
- Molecular Microbiology, AIMMS and A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, The Netherlands
| | | | - Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, Amsterdam, 1098 XH, The Netherlands
| | - Joen Luirink
- Molecular Microbiology, AIMMS and A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, The Netherlands.
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
2
|
Yilmaz H, Yaradir E, Tunca S. Expression of Multiple Copies of the Lon Protease Gene Resulted in Increased Antibiotic Production, Osmotic and UV Stress Resistance in Streptomyces coelicolor A3(2). Curr Microbiol 2024; 82:43. [PMID: 39690306 DOI: 10.1007/s00284-024-04021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
The genus Streptomyces is a group of gram-positive bacteria that exhibit a distinctive growth pattern characterised by elongated, branched hyphae. Streptomyces coelicolor A3(2), which produces at least five different antibiotics, is a model organism that is widely used in genetic studies. There are very few studies in Streptomyces on the ATP-dependent Lon protease, which has very important functions in every organism and is particularly responsible for protein homeostasis. The aim of this study was to construct and characterize a recombinant S. coelicolor strain expressing the lon gene on a multicopy plasmid. For this purpose, the lon gene was first cloned in Escherichia coli under the control of the glycerol-inducible promoter of pSPG, and its expression in S. coelicolor A3(2) cells was demonstrated by RT-qPCR. In contrast with the initial hypothesis, increased lon expression did not affect cell growth seriously. Instead, it increased the cell's tolerance to osmotic and UV stress and led to a significant increase in antibiotic production. The recombinant strain produced 27 times more actinorhodin and 43 times more undecylprodigiosin than the wild-type strain after 120 h of fermentation. To our knowledge, this is the first study to demonstrate the effects of expression of the lon gene on a high copy number plasmid in Streptomyces.
Collapse
Affiliation(s)
- Halil Yilmaz
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Emine Yaradir
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Sedef Tunca
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye.
| |
Collapse
|
3
|
Hu M, Wang J, Gao Y, Fan B, Wang F, Li S. Proteomic Analysis of the Characteristic Flavor Components in Bacillus subtilis BSNK-5-Fermented Soymilk. Foods 2024; 13:2399. [PMID: 39123590 PMCID: PMC11311612 DOI: 10.3390/foods13152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using tandem mass tag (TMT) proteomics. The results showed that a total of 765 differentially expressed proteins were identified. Seventy differentially expressed proteins related to characteristic flavor were screened through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After integrating metabolomics data, fifteen key proteases of characteristic flavor components in BSNK-5-fermented soymilk were further identified, and free ammonia was added. In addition, there were five main formation mechanisms, including the decomposition of urea to produce ammonia; the degradation of glutamate by glutamate dehydrogenase to produce ammonia; the degradation of threonine and non-enzymatic changes to form the derivative 2,5-dimethylpyrazine; the degradation of valine, leucine, and isoleucine to synthesize isovalerate and 2-methylbutyrate; and the metabolism of pyruvate and lactate to synthesize acetate. These results provide a theoretical foundation for the improvement of undesirable flavor in B. subtilis BSNK-5-fermented soy foods.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Jiao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| |
Collapse
|
4
|
Wang B, van der Kloet F, Hamoen LW. Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis. Microb Cell Fact 2023; 22:231. [PMID: 37946188 PMCID: PMC10633939 DOI: 10.1186/s12934-023-02239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The bacterium Bacillus subtilis is extensively used for the commercial production of enzymes due to its efficient protein secretion capacity. However, the efficiency of secretion varies greatly between enzymes, and despite many years of research, optimization of enzyme production is still largely a matter of trial-and-error. Genome-wide transcriptome analysis seems a useful tool to identify relevant secretion bottlenecks, yet to this day, only a limited number of transcriptome studies have been published that focus on enzyme secretion in B. subtilis. Here, we examined the effect of high-level expression of the commercially important enzyme endo-1,4-β-xylanase XynA on the B. subtilis transcriptome using RNA-seq. RESULTS Using the novel gene-set analysis tool GINtool, we found a reduced activity of the CtsR regulon when XynA was overproduced. This regulon comprises several protein chaperone genes, including clpC, clpE and clpX, and is controlled by transcriptional repression. CtsR levels are directly controlled by regulated proteolysis, involving ClpC and its cognate protease ClpP. When we abolished this negative feedback, by inactivating the repressor CtsR, the XynA production increased by 25%. CONCLUSIONS Overproduction of enzymes can reduce the pool of Clp protein chaperones in B. subtilis, presumably due to negative feedback regulation. Breaking this feedback can improve enzyme production yields. Considering the conserved nature of Clp chaperones and their regulation, this method might benefit high-yield enzyme production in other organisms.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gustchina A, Li M, Andrianova AG, Kudzhaev AM, Lountos GT, Sekula B, Cherry S, Tropea JE, Smirnov IV, Wlodawer A, Rotanova TV. Unique Structural Fold of LonBA Protease from Bacillus subtilis, a Member of a Newly Identified Subfamily of Lon Proteases. Int J Mol Sci 2022; 23:11425. [PMID: 36232729 PMCID: PMC9569914 DOI: 10.3390/ijms231911425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.
Collapse
Affiliation(s)
- Alla Gustchina
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna G Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arsen M Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - George T Lountos
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bartosz Sekula
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Lodz, Poland
| | - Scott Cherry
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E Tropea
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
6
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
7
|
Barkad MA, Bayraktar A, Doruk T, Tunca S. Effect of lon Protease Overexpression on Endotoxin Production and Stress Resistance in Bacillus thuringiensis. Curr Microbiol 2021; 78:3483-3493. [PMID: 34272975 DOI: 10.1007/s00284-021-02610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Lon protease, an intracellular protease, plays a key role in cell homeostasis in bacteria and is involved in numerous physiological processes. In this work, we aimed to study the impact of Lon on the production of endotoxins and stress response in Bacillus thuringiensis, which is an important bioinsecticide alternative for toxic chemicals. For this purpose, lon gene was cloned into a multi-copy vector with its original promoter and transcriptional terminator and expressed in B. thuringiensis serovar israelensis ATCC 35,646. Our results showed that the recombinant lon gene transcribed and translated efficiently and the resulting protein was active. Although the sporulation efficiency of the recombinant strain was found to be reduced and its mobility impaired, overexpression of the lon gene triggered the production of endotoxin. Together with increased biofilm formation, recombinant strain exhibited significantly better adaptation to osmotic and heat shock stresses and UV exposure compared to wild type and the control strain with empty plasmid. This study suggested a possible link between Lon protease and the production of insecticide and stress response in B. thuringiensis and provides a platform for future studies focusing on enhancing bio-insecticidal production using this bacterium.
Collapse
Affiliation(s)
- Mouktar Abdi Barkad
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Izmit, Turkey
| | - Aslı Bayraktar
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Izmit, Turkey
| | - Tugrul Doruk
- Faculty of Art and Science, Molecular Biology and Genetics Department, Ondokuz Mayıs University, Atakum, 55200, Samsun, Turkey
| | - Sedef Tunca
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Izmit, Turkey.
| |
Collapse
|
8
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
9
|
Kiran MD, Bala S, Hirshberg M, Balaban N. YhgC protects Bacillus anthracis from oxidative stress. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacillus anthracis can cause lethal inhalational anthrax and can be used as a bioweapon due to its ability to form spores and to survive under various environmental stress conditions. YhgC in bacilli are structural homologues of TRAP, a protein involved in stress response in staphylococci. To test the role of YhgC in B. anthracis, YhgC gene was deleted in B. anthracis strain Sterne and parent and mutant strains tested. Immunolocalization studies indicated that YhgC is clustered both on the cell surface and within the cytoplasm. Phenotypic analyses indicated that YhgC is an important factor for oxidative stress tolerance and for macrophage infection in vitro. Accordingly, transcriptomics studies indicated that yhgC has a profound effect on genes encoding for stress response regulatory proteins where it negatively regulates the expression of genes encoding for Class I and Class III stress response proteins belonging to the regulons hrcA (hrcA, grpE, dnaK, dnaJ, groEL and groES) and ctsR (ctsR, mcsA, mcsB, clpC/mecB, clpP1). Proteomics studies also indicated that YhgC positively regulates the expression of ClpP-2 and camelysin, which are proteins involved in adaptive responses and pathogenesis in various Gram-positive bacteria. Put together, these results suggest that YhgC is important for the survival of B. anthracis under oxidative stress conditions and thus inhibition of YhgC may compromise the ability of the bacteria to survive within the host.
Collapse
Affiliation(s)
- Madanahally D. Kiran
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- IQUUM Inc, Marlborough MA - USA
| | - Shashi Bala
- University of Massachusetts Medical School, Worcester, MA - USA
| | - Miriam Hirshberg
- EMBL Outstation – Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge - United Kingdom
| | - Naomi Balaban
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- Yale University, Department of Chemical Engineering, New Haven, CT - USA
| |
Collapse
|
10
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
11
|
Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR. Proc Natl Acad Sci U S A 2015; 113:E23-31. [PMID: 26677871 DOI: 10.1073/pnas.1522687112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peroxide operon regulator (PerR) is a broadly conserved hydrogen peroxide sensor in bacteria, and oxidation of PerR at its regulatory metal-binding site is considered irreversible. Here, we tested whether this oxidation specifically targets PerR for proteolysis. We find that oxidizing conditions stimulate PerR degradation in vivo, and LonA is the principal AAA+ (ATPases associated with diverse cellular activities) protease that degrades PerR. Degradation of PerR by LonA is recapitulated in vitro, and biochemical dissection of this degradation reveals that the presence of regulatory metal and PerR-binding DNA dramatically extends the half-life of the protein. We identified a LonA-recognition site critical for oxidation-controlled PerR turnover. Key residues for LonA-interaction are exposed to solvent in PerR lacking metal, but are buried in the metal-bound form. Furthermore, one residue critical for Lon recognition is also essential for specific DNA-binding by PerR, thus explaining how both the metal and DNA ligands prevent PerR degradation. This ligand-controlled allosteric mechanism for protease recognition provides a compelling explanation for how the oxidation-induced conformational change in PerR triggers degradation. Interestingly, the critical residues recognized by LonA and exposed by oxidation do not function as a degron, because they are not sufficient to convert a nonsubstrate protein into a LonA substrate. Rather, these residues are a conformation-discriminator sequence, which must work together with other residues in PerR to evoke efficient degradation. This mechanism provides a useful example of how other proteins with only mild or localized oxidative damage can be targeted for degradation without the need for extensive oxidation-dependent protein denaturation.
Collapse
|
12
|
Maaβ S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M. Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 2014; 13:2260-76. [PMID: 24878497 PMCID: PMC4159648 DOI: 10.1074/mcp.m113.035741] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress.
Collapse
Affiliation(s)
- Sandra Maaβ
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Gerhild Wachlin
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Christine Eymann
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Vincent Fromion
- §INRA, Mathématique Informatique et Génome UR1077, 78350 Jouy-en-Josas, France
| | - Katharina Riedel
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany;
| | - Michael Hecker
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance. Appl Environ Microbiol 2014; 80:6091-103. [PMID: 25063661 DOI: 10.1128/aem.01619-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
Collapse
|
14
|
Sadeghi A, Soltani BM, Jouzani GS, Karimi E, Nekouei MK, Sadeghizadeh M. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level. Microbiol Res 2013; 169:232-8. [PMID: 23916596 DOI: 10.1016/j.micres.2013.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Streptomyces strain C-2012 is a salt tolerant biocontrol PGPR that has been isolated from Iranian soil. The main aim of current study was finding strain C-2012 taxonomic position and to find the genes which are potentially involved in salt tolerance phenotype. Strain C-2012 chemotaxonomic, morphological and molecular characteristics indicate that this strain is a member of the genus Streptomyces. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence revealed that this strain is closely related to Streptomyces rimosus JCM 4667(T). Also, DNA-DNA hybridization test estimated 74% relatedness between two strains and confirmed that C-2012 is a strain of S. rimosus. In order to find novel genes that are differentially expressed in response to the salt treatment, cDNA-AFLP was carried out. One of the selected expressed sequence tags (TDF-1) was found to be homologous to lon gene which produces a bacterial ATP-dependent proteases (proteases LA). Lon gene expression was induced following 450 mM salt (NaCl) treatment and its expression level was further (5.2-fold) increased in response to salt when ectoine was added to the medium. These results suggest that two protein protection systems including ectoine and ATP-dependent proteases synergistically are related. NaCl stress also caused an enhancement in the activity of extracellular protease.
Collapse
Affiliation(s)
- Akram Sadeghi
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Ebrahim Karimi
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Mojtaba Khayam Nekouei
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
16
|
Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res Microbiol 2009; 160:637-44. [DOI: 10.1016/j.resmic.2009.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 12/13/2022]
|
17
|
Abstract
Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.
Collapse
|
18
|
Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. J Bacteriol 2009; 191:5775-84. [PMID: 19542270 DOI: 10.1128/jb.00521-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exponentially growing populations of Bacillus subtilis contain two morphologically and functionally distinct cell types: motile individuals and nonmotile multicellular chains. Motility differentiation arises because RNA polymerase and the alternative sigma factor sigma(D) activate expression of flagellin in a subpopulation of cells. Here we demonstrate that the peptidoglycan-remodeling autolysins under sigma(D) control, LytC, LytD, and LytF, are expressed in the same subpopulation of cells that complete flagellar synthesis. Morphological heterogeneity is explained by the expression of LytF that is necessary and sufficient for cell separation. Moreover, LytC is required for motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for flagellar function, and motility was restored to a LytC mutant by mutation of either lonA, encoding the LonA protease, or a gene encoding a previously unannotated swarming motility inhibitor, SmiA. We conclude that heterogeneous activation of sigma(D)-dependent gene expression is sufficient to explain both the morphological heterogeneity and functional heterogeneity present in vegetative B. subtilis populations.
Collapse
|
19
|
Kayumov A, Heinrich A, Sharipova M, Iljinskaya O, Forchhammer K. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis. MICROBIOLOGY-SGM 2008; 154:2348-2355. [PMID: 18667567 DOI: 10.1099/mic.0.2008/019802-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Under conditions of nitrogen limitation, the general transcription factor TnrA in Bacillus subtilis activates the expression of genes involved in assimilation of various nitrogen sources. Previously, TnrA activity has been shown to be controlled by protein-protein interaction with glutamine synthetase, the key enzyme of ammonia assimilation. Furthermore, depending on ATP and 2-oxoglutarate levels, TnrA can bind to the GlnK-AmtB complex. Here, we report that upon transfer of nitrate-grown cells to combined nitrogen-depleted medium, TnrA is rapidly eliminated from the cells by proteolysis. As long as TnrA is membrane-bound through GlnK-AmtB interaction it seems to be protected from degradation. Upon removal of nitrogen sources, the localization of TnrA becomes cytosolic and degradation occurs. The proteolytic activity against TnrA was detected in the cytosolic fraction but not in the membrane, and its presence does not depend on the nitrogen regime of cell growth. The proteolytic degradation of TnrA as a response to complete nitrogen starvation might represent a novel mechanism of TnrA control in B. subtilis.
Collapse
Affiliation(s)
- Airat Kayumov
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Annette Heinrich
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Margarita Sharipova
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Olga Iljinskaya
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Karl Forchhammer
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 2008; 190:6758-68. [PMID: 18689473 DOI: 10.1128/jb.00590-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among other functions, ATP-dependent proteases degrade misfolded proteins and remove several key regulatory proteins necessary to activate stress responses. In Bacillus subtilis, ClpX, ClpE, and ClpC form homohexameric ATPases that couple to the ClpP peptidase. To understand where these peptidases and ATPases localize in living cells, each protein was fused to a fluorescent moiety. We found that ClpX-GFP (green fluorescent protein) and ClpP-GFP localized as focal assemblies in areas that were not occupied by the nucleoid. We found that the percentage of cells with ClpP-GFP foci increased following heat shock independently of protein synthesis. We determined that ClpE-YFP (yellow fluorescent protein) and ClpC-YFP formed foci coincident with nucleoid edges, usually near cell poles. Furthermore, we found that ClpQ-YFP (HslV) localized as small foci, usually positioned near the cell membrane. We found that ClpQ-YFP foci were dependent on the presence of the cognate hexameric ATPase ClpY (HslU). Moreover, we found that LonA-GFP is coincident with the nucleoid during normal growth and that LonA-GFP also localized to the forespore during development. We also investigated LonB-GFP and found that this protein localized to the forespore membrane early in development, followed by localization throughout the forespore later in development. Our comprehensive study has shown that in B. subtilis several ATP-fueled proteases occupy distinct subcellular locations. With these data, we suggest that substrate specificity could be determined, in part, by the spatial and temporal organization of proteases in vivo.
Collapse
|
21
|
Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis. J Bacteriol 2007; 190:321-31. [PMID: 17981983 DOI: 10.1128/jb.01233-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using 35S-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored the intracellular proteolysis pattern during glucose starvation. Approximately 200 protein spots diminished in the wild-type cells during an 8-h time course. The degradation rate of at least 80 proteins was significantly reduced in clpP, clpC, and clpX mutant strains. Enzymes of amino acid and nucleotide metabolism were overrepresented among these Clp substrate candidates. Notably, several first-committed-step enzymes for biosynthesis of aromatic and branched-chain amino acids, cell wall precursors, purines, and pyrimidines appeared as putative Clp substrates. Radioimmunoprecipitation demonstrated GlmS, IlvB, PurF, and PyrB to be novel ClpCP targets. Our data imply that Clp proteases down-regulate central metabolic pathways upon entry into a nongrowing state and thus contribute to the adaptation to nutrient starvation. Proteins that are obviously nonfunctional, unprotected, or even "unemployed" seem to be recognized and proteolyzed by Clp proteases when the resources for growth become limited.
Collapse
|
22
|
Abstract
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His(6)-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.
Collapse
|
23
|
Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol 2007; 73:7803-13. [PMID: 17933920 DOI: 10.1128/aem.00698-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic cells the ATP-dependent proteases Lon and ClpP (Clp proteolytic subunit) are involved in the turnover of misfolded proteins and the degradation of regulatory proteins, and depending on the organism, these proteases contribute variably to stress tolerance. We constructed mutants in the lon and clpP genes of the food-borne human pathogen Campylobacter jejuni and found that the growth of both mutants was impaired at high temperature, a condition known to increase the level of misfolded protein. Moreover, the amounts of misfolded protein aggregates were increased when both proteases were absent, and we propose that both ClpP and Lon are involved in eliminating misfolded proteins in C. jejuni. In order to bind misfolded protein, ClpP has to associate with one of several Clp ATPases. Following inactivation of the ATPase genes clpA and clpX, only the clpX mutant displayed the same heat sensitivity as the clpP mutant, indicating that the ClpXP proteolytic complex is responsible for the degradation of heat-damaged proteins in C. jejuni. Notably, ClpP and ClpX are required for growth at 42 degrees C, which is the temperature of the intestinal tract of poultry, one of the primary carriers of C. jejuni. Thus, ClpP and ClpX may be suitable targets of new intervention strategies aimed at reducing C. jejuni in poultry production. Further characterization of the clpP and lon mutants revealed other altered phenotypes, such as reduced motility, less autoagglutination, and lower levels of invasion of INT407 epithelial cells, suggesting that the proteases may contribute to the virulence of C. jejuni.
Collapse
|
24
|
Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease. Res Microbiol 2006; 157:701-13. [PMID: 16854568 DOI: 10.1016/j.resmic.2006.05.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/22/2006] [Accepted: 05/23/2006] [Indexed: 12/24/2022]
Abstract
The Lon ATP-dependent protease plays a major role in protein quality control. An increasing number of regulatory proteins, however, are being identified as Lon substrates, thus indicating that in addition to its housekeeping function, Lon plays an important role in regulating many biological processes in bacteria. This review presents and discusses the involvement of Lon in different aspects of bacterial physiology, including cell differentiation, sporulation, pathogenicity and survival under starvation conditions.
Collapse
Affiliation(s)
- Virginie Tsilibaris
- Laboratoire de Génétique des Procaryotes, IBMM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | |
Collapse
|
25
|
Ruzheinikov SN, Das SK, Sedelnikova SE, Baker PJ, Artymiuk PJ, García-Lara J, Foster SJ, Rice DW. Analysis of the open and closed conformations of the GTP-binding protein YsxC from Bacillus subtilis. J Mol Biol 2004; 339:265-78. [PMID: 15136032 DOI: 10.1016/j.jmb.2004.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/16/2004] [Accepted: 03/22/2004] [Indexed: 11/20/2022]
Abstract
Genetic analysis has suggested that the product of the Bacillus subtilis ysxC gene is essential for survival of the microorganism and hence may represent a target for the development of a novel anti-infective agent. B.subtilis YsxC is a member of the translation factor related class of GTPases and its crystal structure has been determined in an apo form and in complex with GDP and GMPPNP/Mg2+. Analysis of these structures has allowed us to examine the conformational changes that occur during the process of nucleotide binding and GTP hydrolysis. These structural changes particularly affect parts of the switch I and switch II region of YsxC, which become ordered and disordered, respectively in the "closed" or "on" GTP-bound state and disordered and ordered, respectively, in the "open" or "off" GDP-bound conformation. Finally, the binding of the magnesium cation results in subtle shifts of residues in the G3 region, at the start of switch II, which serve to optimize the interaction with a key aspartic acid residue. The structural flexibility observed in YsxC is likely to contribute to the role of the protein, possibly allowing transduction of an essential intracellular signal, which may be mediated via interactions with a conserved patch of surface-exposed, basic residues that lies adjacent to the GTP-binding site.
Collapse
Affiliation(s)
- Sergey N Ruzheinikov
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The clp genes encoding the Clp proteolytic complex are widespread among living organisms. Five clpP genes are present in Streptomyces. Among them, the clpP1 clpP2 operon has been shown to be involved in the Streptomyces growth cycle, as a mutation blocked differentiation at the substrate mycelium step. Four Clp ATPases have been identified in Streptomyces coelicolor (ClpX and three ClpC proteins) which are potential partners of ClpP1 ClpP2. The clpC1 gene appears to be essential, since no mutant has yet been obtained. clpP1 clpP2 and clpC1 are important for Streptomyces growth, and a study of their regulation is reported here. The clpP3 clpP4 operon, which has been studied in Streptomyces lividans, is induced in a clpP1 mutant strain, and regulation of its expression is mediated via PopR, a transcriptional regulator. We report here studies of clgR, a paralogue of popR, in S. lividans. Gel mobility shift assays and DNase I footprinting indicate that ClgR binds not only to the clpP1 and clpC1 promoters, but also to the promoter of the Lon ATP-dependent protease gene and the clgR promoter itself. ClgR recognizes the motif GTTCGC-5N-GCG. In vivo, ClgR acts as an activator of clpC1 gene and clpP1 operon expression. Similarly to PopR, ClgR degradation might be ClpP dependent and could be mediated via recognition of the two carboxy-terminal alanine residues.
Collapse
Affiliation(s)
- Audrey Bellier
- Unité de Biochimie Microbienne, CNRS URA 2172, Institut Pasteur, 75724 Paris 15, France
| | | |
Collapse
|
27
|
Lee AYL, Tsay SS, Chen MY, Wu SH. Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme. ACTA ACUST UNITED AC 2004; 271:834-44. [PMID: 14764100 DOI: 10.1111/j.1432-1033.2004.03988.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A gene encoding thermostable Lon protease from Brevibacillus thermoruber WR-249 was cloned and characterized. The Br. thermoruber Lon gene (Bt-lon) encodes an 88 kDa protein characterized by an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. The Bt-lon is a heat-inducible gene and may be controlled under a putative Bacillus subtilis sigmaA-dependent promoter, but in the absence of CIRCE (controlling inverted repeat of chaperone expression). Bt-lon was expressed in Escherichia coli, and its protein product was purified. The native recombinant Br. thermoruber Lon protease (Bt-Lon) displayed a hexameric structure. The optimal temperature of ATPase activity for Bt-Lon was 70 degrees C, and the optimal temperature of peptidase and DNA-binding activities was 50 degrees C. This implies that the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature, to regulate their physiological needs. The peptidase activity of Bt-Lon increases substantially in the presence of ATP. Furthermore, the substrate specificity of Bt-Lon is different from that of E. coli Lon in using fluorogenic peptides as substrates. Notably, the Bt-Lon protein shows chaperone-like activity by preventing aggregation of denatured insulin B-chain in a dose-dependent and ATP-independent manner. In thermal denaturation experiments, Bt-Lon was found to display an indicator of thermostability value, Tm of 71.5 degrees C. Sequence comparison with mesophilic Lon proteases shows differences in the rigidity, electrostatic interactions, and hydrogen bonding of Bt-Lon relevant to thermostability.
Collapse
Affiliation(s)
- Alan Y-L Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
28
|
Proceedings of the 10th Asian Pacific Congress of Clinical Biochemistry in conjunction with the Australasian Association of Clinical Biochemists' 42nd Annual Scientific Conference. Clin Biochem Rev 2004; 25:S18-S128. [PMID: 18392121 PMCID: PMC1934963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
29
|
Abstract
All organisms respond to a sudden increase in temperature by the so-called heat shock response. This response results in the induction of a subset of genes, designated heat shock genes coding for heat shock proteins, which allow the cell to cope with the stress regimen. Research carried out during the last 10 years with eubacteria has revealed that the heat shock genes of a given species fall into different classes (regulons), where each class is regulated by a different transcriptional regulator, which could be an alternative sigma factor, a transcriptional activator, or a transcriptional repressor. All regulons of a single species constitute the heat shock stimulon. In Bacillus subtilis, more than 200 genes representing over 7% of the transcriptionally active genes are induced at least 3-fold in response to a heat shock. This response becomes apparent within the first minute after exposure to heat stress, is transient, and is coordinated by at least 5 transcriptional regulator proteins, including 2 repressors, an alternate sigma-factor, and a 2-component signal transduction system. A detailed analysis of the regulation of all known heat shock genes has shown that they belong to at least 6 regulons that together comprise the B. subtilis heat shock stimulon. Potential thermosensors are discussed in this article.
Collapse
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
30
|
|
31
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
32
|
Helmann JD, Wu MF, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C. Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 2001; 183:7318-28. [PMID: 11717291 PMCID: PMC95581 DOI: 10.1128/jb.183.24.7318-7328.2001] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to heat stress, Bacillus subtilis activates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, sigma(B), while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known sigma(B)-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ~70 additional members of the sigma(B) regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses.
Collapse
Affiliation(s)
- J D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
34
|
Nakano MM, Hajarizadeh F, Zhu Y, Zuber P. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 2001; 42:383-94. [PMID: 11703662 DOI: 10.1046/j.1365-2958.2001.02639.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
35
|
Brumlik MJ, Szymajda U, Zakowska D, Liang X, Redkar RJ, Patra G, Del Vecchio VG. Use of long-range repetitive element polymorphism-PCR to differentiate Bacillus anthracis strains. Appl Environ Microbiol 2001; 67:3021-8. [PMID: 11425716 PMCID: PMC92975 DOI: 10.1128/aem.67.7.3021-3028.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 105 B. anthracis strains of diverse geographical origins. All B. anthracis strains produced fingerprints comprising seven to eight bands, referred to as "skeleton" bands, while one to three "diagnostic" bands differentiated between B. anthracis strains. LR REP-PCR fingerprints of B. anthracis strains showed very little in common with those of other closely related species such as B. cereus, B. thuringiensis, and B. mycoides, suggesting relative heterogeneity among the non-B. anthracis strains. Fingerprints from transitional non-B. anthracis strains, which possessed the B. anthracis chromosomal marker Ba813, scarcely resembled those observed for any of the five distinct B. anthracis groups that we have identified. The LR REP-PCR method described in this report provides a simple means of differentiating B. anthracis strains.
Collapse
Affiliation(s)
- M J Brumlik
- Institute of Molecular Biology and Medicine, University of Scranton, Scranton, Pennsylvania 18510, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Serrano M, Hövel S, Moran CP, Henriques AO, Völker U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 2001; 183:2995-3003. [PMID: 11325926 PMCID: PMC95198 DOI: 10.1128/jb.183.10.2995-3003.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome encodes two members of the Lon family of prokaryotic ATP-dependent proteases. One, LonA, is produced in response to temperature, osmotic, and oxidative stress and has also been implicated in preventing sigma(G) activity under nonsporulation conditions. The second is encoded by the lonB gene, which resides immediately upstream from lonA. Here we report that transcription of lonB occurs during sporulation under sigma(F) control and thus is restricted to the prespore compartment of sporulating cells. First, expression of a lonB-lacZ transcriptional fusion was abolished in strains unable to produce sigma(F) but remained unaffected upon disruption of the genes encoding the early and late mother cell regulators sigma(E) and sigma(K) or the late forespore regulator sigma(G). Second, the fluorescence of strains harboring a lonB-gfp fusion was confined to the prespore compartment and depended on sigma(F) production. Last, primer extension analysis of the lonB transcript revealed -10 and -35 sequences resembling the consensus sequence recognized by sigma(F)-containing RNA polymerase. We further show that the lonB message accumulated as a single monocistronic transcript during sporulation, synthesis of which required sigma(F) activity. Disruption of the lonB gene did not confer any discernible sporulation phenotype to otherwise wild-type cells, nor did expression of lonB from a multicopy plasmid. In contrast, expression of a fusion of the lonB promoter to the lonA gene severely reduced expression of the sigma(G)-dependent sspE gene and the frequency of sporulation. In confirmation of earlier observations, we found elevated levels of sigma(F)-dependent activity in a spoIIIE47 mutant, in which the lonB region of the chromosome is not translocated into the prespore. Expression of either lonB or the P(lonB)-lonA fusion from a plasmid in the spoIIIE47 mutant reduced sigma(F) -dependent activity to wild-type levels. The results suggest that both LonA and LonB can prevent abnormally high sigma(F) activity but that only LonA can negatively regulate sigma(G).
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
37
|
Melly E, Setlow P. Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. J Bacteriol 2001; 183:779-84. [PMID: 11133976 PMCID: PMC94938 DOI: 10.1128/jb.183.2.779-784.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus subtilis are significantly more resistant to wet heat than are their vegetative cell counterparts. Analysis of the effects of mutations in and the expression of fusions of a coding gene for a thermostable beta-galactosidase to a number of heat shock genes has shown that heat shock proteins play no significant role in the wet heat resistance of B. subtilis spores.
Collapse
Affiliation(s)
- E Melly
- University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
38
|
Prágai Z, Harwood CR. YsxC, a putative GTP-binding protein essential for growth of Bacillus subtilis 168. J Bacteriol 2000; 182:6819-23. [PMID: 11073929 PMCID: PMC111427 DOI: 10.1128/jb.182.23.6819-6823.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YsxC is a member of a family of GTP-binding proteins carried by a diverse range of organisms from bacteria to yeasts, plants, and humans. To resolve the issue of whether ysxC of Bacillus subtilis is essential for growth, we attempted to construct mutants in which ysxC was either inactivated or placed under the control of an inducible promoter. Viable mutants were obtained only in the latter case, and these were inducer dependent, demonstrating unambiguously that ysxC is an essential gene.
Collapse
Affiliation(s)
- Z Prágai
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | |
Collapse
|
39
|
Derré I, Rapoport G, Msadek T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 2000; 38:335-47. [PMID: 11069659 DOI: 10.1046/j.1365-2958.2000.02124.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CtsR (class three stress gene repressor) negatively regulates the expression of class III heat shock genes (clpP, clpE and the clpC operon) by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). CtsR-dependent genes are expressed at a low level at 37 degrees C and are strongly induced under heat shock conditions. We performed a structure/function analysis of the CtsR protein, which is highly conserved among low G+C Gram-positive bacteria. Random chemical mutagenesis, in vitro cross-linking, in vivo co-expression of wild-type and mutant forms of CtsR and the construction of chimeric proteins with the DNA-binding domain of the lambda CI repressor allowed us to identify three different functional domains within CtsR: a helix-turn-helix DNA-binding domain, a dimerization domain and a putative heat-sensing domain. We provide evidence suggesting that CtsR is active as a dimer. Transcriptional analysis of a clpP'-bgaB fusion and/or Western blotting experiments using antibodies directed against the CtsR protein indicate that ClpP and ClpX are involved in CtsR degradation at 37 degrees C. This in turn leads to a low steady-state level of CtsR within the cell, as CtsR negatively autoregulates its own synthesis. This is the first example of degradation of a repressor of stress response genes by the Clp ATP-dependent protease.
Collapse
Affiliation(s)
- I Derré
- Unité de Biochimie Microbienne, URA 2172 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
40
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 597] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Moch C, Schrögel O, Allmansberger R. Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat. J Bacteriol 2000; 182:4384-93. [PMID: 10913069 PMCID: PMC94607 DOI: 10.1128/jb.182.16.4384-4393.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, an oxidoreductase from the soil bacterium Bacillus subtilis, is synthesized during the stationary phase and in response to heat. Analysis of promoter mutants revealed that the nfrA gene belongs to the class III heat shock genes in B. subtilis. An approximate 10-fold induction at both the transcriptional and the translational levels was found after thermal upshock. This induction resulted from enhanced synthesis of mRNA. Genetic and Northern blot analyses revealed that nfrA and the gene downstream of nfrA are transcribed as a bicistronic transcriptional unit. The unstable full-length transcript is processed into two short transcripts encoding nfrA and ywcH. The nfrA-ywcH operon is not induced by salt stress or by ethanol. According to previously published data, the transcription of class III genes in general is activated in response to the addition of these stressors. However, this conclusion is based on experiments which lacked a valid control. Therefore, it seems possible that the transcription of all class III genes is specifically induced by heat shock.
Collapse
Affiliation(s)
- C Moch
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
42
|
Whistler CA, Stockwell VO, Loper JE. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2000; 66:2718-25. [PMID: 10877760 PMCID: PMC92065 DOI: 10.1128/aem.66.7.2718-2725.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor sigma(S) and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. The lon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor sigma(32) (sigma(H)) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, sigma(H) represents the third sigma factor (with sigma(S) and sigma(70)) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator sigma(S) or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.
Collapse
Affiliation(s)
- C A Whistler
- Molecular and Cellular Biology Program, Corvallis, Oregon
| | | | | |
Collapse
|
43
|
Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 2000; 182:3259-65. [PMID: 10809708 PMCID: PMC94515 DOI: 10.1128/jb.182.11.3259-3265.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of the heat stress response-related ATPases ClpC and ClpX or the peptidase ClpP in the cell is crucial for tolerance of many forms of stress in Bacillus subtilis. Assays for detection of defects in protein degradation suggest that ClpC, ClpP, and ClpX participate directly in overall proteolysis of misfolded proteins. Turnover rates for abnormal puromycyl peptides are significantly decreased in clpC, clpP, and clpX mutant cells. Electron-dense aggregates, most likely due to the accumulation of misfolded proteins, were noticed in studies of ultrathin cryosections in clpC and clpP mutant cells even under nonstress conditions. In contrast, in the wild type or clpX mutants such aggregates could only be observed after heat shock. This phenomenon supports the assumption that clpC and clpP mutants are deficient in the ability to solubilize or degrade damaged and aggregated proteins, the accumulation of which is toxic for the cell. By using immunogold labeling with antibodies raised against ClpC, ClpP, and ClpX, the Clp proteins were localized in these aggregates, showing that the Clp proteins act at this level in vivo.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
44
|
Yamaguchi M, Belogrudov GI, Matsuno-Yagi A, Hatefi Y. The multiple nicotinamide nucleotide-binding subunits of bovine heart mitochondrial NADH:ubiquinone oxidoreductase (complex I). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:329-36. [PMID: 10632702 DOI: 10.1046/j.1432-1327.2000.00999.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Direct photoaffinity labeling of purified bovine heart NADH:ubiquinone oxidoreductase (complex I) with 32P-labeled NAD(H), NADP(H) and ADP has shown that five polypeptides become labeled, with molecular masses of 51, 42, 39, 30, and 18-20 kDa. The 51 and the 30-kDa polypeptides were labeled with either [32P]NAD(H), [32P]NADP(H) or [beta-32P]ADP. The 42-kDa polypeptide was labeled with [32P]NAD(H) and to a small extent with [beta-32P]ADP. It was not labeled with [32P]NADP(H). The 39-kDa polypeptide was labeled with [32P]NADPH and to a small extent with [beta-32P]ADP. Our previous studies had shown that this subunit also binds NADP, but not NAD(H) [Yamaguchi, M., Belogrudov, G.I. & Hatefi, Y. (1998) J. Biol. Chem. 273, 8094-8098]. The 18-20-kDa polypeptide was labeled only with [32P]NADPH. Among these polypeptides, the 51-kDa subunit is known to contain FMN and a [4Fe-4S] cluster, and is the NAD(P)H-binding subunit of the primary dehydrogenase domain of complex I. The possible roles of the other nucleotide-binding subunits of complex I have been discussed.
Collapse
Affiliation(s)
- M Yamaguchi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
45
|
Watanabe S, Muramatsu T, Ao H, Hirayama Y, Takahashi K, Tanokura M, Kuchino Y. Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:811-9. [PMID: 10583374 DOI: 10.1046/j.1432-1327.1999.00907.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Lon protease was isolated from an extreme thermophile, Thermus thermophilus HB8. Sequence analysis demonstrated that the T. thermophilus Lon protease gene (TT-lon) contains a protein-coding sequence consisting of 2385 bp which is approximately 56% homologous to the Escherichia coli counterpart. As expected, the G/C content of TT-lon was 68%, which is significantly higher than that of the E. coli lon gene (52% G/C). The amino acid sequence of T. thermophilus Lon protease (TT-Lon) predicted from the nucleotide sequence contained several unique sequences conserved in other Lon proteases: (a) a cysteine residue at the position just before the putative ATP-binding domain; (b) motif A and B sequences required for composition of the ATP-binding domain; and (c) a serine residue at the proteolytic active site. Expression of TT-lon under the control of the T7 promoter in E. coli produced an 89-kDa protein with a yield of approximately 5 mg.L-1. Recombinant TT-Lon (rTT-Lon) was purified to homogeneity by sequential column chromatography. The peptidase activity of rTT-Lon was activated by ATP and alpha-casein. rTT-Lon cleaved succinyl-phenylalanyl-leucyl-phenylalanyl-methoxynaphthylamide much more efficiently than succinyl-alanyl-alanyl-phenylalanyl-methoxynaphthylamide, whereas both peptides were cleaved with comparable efficiencies by E. coli Lon. These results suggest that there is a difference between TT-Lon and E. coli Lon in substrate specificity. rTT-Lon most effectively cleaved substrate peptides at 70 degrees C, which was significantly higher than the optimal temperature (37 degrees C) for E. coli Lon. Together, these results indicate that the TT-lon gene isolated from T. thermophilus HB8 actually encodes an ATP-dependent thermostable protease Lon.
Collapse
Affiliation(s)
- S Watanabe
- Biophysics Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Jobin MP, Garmyn D, Diviès C, Guzzo J. The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J Bacteriol 1999; 181:6634-41. [PMID: 10542163 PMCID: PMC94126 DOI: 10.1128/jb.181.21.6634-6641.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 08/23/1999] [Indexed: 11/20/2022] Open
Abstract
Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42 degrees C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5' end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli.
Collapse
Affiliation(s)
- M P Jobin
- Laboratoire de Microbiologie U.A.-INRA, ENSBANA, 21000 Dijon, France
| | | | | | | |
Collapse
|
47
|
Liu J, Cosby WM, Zuber P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 1999; 33:415-28. [PMID: 10411757 DOI: 10.1046/j.1365-2958.1999.01489.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase sigma subunit, sigmaH (Spo0H) of Bacillus subtilis, is essential for the transcription of genes that function in sporulation and genetic competence. Although spo0H is transcriptionally regulated by the key regulatory device that controls sporulation initiation, the Spo0 phosphorelay, there is considerable evidence implicating a mechanism of post-translational control that governs the activity and concentration of sigmaH. Post-translational control of spo0H is responsible for the reduced expression of genes requiring sigmaH under conditions of low environmental pH. It is also responsible for heightened sigmaH activity upon relief of acid stress and during nutritional depletion. In this study, the ATP-dependent proteases LonA and B and the regulatory ATPase ClpX were found to function in the post-translational control of sigmaH. Mutations in lonA and lonB result in elevated sigmaH protein concentrations in low-pH cultures. However, this is not sufficient to increase sigmaH-dependent transcription. Activation of sigmaH-dependent transcription upon raising medium pH and in cells undergoing sporulation requires clpX, as shown by measuring the expression of lacZ fusions that require sigmaH for transcription and by complementation of a clpX null mutation. A hypothesis is presented that low environmental pH results in the Lon-dependent degradation of sigmaH, but the activity of sigmaH in sporulating cells and in cultures at neutral pH is stimulated by a ClpX-dependent mechanism in response to nutritional stress.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, OR 97291-1000, USA
| | | | | |
Collapse
|
48
|
Abstract
The heptacistronic dnaK heat shock operon of Bacillus subtilis consists of the genes hrcA, grpE, dnaK, dnaJ, orf35, orf28 and orf50. It is controlled by the CIRCE/HrcA operator/repressor system and specifies three primary transcripts, two of which are processed into three different products. We have analysed the regulatory consequences of this complex transcriptional organization in detail. First, the seven genes were heat induced to different extents at the mRNA level and can be classified into three groups by their induction factors. This differential induction was also reflected at the protein level. Secondly, the cellular amounts of the proteins HrcA, DnaK and DnaJ in B. subtilis differed drastically both under non-heat shock conditions and after thermal upshock. Thirdly, Northern blot analyses demonstrated that an mRNA-processing reaction generating products of differential stabilities plays an essential role during the regulation of gene expression. A crucial factor determining the low stability of two transcripts is the presence of the CIRCE element at their 5' ends. We demonstrate that CIRCE leads to the destabilization of mRNAs, but only if it is located in the immediate vicinity of a Shine-Dalgarno sequence. These results show that B. subtilis is using various, especially post-transcriptional, regulatory mechanisms to fine tune the expression of the individual genes of the heptacistronic dnaK operon.
Collapse
Affiliation(s)
- G Homuth
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
49
|
Van Melderen L, Gottesman S. Substrate sequestration by a proteolytically inactive Lon mutant. Proc Natl Acad Sci U S A 1999; 96:6064-71. [PMID: 10339542 PMCID: PMC26836 DOI: 10.1073/pnas.96.11.6064] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/1999] [Indexed: 11/18/2022] Open
Abstract
Lon protein of Escherichia coli is an ATP-dependent protease responsible for the rapid turnover of both abnormal and naturally unstable proteins, including SulA, a cell division inhibitor made after DNA damage, and RcsA, a positive regulator of transcription. Lon is a multimer of identical 94-kDa subunits, each containing a consensus ATPase motif and a serine active site. We found that overexpressing Lon, which is mutated for the serine active site (LonS679A) and is therefore devoid of proteolytic activity, unexpectedly led to complementation of the UV sensitivity and capsule overproduction of a lon deletion mutant. SulA was not degraded by LonS679A, but rather was completely protected by the Lon mutant from degradation by other cellular proteases. We interpret these results to mean that the mutant LonS679A binds but does not degrade Lon substrates, resulting in sequestration of the substrate proteins and interference with their activities, resulting in apparent complementation. Lon that carried a mutation in the consensus ATPase site, either with or without the active site serine, was no longer able to complement a Deltalon mutant. These in vivo results suggest that the pathway of degradation by Lon couples ATP-dependent unfolding with movement of the substrate into protected chambers within Lon, where it is held until degradation proceeds. In the absence of degradation the substrate remains sequestered. Comparison of our results with those from a number of other systems suggest that proteins related to the regulatory portions of energy-dependent proteases act as energy-dependent sequestration proteins.
Collapse
Affiliation(s)
- L Van Melderen
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
50
|
Derré I, Rapoport G, Devine K, Rose M, Msadek T. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 1999; 32:581-93. [PMID: 10320580 DOI: 10.1046/j.1365-2958.1999.01374.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clp ATPases, which include the ubiquitous HSP100 family, are classified according to their structural features and sequence similarities. During the course of the Bacillus subtilis genome sequencing project, we identified a gene encoding a new member of the HSP100 family. We designated this protein ClpE, as it is the prototype of a novel subfamily among the Clp ATPases, and have identified homologues in several bacteria, including Listeria monocytogenes, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus pneumoniae, Lactobacillus sakei and Clostridium acetobutylicum. A unique feature of these Hsp100-type Clp ATPases is their amino-terminal zinc finger motif. Unlike the other class III genes of B. subtilis (clpC and clpP ), clpE does not appear to be required for stress tolerance. Transcriptional analysis revealed two sigmaA-type promoters, expression from which was shown to be inducible by heat shock and puromycin treatment. Investigation of the regulatory mechanism controlling clpE expression indicates that this gene is controlled by CtsR and is thus a member of the class III heat shock genes of B. subtilis. CtsR negatively regulates clpE expression by binding to the promoter region, in which five CtsR binding sites were identified through DNase I footprinting and sequence analysis.
Collapse
Affiliation(s)
- I Derré
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|