1
|
Muruaga EJ, Uriza PJ, Eckert GAK, Pepe MV, Duarte CM, Roset MS, Briones G. Adaptation of the binding domain of Lactobacillus acidophilus S-layer protein as a molecular tag for affinity chromatography development. Front Microbiol 2023; 14:1210898. [PMID: 37383629 PMCID: PMC10293925 DOI: 10.3389/fmicb.2023.1210898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The S-layer proteins are a class of self-assembling proteins that form bi-dimensional lattices named S-Layer on the cell surface of bacteria and archaea. The protein SlpA, which is the major constituent of the Lactobacillus acidophilus S-layer, contains in its C-terminus region (SlpA284 - 444), a protein domain (named here as SLAPTAG) responsible for the association of SlpA to the bacterial surface. SLAPTAG was adapted for the development of a novel affinity chromatography method: the SLAPTAG-based affinity chromatography (SAC). Methods Proteins with different molecular weights or biochemical functions were fused in-frame to the SLAPTAG and efficiently purified by a Bacillus subtilis-derived affinity matrix (named Bio-Matrix or BM). Different binding and elution conditions were evaluated to establish an optimized protocol. Results The binding equilibrium between SLAPTAG and BM was reached after a few minutes of incubation at 4°C, with an apparent dissociation constant (KD) of 4.3μM. A reporter protein (H6-GFP-SLAPTAG) was used to compare SAC protein purification efficiency against commercial immobilized metal affinity chromatography. No differences in protein purification performance were observed between the two methods. The stability and reusability of the BM were evaluated, and it was found that the matrix remained stable for more than a year. BM could be reused up to five times without a significant loss in performance. Additionally, the recovery of bound SLAP-tagged proteins was explored using proteolysis with a SLAP-tagged version of the HRV-3c protease (SLAPASE). This released the untagged GFP while the cut SLAPTAG and the SLAPASE were retained in the BM. As an alternative, iron nanoparticles were linked to the BM, resulting in BMmag. The BMmag was successfully adapted for a magnetic SAC, a technique with potential applications in high-throughput protein production and purification. Discussion The SAC protocol can be adapted as a universal tool for the purification of recombinant proteins. Furthermore, the SAC protocol utilizes simple and low-cost reagents, making it suitable for in-house protein purification systems in laboratories worldwide. This enables the production of pure recombinant proteins for research, diagnosis, and the food industry.
Collapse
Affiliation(s)
- Emanuel J. Muruaga
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Paula J. Uriza
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Gonzalo A. K. Eckert
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María V. Pepe
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Cecilia M. Duarte
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Mara S. Roset
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Herdman M, von Kügelgen A, Kureisaite-Ciziene D, Duman R, El Omari K, Garman EF, Kjaer A, Kolokouris D, Löwe J, Wagner A, Stansfeld PJ, Bharat TAM. High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure 2021; 30:215-228.e5. [PMID: 34800371 PMCID: PMC8828063 DOI: 10.1016/j.str.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022]
Abstract
Surface layers (S-layers) are proteinaceous crystalline coats that constitute the outermost component of most prokaryotic cell envelopes. In this study, we have investigated the role of metal ions in the formation of the Caulobacter crescentus S-layer using high-resolution structural and cell biology techniques, as well as molecular simulations. Utilizing optical microscopy of fluorescently tagged S-layers, we show that calcium ions facilitate S-layer lattice formation and cell-surface binding. We report all-atom molecular dynamics simulations of the S-layer lattice, revealing the importance of bound metal ions. Finally, using electron cryomicroscopy and long-wavelength X-ray diffraction experiments, we mapped the positions of metal ions in the S-layer at near-atomic resolution, supporting our insights from the cellular and simulations data. Our findings contribute to the understanding of how C. crescentus cells form a regularly arranged S-layer on their surface, with implications on fundamental S-layer biology and the synthetic biology of self-assembling biomaterials. Live imaging shows Ca2+-dependent expansion of the C. crescentus S-layer Molecular simulations reveal Ca2+-binding properties of the S-layer Ca2+ ion mapping in three-dimensional crystals using in-vacuum X-ray anomalous diffraction Ca2+ replacement by Ho3+ allows cryo-EM mapping of heavy metals
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | - Ramona Duman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andreas Kjaer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jan Löwe
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
3
|
Farci D, Guadalupi G, Bierła K, Lobinski R, Piano D. The Role of Iron and Copper on the Oligomerization Dynamics of DR_2577, the Main S-Layer Protein of Deinococcus radiodurans. Front Microbiol 2019; 10:1450. [PMID: 31333601 PMCID: PMC6615493 DOI: 10.3389/fmicb.2019.01450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Surface (S)-layers are cryptic structures that coat the external surface of the bacterial cell in many species. The paracrystalline regularity of the S-layer is due to the self-assembling of one or more protein units. The property of self-assembling seems to be mediated by specific topologies of the S-layer proteins as well as the presence of specific ions that provide support in building and stabilizing the bi-dimensional S-layer organization. In the present study, we have investigated the self-assembling mechanism of the main S-layer protein of Deinococcus radiodurans (DR_2577) finding an unusual role played by Fe3+ and Cu2+ in the oligomerization of this protein. These findings may trace a structural and functional metallo-mediated convergence between the role of these metals in the assembling of the S-layer and their well-known roles in protecting against oxidative stress in D. radiodurans.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| | - Giulia Guadalupi
- Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| | - Katarzyna Bierła
- Laboratory of Analitycal and Bioinorganic Chemistry and Environment, UMR5254 Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau, France
| | - Ryszard Lobinski
- Laboratory of Analitycal and Bioinorganic Chemistry and Environment, UMR5254 Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Liu JX, Zhao XX. A recombinant adenovirus targeting typical Aeromonas salmonicida induces an antibody-mediated adaptive immune response after immunization of rainbow trout. Microb Pathog 2019; 133:103559. [PMID: 31132417 DOI: 10.1016/j.micpath.2019.103559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/03/2023]
Abstract
Aeromonas salmonicida, the oldest known fish pathogen and currently endemic throughout most of the world in both fresh and marine waters, causes severe economic losses to the salmon farming industry. Although there have been many studies on the prevention of furunculosis over the past few decades, it is still prevalent in many fisheries. In this study, a recombinant adenovirus vaccine candidate harboring the highly immunogenic Vapa gene (pAd-easy-cmv-Vapa) was successfully constructed and tested. The immune protection rate and specific antibody levels in the peripheral blood were then determined after immunizing rainbow trout. In addition, relative levels of IgM and IgT in the head kidney and hindgut before and after immunization were measured by quantitative reverse transcription PCR. Western blotting results indicated that the recombinant adenovirus could infect HEK-293 cells and express the A layer protein (encoded by Vapa). Further, survival analysis of fish 28 days after challenge showed that immunization significantly lowered the mortality rate (40%) compared to that in the control group (76.6%) and empty vector group (73.6%). This also led to an increase in specific antibodies in peripheral serum. In addition, levels of IgM and IgT in the head kidney and hindgut were increased to varying degrees. In conclusion, our research provides a candidate vaccine for the prevention of Aeromonas salmonicida A450 infection in rainbow trout and lays the foundation for future research on adaptive immune mechanisms associated with rainbow trout antibodies.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Tao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ji-Xing Liu
- Product R & D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, 730030, China.
| | - Xing-Xu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 2015; 31:691-706. [PMID: 25739564 DOI: 10.1007/s11274-015-1830-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/31/2022]
Abstract
High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.
Collapse
|
6
|
The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 2013; 195:5370-80. [PMID: 24078613 DOI: 10.1128/jb.00615-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ~30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.
Collapse
|
7
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Impact of reattaching various Aeromonas salmonicida A-layer proteins on vaccine efficacy in Atlantic cod (Gadus morhua). Vaccine 2010; 28:4703-8. [DOI: 10.1016/j.vaccine.2010.04.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/17/2022]
|
9
|
Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 2009; 75:4720-6. [PMID: 19502450 DOI: 10.1128/aem.00251-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We compared the influences of grazing by the bacterivorous nanoflagellate Poterioochromonas sp. strain DS on ultramicrobacterial Actinobacteria affiliated with the Luna-2 cluster and ultramicrobacterial Betaproteobacteria of the species Polynucleobacter cosmopolitanus. These bacteria were almost identical in size (<0.1 microm(3)) and shape. Predation on a Polynucleobacter strain resulted in a reduction of >86% relative to the initial bacterial cell numbers within 20 days, while in comparable predation experiments with nine actinobacterial strains, no significant decrease of cell numbers by predation was observed over the period of >or=39 days. The differences in predation mortality between the actinobacterial strains and the Polynucleobacter strain clearly demonstrated size-independent grazing resistance for the investigated Actinobacteria. Importantly, this size-independent grazing resistance is shared by all nine investigated Luna-2 strains and thus represents a group-specific trait. We investigated if an S-layer, previously observed in an ultrastructure study, was responsible for the grazing resistance of these strains. Experiments aiming for removal of the S-layer or modification of cell surface proteins of one of the grazing-resistant strains by treatment with lithium chloride, EDTA, or formaldehyde resulted in 4.2- to 5.2-fold higher grazing rates in comparison to the levels for untreated cells. These results indicate the protective role of a proteinaceous cell surface structure in the size-independent grazing resistance of the actinobacterial Luna-2 strains, which can be regarded as a group-specific trait.
Collapse
|
10
|
Lund V, Arnesen JA, Mikkelsen H, Gravningen K, Brown L, Schrøder MB. Atypical furunculosis vaccines for Atlantic cod (Gadus morhua); vaccine efficacy and antibody responses. Vaccine 2008; 26:6791-9. [DOI: 10.1016/j.vaccine.2008.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/22/2008] [Accepted: 10/06/2008] [Indexed: 11/28/2022]
|
11
|
Jutfelt F, Sundh H, Glette J, Mellander L, Thrandur Björnsson B, Sundell K. The involvement of Aeromonas salmonicida virulence factors in bacterial translocation across the rainbow trout, Oncorhynchus mykiss (Walbaum), intestine. JOURNAL OF FISH DISEASES 2008; 31:141-151. [PMID: 18234022 DOI: 10.1111/j.1365-2761.2007.00879.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The pathogenic bacterium Aeromonas salmonicida is the causative agent of furunculosis, a lethal disease in salmonids. The mode of lateral transmission has not been conclusively defined, but A. salmonicida is able to translocate across the intestinal epithelium of salmonids, making the intestinal route a probable candidate. This study investigated some of the virulence mechanisms used by the bacteria to promote translocation. Intestinal segments were placed in modified Ussing chambers to investigate epithelial functions during exposure to bacterial factors. The factors were: extracellular products (ECP), lipopolysaccharide (LPS) or live or heat-inactivated A. salmonicida. Fluorescein isothiocynate (FITC)-labelling enabled detection of translocated bacteria by fluorometry. Live A. salmonicida translocated to a greater degree than heat-inactivated bacteria, suggesting that the bacteria utilize a heat sensitive surface-bound virulence factor which promotes translocation. The epithelium was negatively affected by ECP, manifested as decreased net ion transport, indicating a disturbance in ion channels or cell metabolism. LPS did not affect the epithelium in vitro when administered on the luminal side of the intestinal segment, but significantly increased epithelial translocation of fluorescent bacterial-sized microspheres when administered on the serosal side. This is suggested to be caused by increased transcellular transport, as the paracellular permeability was unaffected indicating maintained epithelial integrity.
Collapse
Affiliation(s)
- F Jutfelt
- Department of Zoology/Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Golowczyc MA, Mobili P, Garrote GL, Abraham AG, De Antoni GL. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int J Food Microbiol 2007; 118:264-73. [PMID: 17719671 DOI: 10.1016/j.ijfoodmicro.2007.07.042] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 07/23/2007] [Indexed: 11/23/2022]
Abstract
Eight Lactobacillus kefir strains isolated from different kefir grains were tested for their ability to antagonize Salmonella enterica serovar Enteritidis (Salmonella enteritidis) interaction with epithelial cells. L. kefir surface properties such as autoaggregation and coaggregation with Salmonella and adhesion to Caco-2/TC-7 cells were evaluated. L. kefir strains showed significantly different adhesion capacities, six strains were able to autoaggregate and four strains coaggregated with Salmonella. Coincubation of Salmonella with coaggregating L. kefir strains significantly decreased its capacity to adhere to and to invade Caco-2/TC-7 cells. This was not observed with non coaggregating L. kefir strains. Spent culture supernatants of L. kefir contain significant amounts of S-layer proteins. Salmonella pretreated with spent culture supernatants (pH 4.5-4.7) from all tested L. kefir strains showed a significant decrease in association and invasion to Caco-2/TC-7 cells. Artificially acidified MRS containing lactic acid to a final concentration and pH equivalent to lactobacilli spent culture supernatants did not show any protective action. Pretreatment of this pathogen with spent culture supernatants reduced microvilli disorganization produced by Salmonella. In addition, Salmonella pretreated with S-layer proteins extracted from coaggregating and non coaggregating L. kefir strains were unable to invade Caco-2/TC-7 cells. After treatment, L. kefir S-layer protein was detected associated with Salmonella, suggesting a protective role of this protein on association and invasion.
Collapse
Affiliation(s)
- M A Golowczyc
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Argentina
| | | | | | | | | |
Collapse
|
13
|
Ford MJ, Nomellini JF, Smit J. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. J Bacteriol 2007; 189:2226-37. [PMID: 17209028 PMCID: PMC1899406 DOI: 10.1128/jb.01690-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S-layer of the gram-negative bacterium Caulobacter crescentus is composed of a single protein, RsaA, that is secreted and assembled into a hexagonal crystalline array that covers the organism. Despite the widespread occurrence of comparable bacterial S-layers, little is known about S-layer attachment to cell surfaces, especially for gram-negative organisms. Having preliminary indications that the N terminus of RsaA anchors the monomer to the cell surface, we developed an assay to distinguish direct surface attachment from subunit-subunit interactions where small RsaA fragments are incubated with S-layer-negative cells to assess the ability of the fragments to reattach. In doing so, we found that the RsaA anchoring region lies in the first approximately 225 amino acids and that this RsaA anchoring region requires a smooth lipopolysaccharide species found in the outer membrane. By making mutations at six semirandom sites, we learned that relatively minor perturbations within the first approximately 225 amino acids of RsaA caused loss of anchoring. In other studies, we confirmed that only this N-terminal region has a direct role in S-layer anchoring. As a by-product of the anchoring studies, we discovered that Sap, the C. crescentus S-layer-associated protease, recognized a cleavage site in the truncated RsaA fragments that is not detected by Sap in full-length RsaA. This, in turn, led to the discovery that Sap was an extracellular membrane-bound protease, rather than intracellular, as previously proposed. Moreover, Sap was secreted to the cell surface primarily by the S-layer type I secretion apparatus.
Collapse
Affiliation(s)
- Matthew J Ford
- Department of Microbiology and Immunology, University of British Columbia, 2509-2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
14
|
Massias B, Dumetz F, Urdaci MC, Le Hénaff M. Identification of P18, a surface protein produced by the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 2005; 97:574-80. [PMID: 15281938 DOI: 10.1111/j.1365-2672.2004.02338.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS This study was focused on the identification of associated outer membrane proteins which may play a role in the specific interactions between Flavobacterium psychrophilum (the aetiological agent of cold-water disease and rainbow trout fry syndrome in salmonid fish worldwide) and the fish tissues. METHODS AND RESULTS The surface protein interactions with the outer membrane being mainly ionic, different methods were used for the detachment of proteins from the cell surface of Fl. psychrophilum involving detergent-free buffers or solutions known to perturb the ionic interactions. Such treatments led to the isolation of a surface protein, named P18 in accordance with its relative molecular mass. The expression of P18 was not related to the growth conditions (liquid or solid medium, temperature and aeration) or the strains of Fl. psychrophilum tested here. CONCLUSIONS Preliminary characterization indicated that P18 is a surface antigen which is not sugar-modified and might be a subunit of a surface layer (i.e. S-layer), one of the most common surface structures on bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY Data reported here should be used as the basis for further works involving the purification and characterization of P18 to identify the specific roles of such a surface protein, especially the interaction between this protein and the host surface.
Collapse
Affiliation(s)
- B Massias
- Laboratoire de Microbiologie et de Biochimie Appliquées, Ecole Nationale d'Ingénieurs des Travaux Agricoles de Bordeaux, Gradignan, France
| | | | | | | |
Collapse
|
15
|
McCarren J, Heuser J, Roth R, Yamada N, Martone M, Brahamsha B. Inactivation of swmA results in the loss of an outer cell layer in a swimming synechococcus strain. J Bacteriol 2005; 187:224-30. [PMID: 15601706 PMCID: PMC538829 DOI: 10.1128/jb.187.1.224-230.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 09/25/2004] [Indexed: 11/20/2022] Open
Abstract
The mechanism of nonflagellar swimming of marine unicellular cyanobacteria remains poorly understood. SwmA is an abundant cell surface-associated 130-kDa glycoprotein that is required for the generation of thrust in Synechococcus sp. strain WH8102. Ultrastructural comparisons of wild-type cells to a mutant strain in which the gene encoding SwmA has been insertionally inactivated reveal that the mutant lacks a layer external to the outer membrane. Cryofixation and freeze-substitution are required for the preservation of this external layer. Freeze fracturing and etching reveal that this additional layer is an S-layer. How the S-layer might function in motility remains elusive; however, this work describes an ultrastructural component required for this unique type of swimming. In addition, the work presented here describes the envelope structure of a model swimming cyanobacterium.
Collapse
Affiliation(s)
- J McCarren
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California-San Diego, 3135 Hubbs Hall, 8750 Biological Grade, La Jolla, CA 92093-0202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lund V, Arne Arnesen J, Coucheron D, Modalsli K, Syvertsen C. The Aeromonas salmonicida A-layer protein is an important protective antigen in oil-adjuvanted vaccines. FISH & SHELLFISH IMMUNOLOGY 2003; 15:367-372. [PMID: 12969658 DOI: 10.1016/s1050-4648(02)00180-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
17
|
Garduño RA, Moore AR, Olivier G, Lizama AL, Garduño E, Kay WW. Host cell invasion and intracellular residence by Aeromonas salmonicida: role of the S-layer. Can J Microbiol 2000; 46:660-8. [PMID: 10932360 DOI: 10.1139/w00-034] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virulent strains of the fish pathogen Aeromonas salmonicida, which have surface S-layers (S+), efficiently adhere to, enter, and survive within macrophages. Here we report that S+ bacteria were 10- to 20-fold more adherent to non-phagocytic fish cell lines than S-layer-negative (S-) mutants. When reconstituted with exogenous S-layers, these S- mutants regained adherence. As well, latex beads coated with purified S-layers were more adherent to fish cell lines than uncoated beads, or beads coated with disorganized S-layers, suggesting that purified S-layers were sufficient to mediate high levels of adherence, and that this process relied on S-layer structure. Gentamicin protection assays and electron microscopy indicated that both S+ and S- A. salmonicida invaded non-phagocytic fish cells. In addition, these fish cells were unable to internalize S-layer-coated beads, clearly suggesting that the S-layer is not an invasion factor. Lipopolysaccharide (which is partially exposed in S+ bacteria) appeared to mediate invasion. Surprisingly, A. salmonicida did not show net growth inside fish cells cultured in the presence of gentamicin, as determined by viable bacterial cell counts. On the contrary, bacterial viability sharply decreased after cell infection. We thus concluded that the S-layer is an adhesin that promotes but does not mediate invasion of non-phagocytic fish cell lines. These cell lines should prove useful in studies aimed at characterizing the invasion mechanisms of A. salmonicida, but of limited value in studying the intracellular residence and replication of this invasive bacterium in vitro.
Collapse
Affiliation(s)
- R A Garduño
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- M Sára
- Centre for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, University of Agricultural Sciences, Vienna, Austria.
| | | |
Collapse
|
19
|
Garduño RA, Kuzyk MA, Kay WW. Structural and physiological determinants of resistance ofAeromonas salmonicidato reactive radicals. Can J Microbiol 1997. [DOI: 10.1139/m97-149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The facultative intracellular pathogen Aeromonas salmonicida survives and replicates in macrophages, a virulence trait presumed to be associated with its ability to resist reactive radicals. The mechanisms used by A. salmonicida to resist reactive radicals in vitro were shown to have both structural and physiological determinants. The sensitivity of A. salmonicida to exogenous H2O2, superoxide, and nitrogen radicals, as well as endogenous oxygen radicals, differed depending on growth conditions, cell surface structure, and preexposure to sublethal doses of radicals. Whereas sensitivities to exogenous oxygen radicals did not correlate with basal levels of catalase or Fe-superoxide dismutase, under similar culture conditions S-layer positive cells were more resistant to oxygen radicals than S-layer mutants. S-layer mutants recovered resistance when physically reconstituted with S-layer sheets. Hemin-coated S-layers, while protective against nitrogen radicals, sensitized A. salmonicida to H2O2. Sublethal concentrations of H2O2or superoxide induced a highly protective response characterized by de novo synthesis of both catalase and Mn-superoxide dismutase. It is proposed that for A. salmonicida the constitutive S-layer provides a first line of defense and the inducible catalase and Mn-superoxide dismutase provide a powerful second line of defense against macrophage-mediated killing via reactive oxygen species.Key words: Aeromonas salmonicida, oxygen radicals, nitrogen radicals, oxidative stress, S-layers.
Collapse
|
20
|
Bingle WH, Nomellini JF, Smit J. Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. J Bacteriol 1997; 179:601-11. [PMID: 9006010 PMCID: PMC178737 DOI: 10.1128/jb.179.3.601-611.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Linker insertion mutagenesis was used to modify the paracrystalline surface layer (S-layer) protein (RsaA) of the gram-negative bacterium Caulobacter crescentus. Eleven unique BamHI linker insertions in the cloned rsaA gene were identified; at the protein level, these linker insertions introduced 4 to 6 amino acids at positions ranging from the extreme N terminus to the extreme C terminus of the 1,026-amino-acid RsaA protein. All linker-peptide insertions in the RsaA N terminus caused the secreted protein to be shed into the growth medium, suggesting that the RsaA N terminus is involved in cell surface anchoring. One linker-peptide insertion in the RsaA C terminus (amino acid 784) had no effect on S-layer biogenesis, while another (amino acid 907) disrupted secretion of the protein, suggesting that RsaA possesses a secretion signal lying C terminal to amino acid 784, near or including amino acid 907. Unlike extreme N- or C-terminal linker-peptide insertions, those more centrally located in the RsaA primary sequence had no apparent effect on S-layer biogenesis. By using a newly introduced linker-encoded restriction site, a 3' fragment of the rsaA gene encoding the last 242 C-terminal amino acids of the S-layer protein was expressed in C. crescentus from heterologous Escherichia coli lacZ transcription and translation initiation information. This C-terminal portion of RsaA was secreted into the growth medium, confirming the presence of a C-terminal secretion signal. The use of the RsaA C terminus for the secretion of heterologous proteins in C. crescentus was explored by fusing 109 amino acids of an envelope glycoprotein from infectious hematopoietic necrosis virus, a pathogen of salmonid fish, to the last 242 amino acids of the RsaA C terminus. The resulting hybrid protein was successfully secreted into the growth medium and accounted for 10% of total protein in a stationary-phase culture. Based on these results and features of the RsaA primary sequence, we propose that the C. crescentus S-layer protein is secreted by a type I secretion system, relying on a stable C-terminal secretion signal in a manner analogous to E. coli alpha-hemolysin, the first example of an S-layer protein secreted by such a pathway.
Collapse
Affiliation(s)
- W H Bingle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
21
|
|