1
|
Senger J, Schulz A, Seitl I, Heider M, Fischer L. Importance of the 5' untranslated region for recombinant enzyme production in isolated Bacillus subtilis 007. AMB Express 2025; 15:24. [PMID: 39918718 PMCID: PMC11805744 DOI: 10.1186/s13568-025-01832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The production of industrial enzymes requires an efficient expression system with a suitable host. This study investigated the isolated Bacillus subtilis 007 as a host for expressing three enzymes with potential application in the food industry. Firstly, testing the PaprE and P43 promoters and the corresponding 5' untranslated regions revealed great differences in the production of the recently discovered β-galactosidase from Paenibacillus wnnyii. Expression controlled by the PaprE promoter yielded a significantly higher activity of 2515 µkat/L, compared to 56 µkat/L with the P43 promoter. Modifications on the PaprE core promoter region or the spacer, the sequence between the Shine-Dalgarno sequence and the start codon, did not improve β-galactosidase production. Since the aprE 5' untranslated region contributes to a high mRNA stability, it was incorporated into the P43 construct to determine whether mRNA stability is responsible for the differences observed in β-galactosidase production. Interestingly, mRNA stability was significantly improved and led to a nearly 50-fold higher β-galactosidase production of 2756 µkat/L. This strategy was successfully validated by the expression of two other enzymes: the cellobiose-2-epimerase from Caldicellulosiruptor saccharolyticus and the β-glucosidase from Pyrococcus furiosus. These findings underscored the crucial role of post-transcriptional regulation and emphasized mRNA stability as a key role in recombinant enzyme production in B. subtilis 007.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Martin Heider
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Korobeinikova A, Laalami S, Berthy C, Putzer H. RNase Y Autoregulates Its Synthesis in Bacillus subtilis. Microorganisms 2023; 11:1374. [PMID: 37374876 DOI: 10.3390/microorganisms11061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The instability of messenger RNA is crucial to the control of gene expression. In Bacillus subtilis, RNase Y is the major decay-initiating endoribonuclease. Here, we show how this key enzyme regulates its own synthesis by modulating the longevity of its mRNA. Autoregulation is achieved through cleavages in two regions of the rny (RNase Y) transcript: (i) within the first ~100 nucleotides of the open reading frame, immediately inactivating the mRNA for further rounds of translation; (ii) cleavages in the rny 5' UTR, primarily within the 5'-terminal 50 nucleotides, creating entry sites for the 5' exonuclease J1 whose progression is blocked around position -15 of the rny mRNA, potentially by initiating ribosomes. This links the functional inactivation of the transcript by RNase J1 to translation efficiency, depending on the ribosome occupancy at the translation initiation site. By these mechanisms, RNase Y can initiate degradation of its own mRNA when the enzyme is not occupied with degradation of other RNAs and thus prevent its overexpression beyond the needs of RNA metabolism.
Collapse
Affiliation(s)
- Anna Korobeinikova
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Soumaya Laalami
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Clément Berthy
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
3
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
4
|
Braun F, Durand S, Condon C. Initiating ribosomes and a 5'/3'-UTR interaction control ribonuclease action to tightly couple B. subtilis hbs mRNA stability with translation. Nucleic Acids Res 2017; 45:11386-11400. [PMID: 28977557 PMCID: PMC5737220 DOI: 10.1093/nar/gkx793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
We previously showed that ribosomes initiating translation of the B. subtilis hbs mRNA at a strong Shine–Dalgarno sequence block the 5′ exoribonuclease RNase J1 from degrading into the coding sequence. Here, we identify new and previously unsuspected features of this mRNA. First, we identify RNase Y as the endoribonuclease that cleaves the highly structured 5′-UTR to give access to RNase J1. Cleavage by RNase Y at this site is modulated by a 14-bp long-range interaction between the 5′- and 3-UTRs that partially overlaps the cleavage site. In addition to this maturation/degradation pathway, we discovered a new and ultimately more important RNase Y cleavage site in the very early coding sequence, masked by the initiating ribosome. Thus, two independent pathways compete with ribosomes to tightly link hbs mRNA stability to translation initiation; in one case the initiating ribosome competes directly with RNase J1 and in the other with RNase Y. This is in contrast to prevailing models in Escherichia coli where ribosome traffic over the ORF is the main source of protection from RNases. Indeed, a second RNase Y cleavage site later in the hbs ORF plays no role in its turnover, confirming that for this mRNA at least, initiation is key.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
5
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
6
|
Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2011; 2:491-506. [DOI: 10.1515/bmc.2011.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis. In bacteria, the half-lives of individual mRNAs can differ by as much as two orders of magnitude, ranging from seconds to an hour. Most of what we know today about the diverse mechanisms of mRNA decay and maturation in prokaryotes comes from studies of the two model organisms Escherichia coli and Bacillus subtilis. Their evolutionary distance provided a large picture of potential pathways and enzymes involved in mRNA turnover. Among them are three ribonucleases, two of which have been discovered only recently, which have a truly general role in the initiating events of mRNA degradation: RNase E, RNase J and RNase Y. Their enzymatic characteristics probably determine the strategies of mRNA metabolism in the organism in which they are present. These ribonucleases are coded, alone or in various combinations, in all prokaryotic genomes, thus reflecting how mRNA turnover has been adapted to different ecological niches throughout evolution.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Harald Putzer
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
7
|
Daou-Chabo R, Mathy N, Bénard L, Condon C. Ribosomes initiating translation of thehbsmRNA protect it from 5′-to-3′ exoribonucleolytic degradation by RNase J1. Mol Microbiol 2009; 71:1538-50. [DOI: 10.1111/j.1365-2958.2009.06620.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
9
|
Sala C, Forti F, Magnoni F, Ghisotti D. The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation. BMC Mol Biol 2008; 9:33. [PMID: 18394163 PMCID: PMC2358910 DOI: 10.1186/1471-2199-9-33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background In Mycobacterium tuberculosis and in Mycobacterium smegmatis the furA-katG loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In M. tuberculosis furA-katG constitute a single operon, whereas in M. smegmatis a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the furA gene, corresponds to transcription initiation from the furA promoter; the second one is the katG mRNA 5' end, located in the terminal part of furA. Results In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the M. smegmatis region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of M. tuberculosis and M. smegmatis were inserted in a plasmid between the sigA promoter and the lacZ reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the katG translation start codon, increased beta-galactosidase activity and stabilized the lacZ transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of M. smegmatis was followed by an increasing number of katG codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the katG transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing. Conclusion This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The furA-katG mRNA is transcribed from the furA promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA.
Collapse
Affiliation(s)
- Claudia Sala
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | | | | | | |
Collapse
|
10
|
Celesnik H, Deana A, Belasco JG. Initiation of RNA decay in Escherichia coli by 5' pyrophosphate removal. Mol Cell 2007; 27:79-90. [PMID: 17612492 PMCID: PMC2196405 DOI: 10.1016/j.molcel.2007.05.038] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/29/2007] [Accepted: 05/25/2007] [Indexed: 01/21/2023]
Abstract
The common belief that endonucleolytic cleavage is the initial, rate-determining step of mRNA decay in Escherichia coli fails to explain the influence of 5' termini on the half-lives of primary transcripts. We have re-examined the initial events of RNA degradation in that organism by devising an assay to probe the 5' phosphorylation state of RNA and by employing a self-cleaving hammerhead ribozyme to investigate the degradative consequences of an unphosphorylated 5' end. These studies have identified a previously unrecognized prior step in decay that triggers subsequent internal cleavage by the endonuclease RNase E and thereby governs RNA longevity: the rate-determining conversion of a triphosphorylated to a monophosphorylated 5' terminus. Our findings redefine the role of RNase E in RNA degradation and explain how unpaired 5'-terminal nucleotides can facilitate access to internal cleavage sites within primary transcripts. Moreover, these results reveal a striking parallel between the mechanisms of mRNA decay in prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
| | | | - Joel G. Belasco
- * Corresponding author. Mailing address: Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016. Tel: (212) 263-5409; Fax: (212) 263-8951; E-mail:
| |
Collapse
|
11
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
12
|
Barnett TC, Bugrysheva JV, Scott JR. Role of mRNA stability in growth phase regulation of gene expression in the group A streptococcus. J Bacteriol 2006; 189:1866-73. [PMID: 17189377 PMCID: PMC1855745 DOI: 10.1128/jb.01658-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impressive disease spectrum of Streptococcus pyogenes (the group A streptococcus [GAS]) is believed to be determined by its ability to modify gene expression in response to environmental stimuli. Virulence gene expression is controlled tightly by several different transcriptional regulators in this organism. In addition, expression of most, if not all, GAS genes is determined by a global mechanism dependent on growth phase. To begin an analysis of growth-phase regulation, we compared the transcriptome 2 h into stationary phase to that in late exponential phase of a serotype M3 GAS strain. We identified the arc transcript as more abundant in stationary phase in addition to the sag and sda transcripts that had been previously identified. We found that in stationary phase, the stability of sagA, sda, and arcT transcripts increased dramatically. We found that polynucleotide phosphorylase (PNPase [encoded by pnpA]) is rate limiting for decay of sagA and sda transcripts in late exponential phase, since the stability of these mRNAs was greater in a pnpA mutant, while stability of control mRNAs was unaffected by this mutation. Complementation restored the wild-type decay rate. Furthermore, in a pnpA mutant, the sagA mRNA appeared to be full length, as determined by Northern hybridization. It seems likely that mRNAs abundant in stationary phase are insensitive to the normal decay enzyme(s) and instead require PNPase for this process. It is possible that PNPase activity is limited in stationary phase, allowing persistence of these important virulence factor transcripts at this phase of growth.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
13
|
Abstract
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at Vienna Biocenter, Vienna, Austria.
| | | |
Collapse
|
14
|
Ramírez-Prado JH, Martínez-Márquez EI, Olmedo-Alvarez G. cry1Aa Lacks Stability Elements at Its 5′-UTR but Integrity of Its Transcription Terminator Is Critical to Prevent Decay of Its Transcript. Curr Microbiol 2006; 53:23-9. [PMID: 16775783 DOI: 10.1007/s00284-005-5178-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
We analyzed the influence of the 5' and 3' untranslated regions of the Bacillus thuringiensis cry1Aa on its mRNA stability. Although the cry1Aa gene has a stable transcript (8 min), its 5' UTR did not provide stability to the reporter gene uidA. Stability of cry1Aa could be increased to 40 min by addition of an SP82 stability element at the 5' UTR, suggesting that once the 5' and 3' ends were protected initiation of decay could be effectively blocked. We generated mutations in the transcription terminator and found that changes that reduced the stability of the stem, a larger loop, or elimination of the U-trail sharply decreased the half-life of the transcript. Therefore, unlike some stable bacterial transcripts, cry1Aa lacks special features at the end 5' to prevent decay, but its terminator is the main determinant of its stability.
Collapse
|
15
|
Abstract
Previous work showed that a 42-nucleotide sequence from an SP82 bacteriophage early RNA functions as a 5' mRNA stabilizer in Bacillus subtilis. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis of decay of a model mRNA with alterations at the 5'-end was used to elucidate the mechanism of SP82-mediated stability. A predicted 5'-terminal stem-loop structure was essential for stabilization. Increasing the strength of the 5'-terminal structure above a minimum level did not result in increased stability. A thorough analysis of the context in which the stabilizing structure occurred included the effects of distance from 5'-end, translation of downstream coding sequence, and distance between the secondary structure and the ribosome binding site. Our data are consistent with the dominant mRNA decay pathway in B. subtilis being 5'-end dependent.
Collapse
Affiliation(s)
- Josh S Sharp
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine of New York University, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029-6754, USA
| | | |
Collapse
|
16
|
Redon E, Loubière P, Cocaign-Bousquet M. Role of mRNA stability during genome-wide adaptation of Lactococcus lactis to carbon starvation. J Biol Chem 2005; 280:36380-5. [PMID: 16131490 DOI: 10.1074/jbc.m506006200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stability of mRNA was investigated for the first time at the genomic scale during carbon starvation adaptation of Lactococcus lactis IL1403. In exponential phase, mRNA half-lives were correlated positively to open reading frame length. A polypurine sequence, AGGAG, was identified as a putative 5'-stabilizer and inverted repeated sequences as a 3'-destabilizer. These original findings suggested that multiple pathways of mRNA degradation should coexist: internal cleavage, endonuclease cleavage initiated at the 5'-end, and exonuclease attack at the 3'-end. During carbon starvation adaptation, mRNA stability globally increased, but specific mechanisms allowing a wide range of stabilization factors between genes and differential kinetic evolution were involved. A formal method allowing the quantification of the relative influences of transcription and degradation on the mRNA pool control was developed and applied in L. lactis. Gene expression was mostly controlled by altered transcription prior to carbon source exhaustion, while the influence of mRNA stability increased during the starvation phase. This study highlighted that stability modulation in response to adverse growth conditions can govern gene regulation to the same extent as transcription in bacteria.
Collapse
Affiliation(s)
- Emma Redon
- Laboratoire Biotechnologie Bioprocédés, Unité Mixte de Recherche 5504 CNRS, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | | | | |
Collapse
|
17
|
Abstract
A 254-nucleotide model mRNA, designated deltaermC mRNA, was used to study the effects of translational signals and ribosome transit on mRNA decay in Bacillus subtilis. DeltaermC mRNA features a strong ribosome-binding site (RBS) and a 62-amino-acid-encoding open reading frame, followed by a transcription terminator structure. Inactivation of the RBS or the start codon resulted in a fourfold decrease in the mRNA half-life, demonstrating the importance of ternary complex formation for mRNA stability. Data for the decay of deltaermC mRNAs with stop codons at positions increasingly proximal to the translational start site showed that actual translation--even the formation of the first peptide bond--was not important for stability. The half-life of an untranslated 3.2-kb deltaermC-lacZ fusion RNA was similar to that of a translated deltaermC-lacZ mRNA, indicating that the translation of even a longer RNA was not required for wild-type stability. The data are consistent with a model in which ribosome binding and the formation of the ternary complex interfere with a 5'-end-dependent activity, possibly a 5'-binding endonuclease, which is required for the initiation of mRNA decay. This model is supported by the finding that increasing the distance from the 5' end to the start codon resulted in a 2.5-fold decrease in the mRNA half-life. These results underscore the importance of the 5' end to mRNA stability in B. subtilis.
Collapse
Affiliation(s)
- Josh S Sharp
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | |
Collapse
|
18
|
Hambraeus G, von Wachenfeldt C, Hederstedt L. Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 2003; 269:706-14. [PMID: 12884008 DOI: 10.1007/s00438-003-0883-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 06/08/2003] [Indexed: 10/26/2022]
Abstract
We have used DNA microarrays to survey rates of mRNA decay on a genomic scale in early stationary-phase cultures of Bacillus subtilis. The decay rates for mRNAs corresponding to about 1500 genes could be estimated. About 80% of these mRNAs had a half-life of less than 7 min. More than 30 mRNAs, including both mono- and polycistronic transcripts, were found to be extremely stable, i.e. to have a half-life of > or =15 min. Only two such transcripts were known previously in B. subtilis. The results provide the first overview of mRNA decay rates in a gram-positive bacterium and help to identify polycistronic operons. We could find no obvious correlation between the stability of an mRNA and the function of the encoded protein. We have also not found any general features in the 5' regions of mRNAs that distinguish stable from unstable transcripts. The identified set of extremely stable mRNAs may be useful in the construction of stable recombinant genes for the overproduction of biomolecules in Bacillus species.
Collapse
Affiliation(s)
- G Hambraeus
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | | | |
Collapse
|
19
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
20
|
Hambraeus G, Karhumaa K, Rutberg B. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1795-1803. [PMID: 12055299 DOI: 10.1099/00221287-148-6-1795] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis aprE leader is a determinant of extreme mRNA stability. The authors examined what properties of the aprE leader confer stability on an mRNA. The secondary structure of the aprE leader mRNA was analysed in vitro and in vivo, and mutations were introduced into different domains of an aprE leader-lacZ fusion. The half-lives of the corresponding transcripts were determined and beta-galactosidase activities were measured. Removal of a stem-loop structure at the 5' end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5' stem-loop and binding of ribosomes are necessary for the stability of aprE leader mRNA. The present results, together with a number of other data, suggest that translation of a B. subtilis mRNA is generally not important for its stability; the situation seems different in Escherichia coli. It is further concluded that the calculated strength of a B. subtilis RBS cannot be used to predict the stability of the corresponding transcript.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Kaisa Karhumaa
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Blanka Rutberg
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| |
Collapse
|
21
|
Drider D, DiChiara JM, Wei J, Sharp JS, Bechhofer DH. Endonuclease cleavage of messenger RNA in Bacillus subtilis. Mol Microbiol 2002; 43:1319-29. [PMID: 11918816 DOI: 10.1046/j.1365-2958.2002.02830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A deletion derivative of the ermC gene was constructed that expresses a 254-nucleotide mRNA. The small size of this mRNA facilitated the detection of processing products that did not differ greatly in size from the full-length transcript. In the presence of erythromycin, which induces ribosome stalling near the 5' end of ermC mRNA, the 254-nucleotide mRNA was cleaved endonucleolytically at the site of ribosome stalling. Only the downstream product of this cleavage was detectable; the upstream product was apparently too unstable to be detected. The downstream cleavage product accumulated at times after rifampicin addition, suggesting that the stalled ribosome at the 5' end conferred stability to this RNA fragment. Neither Bs-RNase III nor RNase M5, the two known narrow-specificity endoribonucleases of Bacillus subtilis, was responsible for this cleavage. These results indicate the presence in B. subtilis of another specific endoribonuclease, which may be ribosome associated.
Collapse
Affiliation(s)
- Djamel Drider
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
22
|
Pereira Y, Chambert R, Leloup L, Daguer JP, Petit-Glatron MF. Transcripts of the genes sacB, amyE, sacC and csn expressed in Bacillus subtilis under the control of the 5' untranslated sacR region display different stabilities that can be modulated. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1331-1341. [PMID: 11320136 DOI: 10.1099/00221287-147-5-1331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When Bacillus subtilis levanase (SacC), alpha-amylase (AmyE) and chitosanase (Csn) structural genes were expressed under the regulated control of sacR, the inducible levansucrase (SacB) leader region in a degU32(Hy) mutant, it was observed that the production yields of the various extracellular proteins were quite different. This is mainly due to differences in the stabilities of their corresponding mRNAs which lead to discrepancies between the steady-state level of mRNA of sacB and csn on the one hand and amyE and sacC on the other. In contrast to levansucrase mRNA, the decay curves of alpha-amylase and levanase mRNAs obtained by Northern blotting analysis did not match the decay curves of their functional mRNA. This suggested that only a part of the population of the amyE and sacC transcripts was fully translated, while the others were possibly poorly bound to ribosomes and thus were only partially translated or not at all and consequently submitted to rapid endonuclease degradation. This hypothesis was substantiated by the finding that the introduction of a Shine-Dalgarno sequence upstream from the ribosome-binding site in the sacC transcript resulted in a fourfold increase in both the half-life of this transcript and the production of levanase. An additional cause of low-level levanase production is the premature release of mRNA by the polymerase. It was attempted to correlate this event with internal secondary structures of sacC mRNA.
Collapse
Affiliation(s)
- Yannick Pereira
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Régis Chambert
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Laurence Leloup
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Jean-Pierre Daguer
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Marie-Françoise Petit-Glatron
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| |
Collapse
|
23
|
Hambraeus G, Persson M, Rutberg B. The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3051-3059. [PMID: 11101663 DOI: 10.1099/00221287-146-12-3051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis aprE gene encodes subtilisin, an extracellular proteolytic enzyme produced in stationary phase. The authors examined the stability of aprE mRNA and aprE leader-lacZ fusion mRNA. Both mRNAs were found to be unusually stable, with half-lives longer than 25 min, demonstrating that the aprE leader contains a determinant for extreme mRNA stability. The half-lives were the same in growing and stationary-phase cells. This contrasts with the findings of O. Resnekov et al. (1990) [Proc Natl Acad Sci USA 87, 8355-8359], which suggested a growth-phase-dependent mechanism for decay of aprE mRNA. The discrepancy is explained by the techniques used. Substitution of two bases or deletion of 25 nucleotides in the aprE leader led to a major difference in its predicted secondary structure and resulted in a fivefold reduction of the half-life of aprE mRNA. The authors also determined the half-life of amyE mRNA, which encodes alpha-amylase, another stationary-phase, excreted enzyme and found it to be around 5 min. This shows that extreme stability is not a general property of stationary-phase mRNAs encoding excreted enzymes.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Martin Persson
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Blanka Rutberg
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| |
Collapse
|
24
|
Persson M, Glatz E, Rutberg B. Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol 2000; 182:689-95. [PMID: 10633102 PMCID: PMC94331 DOI: 10.1128/jb.182.3.689-695.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Bacillus subtilis glpD gene, which encodes glycerol-3-phosphate (G3P) dehydrogenase, is controlled by termination or antitermination of transcription. The untranslated leader sequence of glpD contains an inverted repeat that gives rise to a transcription terminator. In the presence of G3P, the antiterminator protein GlpP binds to glpD leader mRNA and promotes readthrough of the terminator. Certain mutations in the inverted repeat of the glpD leader result in GlpP-independent, temperature-sensitive (TS) expression of glpD. The TS phenotype is due to temperature-dependent degradation of the glpD mRNA. In the presence of GlpP, the glpD mRNA is stabilized. glpD leader-lacZ fusions were integrated into the chromosomes of B. subtilis and Escherichia coli. Determination of steady-state levels of fusion mRNA in B. subtilis showed that the stability of the fusion mRNA is determined by the glpD leader part. Comparison of steady-state levels and half-lives of glpD leader-lacZ fusion mRNA in B. subtilis and E. coli revealed significant differences. A glpD leader-lacZ fusion transcript that was unstable in B. subtilis was considerably more stable in E. coli. GlpP, which stabilizes the transcript in B. subtilis, did not affect its stability in E. coli. Primer extension analysis showed that the glpD leader-lacZ fusion transcript is processed differently in B. subtilis and in E. coli. The dominating cleavage site in E. coli was barely detectable in B. subtilis. This site was shown to be a target of E. coli RNase III.
Collapse
Affiliation(s)
- M Persson
- Department of Microbiology, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden.
| | | | | |
Collapse
|
25
|
Sudershana S, Du H, Mahalanabis M, Babitzke P. A 5' RNA stem-loop participates in the transcription attenuation mechanism that controls expression of the Bacillus subtilis trpEDCFBA operon. J Bacteriol 1999; 181:5742-9. [PMID: 10482516 PMCID: PMC94095 DOI: 10.1128/jb.181.18.5742-5749.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation. Tryptophan-activated TRAP binds to the nascent trp leader transcript by interacting with 11 (G/U)AG repeats. TRAP binding prevents formation of an antiterminator structure, thereby promoting formation of an overlapping terminator, and hence transcription is terminated before RNA polymerase can reach the trp structural genes. In addition to the antiterminator and terminator, a stem-loop structure is predicted to form at the 5' end of the trp leader transcript. Deletion of this structure resulted in a dramatic increase in expression of a trpE'-'lacZ translational fusion and a reduced ability to regulate expression in response to tryptophan. By introducing a series of point mutations in the 5' stem-loop, we found that both the sequence and the structure of the hairpin are important for its regulatory function and that compensatory changes that restored base pairing partially restored wild-type-like expression levels. Our results indicate that the 5' stem-loop functions primarily through the TRAP-dependent regulatory pathway. Gel shift results demonstrate that the 5' stem-loop increases the affinity of TRAP for trp leader RNA four- to fivefold, suggesting that the 5' structure interacts with TRAP. In vitro transcription results indicate that this 5' structure functions in the attenuation mechanism, since deletion of the stem-loop caused an increase in transcription readthrough. An oligonucleotide complementary to a segment of the 5' stem-loop was used to demonstrate that formation of the 5' structure is required for proper attenuation control of this operon.
Collapse
Affiliation(s)
- S Sudershana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The heptacistronic dnaK heat shock operon of Bacillus subtilis consists of the genes hrcA, grpE, dnaK, dnaJ, orf35, orf28 and orf50. It is controlled by the CIRCE/HrcA operator/repressor system and specifies three primary transcripts, two of which are processed into three different products. We have analysed the regulatory consequences of this complex transcriptional organization in detail. First, the seven genes were heat induced to different extents at the mRNA level and can be classified into three groups by their induction factors. This differential induction was also reflected at the protein level. Secondly, the cellular amounts of the proteins HrcA, DnaK and DnaJ in B. subtilis differed drastically both under non-heat shock conditions and after thermal upshock. Thirdly, Northern blot analyses demonstrated that an mRNA-processing reaction generating products of differential stabilities plays an essential role during the regulation of gene expression. A crucial factor determining the low stability of two transcripts is the presence of the CIRCE element at their 5' ends. We demonstrate that CIRCE leads to the destabilization of mRNAs, but only if it is located in the immediate vicinity of a Shine-Dalgarno sequence. These results show that B. subtilis is using various, especially post-transcriptional, regulatory mechanisms to fine tune the expression of the individual genes of the heptacistronic dnaK operon.
Collapse
Affiliation(s)
- G Homuth
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
27
|
Pag U, Heidrich C, Bierbaum G, Sahl HG. Molecular analysis of expression of the lantibiotic pep5 immunity phenotype. Appl Environ Microbiol 1999; 65:591-8. [PMID: 9925587 PMCID: PMC91066 DOI: 10.1128/aem.65.2.591-598.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lantibiotic Pep5 is produced by Staphylococcus epidermidis 5. Within its biosynthetic gene cluster, the immunity gene pepI, providing producer self-protection, is localized upstream of the structural gene pepA. Pep5 production and the immunity phenotype have been found to be tightly coupled (M. Reis, M. Eschbach-Bludau, M. I. Iglesias-Wind, T. Kupke, and H.-G. Sahl, Appl. Environ. Microbiol. 60:2876-2883, 1994). To study this phenomenon, we analyzed pepA and pepI transcription and translation and constructed a number of strains containing various fragments of the gene cluster and expressing different levels of immunity. Complementation of a pepA-expressing strain with pepI in trans did not result in phenotypic immunity or production of PepI. On the other hand, neither pepA nor its product was found to be involved in immunity, since suppression of the translation of the pepA mRNA by mutation of the ATG start codon did not reduce the level of immunity. Moreover, homologous and heterologous expression of pepI from a xylose-inducible promoter resulted in significant Pep5 insensitivity. Most important for expression of the immunity phenotype was the stability of pepI transcripts, which in the wild-type strain, is achieved by an inverted repeat with a free energy of -56.9 kJ/mol, localized downstream of pepA. We performed site-directed mutagenesis to study the functional role of PepI and constructed F13D PepI, I17R PepI, and PepI 1-65; all mutants showed reduced levels of immunity. Western blot analysis indicated that F13D PepI and PepI 1-65 were not produced correctly or were partially degraded, while I17R PepI apparently was less efficient in providing self-protection than the wild-type PepI.
Collapse
Affiliation(s)
- U Pag
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
28
|
Stasinopoulos SJ, Farr GA, Bechhofer DH. Bacillus subtilis tetA(L) gene expression: evidence for regulation by translational reinitiation. Mol Microbiol 1998; 30:923-32. [PMID: 9988470 DOI: 10.1046/j.1365-2958.1998.01119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tetA(L) gene of Bacillus subtilis encodes a transmembrane protein that can function as a Tc-metal/H+ antiporter, conferring low-level resistance to tetracycline. The TetA(L) coding sequence is preceded by a leader region that contains a 20-amino-acid open reading frame and an appropriately spaced ribosome binding site. Expression of the gene is induced by addition of tetracycline, which is thought to act by binding to ribosomes that translate the tetA(L) leader peptide coding sequence. Here we demonstrate that induction of tetA(L) expression includes minor transcriptional and major translational components. Deletion and point mutations of the tetA(L) leader region were constructed to probe the mechanism of translational induction. To account for the observed mutant phenotypes, we propose that tetA(L) expression is regulated by a translational reinitiation mechanism.
Collapse
Affiliation(s)
- S J Stasinopoulos
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, NY 10029, USA
| | | | | |
Collapse
|
29
|
Bechhofer DH, Wang W. Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis. J Bacteriol 1998; 180:5968-77. [PMID: 9811656 PMCID: PMC107672 DOI: 10.1128/jb.180.22.5968-5977.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ermC mRNA decay was examined in a mutant of Bacillus subtilis that has a deleted pnpA gene (coding for polynucleotide phosphorylase). 5'-proximal RNA fragments less than 400 nucleotides in length were abundant in the pnpA strain but barely detectable in the wild type. On the other hand, the patterns of 3'-proximal RNA fragments were similar in the wild-type and pnpA strains. Northern blot analysis with different probes showed that the 5' end of the decay intermediates was the native ermC 5' end. For one prominent ermC RNA fragment, in particular, it was shown that formation of its 3' end was directly related to the presence of a stalled ribosome. 5'-proximal decay intermediates were also detected for transcripts encoded by the yybF gene. These results suggest that PNPase activity, which may be less sensitive to structures or sequences that block exonucleolytic decay, is required for efficient decay of specific mRNA fragments. However, it was shown that even PNPase activity could be blocked in vivo at a particular RNA structure.
Collapse
Affiliation(s)
- D H Bechhofer
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, New York, New York 10029, USA.
| | | |
Collapse
|
30
|
Joyce SA, Dreyfus M. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli. J Mol Biol 1998; 282:241-54. [PMID: 9735284 DOI: 10.1006/jmbi.1998.2027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Bacilli, ribosomes or 30 S ribosomal subunits that are stalled or bound on mRNAs can stabilize downstream regions, hence the view that the degradation machinery scans mRNAs from their 5' end. In E. coli, several mRNAs can also be stabilized by secondary structures involving their 5' end. To test whether a bound 30 S subunit can act as a 5' stabilizer in E. coli, we compare here the stabilities of two untranslated variants of the lacZ mRNA, the decay of which is controlled by RNase E. In the first variant, a 35 nt region including the Ribosome Binding Site (RBS) is deleted, whereas in the second it is replaced by an 11 nt-long Shine-Dalgarno (SD) sequence lacking an associated start codon. In the latter variant, an 80 nt fragment encompassing the SD and extending up to the mRNA 5' end was stable in vivo (t1/2>one hour), reflecting 30 S binding. Yet, the full-length message was not more stable than when the SD was absent, although two small decay intermediates retaining the 5' end appear somewhat stabilized. A third variant was constructed in which the RBS is replaced by an insert which can fold back onto the lac leader, creating a putative hairpin involving the mRNA 5' end. The fragment corresponding to this hairpin was stable but, again, the full-length message was not stabilized. Thus, the untranslated lacZ mRNA cannot be protected against RNase E by 5' stabilizers, suggesting that mRNA scanning is not an obligate feature of RNase E-controlled degradation. Altogether, these results suggest important differences in mRNA degradation between E. coli and B. subtilis. In addition, we show that mRNA regions involved in stable hairpins or Shine-Dalgarno pairings can be metabolically stable in E. coli.
Collapse
Affiliation(s)
- S A Joyce
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, 46 rue d'Ulm, Paris, 75230, France
| | | |
Collapse
|
31
|
Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng AS, Peterman MA, Tobias A, Wei P. Genes and regulatory sites of the "host-takeover module" in the terminal redundancy of Bacillus subtilis bacteriophage SPO1. Virology 1998; 246:329-40. [PMID: 9657951 DOI: 10.1006/viro.1998.9197] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early in infection of Bacillus subtilis by bacteriophage SPO1, the synthesis of most host-specific macromolecules is replaced by the corresponding phage-specific biosyntheses. It is believed that this subversion of the host biosynthetic machinery is accomplished primarily by a cluster of early genes in the SPO1 terminal redundancy. Here we analyze the nucleotide sequence of this 11.5-kb "host-takeover module," which appears to be designed for particularly efficient expression. Promoters, ribosome-binding sites, and codon usage statistics all show characteristics known to be associated with efficient function in B. subtilis. The promoters and ribosome-binding sites have additional conserved features which are not characteristic of their host counterparts and which may be important for competition with host genes for the cellular biosynthetic machinery. The module includes 24 genes, tightly packed into 12 operons driven by the previously identified early promoters PE1 to PE12. The genes are smaller than average, with half of them having fewer than 100 codons. Most of their inferred products show little similarity to known proteins, although zinc finger, trans-membrane, and RNA polymerase-binding domains were identified. Transcription-termination and RNase III cleavage sites were found at appropriate locations.
Collapse
Affiliation(s)
- C R Stewart
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arnold TE, Yu J, Belasco JG. mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA (NEW YORK, N.Y.) 1998; 4:319-330. [PMID: 9510333 PMCID: PMC1369620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' untranslated region (UTR) of the long-lived Escherichia coli ompA transcript functions as an mRNA stabilizer that can prolong the cytoplasmic lifetimes of a variety of messages to which it is fused. Previous studies have identified two domains of this 5' UTR that together are responsible for its stabilizing effect. One is a 5'-terminal stem-loop. The other is a single-stranded RNA segment (ss2) that contains a ribosome binding site highly complementary to 16S ribosomal RNA. Here we report a detailed investigation of the function of these two stabilizing elements. Our data indicate that mRNA protection by a 5' stem-loop requires no sequence features or thermodynamic stability beyond the minimum necessary for stem-loop formation. Stabilization by ss2 appears to result not from a high frequency of translation initiation, but rather from a high degree of occupancy of this 5' UTR segment by bound ribosomes. Although close spacing of translating ribosomes is not critical for message stabilization by the ompA 5' UTR, mRNA longevity does require the periodic passage of ribosomes through the protein-coding region. Unlike bound ribosomes, which hinder mRNA cleavage by RNase E, the 5' stem-loop appears to impede degradation of ompA mRNA via a distinct pathway that is RNase E-independent. These findings imply that the ompA 5' UTR prolongs mRNA longevity by impeding multiple pathways for mRNA degradation.
Collapse
Affiliation(s)
- T E Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Abstract
We undertook the study of the decay process of the cry1Aa mRNA of Bacillus thuringiensis expressed in B. subtilis. The cry1Aa transcript is a 3.7-kb mRNA expressed during sporulation whose transcriptional control has previously been studied in both B. subtilis and B. thuringiensis. We found that the cry1Aa mRNA has a half-life of around 9 min and that its decay occurs through endoribonucleolytic cleavages which result in three groups of high-molecular-weight mRNA intermediates ranging in size from 2.7 to 0.5 kb. A comparative study carried out with Escherichia coli showed a similar pattern of degradation intermediates. Primer extension analysis carried out on RNA from B. subtilis revealed that most cleavages occur within two regions located toward the 5' and 3' ends of the mRNA. The most prominent processing site observed for the cry1Aa mRNA isolated from B. subtilis is only two bases away from that occurring on RNA isolated from E. coli. Most cleavage sites occur at seemingly single-stranded RNA segments rich in A and U nucleotides, suggesting that a common and conserved mechanism may process the cry1Aa mRNA.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis/metabolism
- Bacillus thuringiensis Toxins
- Bacterial Proteins/genetics
- Bacterial Toxins
- Base Composition
- Blotting, Northern
- Cloning, Molecular
- Endoribonucleases/metabolism
- Endotoxins/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Hemolysin Proteins
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spores, Bacterial
Collapse
Affiliation(s)
- C Vázquez-Cruz
- Departamento de Ingeniería Genética, CINVESTAV IPN, Unidad Irapuato, Guanajuato, México
| | | |
Collapse
|
34
|
Guerchicoff A, Ugalde RA, Rubinstein CP. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 1997; 63:2716-21. [PMID: 9212418 PMCID: PMC168567 DOI: 10.1128/aem.63.7.2716-2721.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.
Collapse
Affiliation(s)
- A Guerchicoff
- Instituto de Investigaciones Bioquímicas F. Leloir, Fundación Campomar, Capital Federal, Argentina
| | | | | |
Collapse
|
35
|
Wang W, Bechhofer DH. Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J Bacteriol 1996; 178:2375-82. [PMID: 8636041 PMCID: PMC177948 DOI: 10.1128/jb.178.8.2375-2382.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pnpA gene of Bacillus subtilis, which codes for polynucleotide phosphorylase (PNPase), has been cloned and employed in the construction of pnpA deletion mutants. Growth defects of both B. subtilis and Escherichia coli PNPase-deficient strains were complemented with the cloned pnpA gene. RNA decay characteristics of the B. subtilis pnpA mutant were studied, including the in vivo decay of bulk mRNA and the in vitro decay of either poly(A) or total cellular RNA. The results showed that mRNA decay in the pnpA mutant is accomplished despite the absence of the major, Pi-dependent RNA decay activity of PNPase. In vitro experiments suggested that a previously identified, Mn2+ -dependent hydrolytic activity was important for decay in the pnpA mutant. In addition to a cold-sensitive-growth phenotype, the pnpA deletion mutant was found to be sensitive to growth in the presence of tetracycline, and this was due to an increased intracellular accumulation of the drug. The pnpA deletion strain also exhibited multiseptate, filamentous growth. It is hypothesized that defective processing of specific RNAs in the pnpA mutant results in these phenotypes.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|
36
|
Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 1995; 177:6027-32. [PMID: 7592363 PMCID: PMC177438 DOI: 10.1128/jb.177.21.6027-6032.1995] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- H Agaisse
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institut Pasteur, Paris, France
| | | |
Collapse
|