1
|
Christensen LF, Laforce IN, Wolkers-Rooijackers JCM, Mortensen MS, Smid EJ, Hansen EB. Lactococcus cell envelope proteases enable lactococcal growth in minimal growth media supplemented with high molecular weight proteins of plant and animal origin. FEMS Microbiol Lett 2024; 371:fnae019. [PMID: 38479791 DOI: 10.1093/femsle/fnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Ida Nynne Laforce
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | | | - Martin Steen Mortensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, PO Box 17, 6700AA Wageningen, The Netherlands
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Shen X, Li W, Cai H, Guo S, Li M, Liu Y, Sun Z. Metabolomics analysis reveals differences in milk metabolism and fermentation rate between individual Lactococcus lactis subsp. lactis strains. Food Res Int 2022; 162:111920. [DOI: 10.1016/j.foodres.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
3
|
Zhang H, Xu M, Hu S, Zhao H, Zhang B. The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171. Microorganisms 2022; 10:microorganisms10091724. [PMID: 36144326 PMCID: PMC9501481 DOI: 10.3390/microorganisms10091724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to explore the hydrolytic ability of Lactobacillus helveticus CICC 22171 with regard to protein and the expression of enzyme genes during protein utilization. The results revealed that the strain hydrolyzed casein from the C-terminal, reached the maximum level in 6 h, and the number of amino acids in the hydrolyzed peptide was 7–33. The molecular weight was 652.4–3432.74 kDa. Hydrophobic peptides produced by hydrolysis were the source of β-casein bitterness. Leucine and glutamine were the preferred cleavage points after 1 h; tyrosine and tryptophan subsequently increased. The first step of hydrolysis was controlled by PrtP and PrtM genes and coordinated with the action of PrtH1 and PrtH2. The transport system consisted of DtpT, OppB, OppD and OppF. The hydrolytic third step endopeptidase system consisted of the aminopeptidases (PepN, PepC, PepM and PepA), the endopeptidases (PepE, PepF and PepO); the dipeptidases (PepV and PepD), the tripeptidase PepT; the proline peptidases (PepX, PepP, PepQ, PepR and PepI). The expression of CEP genes was significantly different, and the expression level of genes related to the transport system significantly increased from 0 to 1 h. The specificity of the substrate and action site of endopeptidase was abundant.
Collapse
Affiliation(s)
| | | | | | - Hongfei Zhao
- Correspondence: (H.Z.); (B.Z.); Tel.: +86-10-6233-6833 (H.Z.)
| | - Bolin Zhang
- Correspondence: (H.Z.); (B.Z.); Tel.: +86-10-6233-6833 (H.Z.)
| |
Collapse
|
4
|
Vezina B, Rosa MN, Canu A, Tola S. Genomic surveillance reveals antibiotic resistance gene transmission via phage recombinases within sheep mastitis-associated Streptococcus uberis. BMC Vet Res 2022; 18:264. [PMID: 35799261 PMCID: PMC9261030 DOI: 10.1186/s12917-022-03341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Streptococcus uberis is one of the main causative agents of ovine mastitis, however little is known about this global, environmental pathogen and its genomic mechanisms of disease. In this study, we performed genomic analysis on 46 S. uberis isolates collected from mastitis-infected sheep in Sardinia (Italy). Results Genomes were assigned into lineage clusters using PopPUNK, which found 27 distinct isolate clusters, indicating considerable genetic variability consistent with environmental isolates. Geographic trends were identified including regional linkage of several isolate clusters. Multi-locus Sequence Typing (MLST) performed poorly and provided no new insights. Genomes were then screened for antimicrobial resistance genes, which were compared to phenotypic resistance profiles. Isolates showed consistent phenotypic resistance to aminoglycosides with variable resistance to novobiocin and tetracycline. In general, identification of antimicrobial resistance genes did not correlate with phenotypic resistance profiles, indicating unknown genetic determinants. A multi-antimicrobial resistance cassette (aminoglycoside, lincosamide and streptogramin) was identified in the chromosome of three genomes, flanked by vestigial phage recombinases. This locus appears to have spread horizontally within discrete S. uberis populations within a 40 km radius (Sassari region). Genomes were screened for putative virulence factors, which identified 16 genes conserved between sheep and cow isolates, with no host-specific genes shared uniformly across all host-specific isolates. Pangenomic analysis was then performed to identify core genes which were putatively surface-exposed, for identification of potential vaccine targets. As all genomes encoded sortase, core genes were screened for the sortase cleavage motif. Of the 1445 core S. uberis genes, 64 were putative sortase substrates and were predominantly adhesins, permeases and peptidases, consistent with compounds found within ruminant milk such as xanthine, fibronectin and lactoferrin. Conclusions This study demonstrated the importance of whole genome sequencing for surveillance of S. uberis and tracking horizontal acquisition of antimicrobial resistance genes, as well as providing insight into genetic determinants of disease, which cannot be inferred from the MLST schemes. Future mastitis surveillance should be informed by genomic analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03341-1.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Maria Nives Rosa
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| | - Antonella Canu
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy.
| |
Collapse
|
5
|
Song H, Fu Q, Huang K, Zou Z, Chen L, Chen H, Ge S, Wang J, Guan X. Digestion characteristics of quinoa, barley and mungbean proteins and the effects of their simulated gastrointestinal digests on CCK secretion in enteroendocrine STC-1 cells. Food Funct 2022; 13:6233-6243. [PMID: 35587126 DOI: 10.1039/d2fo00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qiuyun Fu
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Kai Huang
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiying Zou
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Limin Chen
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hulin Chen
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Shaocheng Ge
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xiao Guan
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, Murtaza MS, Ibrahim SA, Siddiqui SA. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front Nutr 2022; 9:780151. [PMID: 35694165 PMCID: PMC9178506 DOI: 10.3389/fnut.2022.780151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background In recent years, researchers have focused on functional ingredients, functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive components, especially in bioactive peptides. Dairy proteins are a rich and balanced source of amino acids and their derived bioactive peptides, which possess biological and physiological properties. In the dairy industry, microbial fermentation and enzymatic hydrolysis are promising methods for producing bioactive peptides because of their rapid efficiency, and mild reaction conditions. However, these methods utilize less raw material, take long reaction time, result in low yields, and low activity products when used alone, which pose industry to seek for novel methods as pretreatments to increase the yield of bioactive peptides. Scope and Approach This review emphasizes the production of peptides from the dairy proteins and discusses the potential use of novel technologies as pretreatments to conventional methods of bioactive peptides production from dairy proteins, including the mechanisms of novel technologies along with respective examples of use, advantages, limitations, and challenges to each technology. Key Findings and Conclusion Noteworthily, hydrolysis of dairy proteins liberate wide-range of peptides that possess remarkable biological functions to maintain human health. Novel technologies in the dairy industry such as ultrasound-assisted processing (UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are innovative and environmentally friendly. Generally, novel technologies are less effectual compared to conventional methods, therefore used in combination with fermentation and enzymatic hydrolysis, and are promising pretreatments to modify peptides’ profile, improve the yields, and high liberation of bioactive peptides as compared to conventional technologies. UAP is an innovative and most efficient technology as its mechanical effects and cavitation change the protein conformation, increase the biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.
Collapse
Affiliation(s)
- Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Mian Anjum Murtaza,
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Iram Hafiz
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mian Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim,
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
7
|
Harper AR, Dobson RCJ, Morris VK, Moggré GJ. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb Biotechnol 2022; 15:1404-1421. [PMID: 35393728 PMCID: PMC9049613 DOI: 10.1111/1751-7915.14008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed.
Collapse
Affiliation(s)
- Aimee R Harper
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Vanessa K Morris
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gert-Jan Moggré
- The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand
| |
Collapse
|
8
|
Mechanism study on enhanced emulsifying properties of phosvitin and calcium-binding capacity of its phosphopeptides by lactic acid bacteria fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
10
|
Robinson RC, Nielsen SD, Dallas DC, Barile D. Can cheese mites, maggots and molds enhance bioactivity? Peptidomic investigation of functional peptides in four traditional cheeses. Food Funct 2021; 12:633-645. [PMID: 33346308 DOI: 10.1039/d0fo02439b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aside from their amino acid content, dairy proteins are valuable for their ability to carry encrypted bioactive peptides whose activities are latent until released by digestive enzymes or endogenous enzymes within the food. Peptides can possess a wide variety of functionalities, such as antibacterial, antihypertensive, and antioxidative properties, as demonstrated by in vitro and in vivo studies. This phenomenon raises the question as to what impact various traditional cheese-making processes have on the formation of bioactive peptides in the resulting products. In this study, we have profiled the naturally-occurring peptides in two hard and two soft traditional cheeses and have identified their known bioactive sequences. While past studies have typically identified fewer than 100 peptide sequences in a single cheese, we have used modern instrumentation to identify between 2900 and 4700 sequences per cheese, an increase by a factor of about 50. We demonstrated substantial variations in proteolysis and peptide formation between the interior and rind of each cheese, which we ascribed to the differences in microbial composition between these regions. We identified a total of 111 bioactive sequences among the four cheeses, with the greatest number of sequences, 89, originating from Mimolette. The most common bioactivities identified were antimicrobial and inhibition of the angiotensin-converting enzyme. This work revealed that cheese proteolysis and the resulting peptidomes are more complex than originally thought in terms of the number of peptides released, variation in peptidome across sites within a single cheese, and variation in bioactive peptides among cheese-making techniques.
Collapse
Affiliation(s)
- Randall C Robinson
- Department of Food Science and Technology, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
11
|
Hansen EB, Marcatili P. Modeled Structure of the Cell Envelope Proteinase of Lactococcus lactis. Front Bioeng Biotechnol 2021; 8:613986. [PMID: 33415101 PMCID: PMC7783315 DOI: 10.3389/fbioe.2020.613986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
The cell envelope proteinase (CEP) of Lactococcus lactis is a large extracellular protease covalently linked to the peptidoglycan of the cell wall. Strains of L. lactis are typically auxotrophic for several amino acids and in order to grow to high cell densities in milk they need an extracellular protease. The structure of the entire CEP enzyme is difficult to determine experimentally due to the large size and due to the attachment to the cell surface. We here describe the use of a combination of structure prediction tools to create a structural model for the entire CEP enzyme of Lactococcus lactis. The model has implications for how the bacterium interacts with casein micelles during growth in milk, and it has implications regarding the energetics of the proteolytic system. Our model for the CEP indicates that the catalytic triad is activated through a structural change caused by interaction with the substrate. The CEP of L. lactis might become a useful model for the mode of action for enzymes belonging to the large class of S8 proteinases with a PA (protease associated) domain and a downstream fibronectin like domain.
Collapse
Affiliation(s)
- Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Demark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Demark
| |
Collapse
|
12
|
Ji D, Ma J, Xu M, Agyei D. Cell-envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Compr Rev Food Sci Food Saf 2020; 20:369-400. [PMID: 33443792 DOI: 10.1111/1541-4337.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Proteins displayed on the cell surface of lactic acid bacteria (LAB) perform diverse and important biochemical roles. Among these, the cell-envelope proteinases (CEPs) are one of the most widely studied and most exploited for biotechnological applications. CEPs are important players in the proteolytic system of LAB, because they are required by LAB to degrade proteins in the growth media into peptides and/or amino acids required for the nitrogen nutrition of LAB. The most important area of application of CEPs is therefore in protein hydrolysis, especially in dairy products. Also, the physical location of CEPs (i.e., being cell-envelope anchored) allows for relatively easy downstream processing (e.g., extraction) of CEPs. This review describes the biochemical features and organization of CEPs and how this fits them for the purpose of protein hydrolysis. It begins with a focus on the genetic organization and expression of CEPs. The catalytic behavior and cleavage specificities of CEPs from various LAB are also discussed. Following this, the extraction and purification of most CEPs reported to date is described. The industrial applications of CEPs in food technology, health promotion, as well as in the growing area of water purification are discussed. Techniques for improving the production and catalytic efficiency of CEPs are also given an important place in this review.
Collapse
Affiliation(s)
- Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Jingying Ma
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Min Xu
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Solieri L, Baldaccini A, Martini S, Bianchi A, Pizzamiglio V, Tagliazucchi D. Peptide Profiling and Biological Activities of 12-Month Ripened Parmigiano Reggiano Cheese. BIOLOGY 2020; 9:biology9070170. [PMID: 32708820 PMCID: PMC7408421 DOI: 10.3390/biology9070170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023]
Abstract
Proteolysis degree, biological activities, and water-soluble peptide patterns were evaluated in 12 month-ripened Parmigiano Reggiano (PR) cheeses collected in different dairy farms and showing different salt and fat content. Samples classified in high-salt and high-fat group (HH) generally showed lower proteolysis degree than samples having low-salt and low-fat content (LL). This positive correlation between salt/fat reduction and proteolysis was also confirmed by the analysis of biological activities, as the LL group showed higher average values of angiotensin-converting enzyme (ACE)-inhibitory and antioxidant activities. UHPLC/HR-MS allowed the identification of 805 unique peptides: LL and HH groups shared 59.3% of these peptides, while 20.9% and 19.9% were LL and HH specific, respectively. Frequency analysis of peptides identified a core of 183 peptides typical of 12-month ripened PR cheeses (corresponding to the 22.7% of total peptides), but no significant differences were detected in peptide patterns between LL and HH groups. Forty bioactive peptides, including 18 ACE-inhibitors and 12 anti-microbial peptides, were identified, of which 25 firstly found in PR cheese. Globally, this work contributed to unraveling the potentially healthy benefits of peptides fraction in PR cheese and provided prior evidence that PR with reduced fat/salt content showed the highest antihypertensive and antioxidant activities.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (L.S.); (A.B.); (S.M.)
| | - Andrea Baldaccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (L.S.); (A.B.); (S.M.)
| | - Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (L.S.); (A.B.); (S.M.)
| | - Aldo Bianchi
- Consorzio del Formaggio Parmigiano Reggiano, via J.F. Kennedy 1 8, 42124 Reggio Emilia, Italy; (A.B.); (V.P.)
| | - Valentina Pizzamiglio
- Consorzio del Formaggio Parmigiano Reggiano, via J.F. Kennedy 1 8, 42124 Reggio Emilia, Italy; (A.B.); (V.P.)
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (L.S.); (A.B.); (S.M.)
- Correspondence: ; Tel.: +39-05-2252-2060
| |
Collapse
|
14
|
Martini S, Conte A, Tagliazucchi D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104668] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Fan M, Guo T, Li W, Chen J, Li F, Wang C, Shi Y, Li DXA, Zhang S. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Solieri L, De Vero L, Tagliazucchi D. Peptidomic study of casein proteolysis in bovine milk by Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci Biotechnol 2018; 27:1781-1789. [PMID: 30483443 DOI: 10.1007/s10068-018-0423-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/14/2023] Open
Abstract
In this study, whey proteins were fermented with 34 lactic acid bacteria for 48 h at 37 °C and their ability to inhibit angiotensin 1-converting enzyme (ACE) activity were compared. All the lactic acid bacteria displayed varying proteolytic abilities in whey. Their fermentates also displayed varying abilities to inhibit ACE in vitro. Seven fermentates showed strong ACE inhibitory abilities between 84.70 ± 0.67 and 52.40 ± 2.1% with IC50 values between 19.78 ± 1.73 and 2.13 ± 0.7 mg/ml. Pediococcus acidilactici SDL1414 showed the strongest ACE inhibitory activity of 84.7 ± 0.67% (IC50 = 19.78 ± 1.73 μg/ml). Mass spectrometry revealed that more than half (57.7%) of the low molecular weight peptides (< 7 kDa) in the P. acidilactici SDL1414 fermented samples were ACE inhibitory peptides. Our results show that P. acidilactici SDL1414 could be used as a starter culture in the dairy industry to develop antihypertensive functional foods for hypertension management.
Collapse
|
18
|
κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology 2017; 54:3679-3688. [PMID: 29051663 DOI: 10.1007/s13197-017-2830-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
This paper explores the ability of Lactobacillus helveticus strains to release sequences of short biologically active peptides (containing 2-10 amino acid residues) from casein. The proteolytic enzymes of the tested strains exhibit different patterns of cleavage of CN fractions. The modification of κ-casein (κ-CN) with pyrrolidone carboxylic acid inhibits the proteolytic activity of strains L. helveticus 141 and the reference strain (DSMZ 20075), while the modification with phosphothreonine inhibits enzymes of all the tested bacteria. The peptide sequencing analysis indicated that the examined strains produced functional peptides very efficiently. κ-CN proved to be the main source of short peptides released by bacterial enzymes, and the hydrolysis of κ-CN yielded eighty-two bioactive peptides. The hydrolysis of αS2-casein, αS1-casein, and β-casein yielded six, two, and one short-chain bioactive peptides, respectively. The isolated bioactive peptides exhibited antioxidative, opioid, stimulating, hypotensive, immunomodulating, antibacterial, and antithrombotic activities. A vast majority of the isolated bioactive peptides caused inhibition of the angiotensin-converting enzyme and dipeptidyl peptidase IV. The role of hydrolysis products as neuropeptides is also pointed out. The highest number of cleavage sites in κ-casein and functional activities of short-chain peptides were obtained in hydrolyzates produced by L. helveticus strain T105.
Collapse
|
19
|
Wang XN, Qin M, Feng YY, Chen JK, Song YS. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4235-4241. [PMID: 28251668 DOI: 10.1002/jsfa.8299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 01/16/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. RESULT Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg-1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. CONCLUSION The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Mei Qin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yu-Ying Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jian-Kang Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yi-Shan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
20
|
Sah BNP, Vasiljevic T, McKechnie S, Donkor ON. Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit Rev Food Sci Nutr 2017; 58:726-740. [DOI: 10.1080/10408398.2016.1217825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- B. N. P. Sah
- Advanced Food Systems Research Unit, College of Health and Biomedicine
| | - T. Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine
| | - S. McKechnie
- Advanced Food Systems Research Unit, College of Engineering and Science, Victoria University, Werribee Campus, Melbourne, Victoria, Australia
| | - O. N. Donkor
- Advanced Food Systems Research Unit, College of Health and Biomedicine
| |
Collapse
|
21
|
Vukotic G, Matic I, Begovic J, Besu I, Kojic M, Djokic J, Juranic Z, Strahinic I. Lactobacilli hydrolysis of cows' milk proteins abrogates their humoral immunoreactivity in patients with immune-mediated diseases. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Impact of Proteolytic Lactobacillus helveticus MTCC5463 on Production of Bioactive Peptides Derived from Honey Based Fermented Milk. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9561-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks (Lassi) Fermented by Lactobacillus acidophillus with Consideration of Incubation Period and Simmering Treatment. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9540-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese. Appl Environ Microbiol 2015; 82:202-10. [PMID: 26497453 DOI: 10.1128/aem.02621-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/13/2015] [Indexed: 11/20/2022] Open
Abstract
In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening.
Collapse
|
25
|
Petrella G, Pati S, Gagliardi R, Rizzuti A, Mastrorilli P, la Gatta B, Di Luccia A. Study of proteolysis in river buffalo mozzarella cheese using a proteomics approach. J Dairy Sci 2015; 98:7560-72. [PMID: 26364106 DOI: 10.3168/jds.2015-9732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022]
Abstract
The guarantee of the origin and quality of raw material is essential for the protection and valorization of Campana buffalo mozzarella cheese. The risk of utilization of semifinished products and stored milk in substitution for fresh milk is increasing, due to the continuous desire to reduce production costs. A proteomics approach and electrophoresis survey of retail mozzarella cheeses indicated different rates of proteolysis in the production of dairy industries. The use of fresh milk and correct cheesemaking protocol yielded only γ-caseins, which are derived from β-casein by plasmin, and para-κ-casein, which is derived from κ-casein by chymosin. The detection of abnormal hydrolysis resulting in β- and αS1-casein fragments, identified by mass spectrometry, indicates the use of stored milk or stored and pressed curd, or the reuse of unsold mozzarella cheese, to produce mozzarella. The formation of γ-caseins and other fragments during a long storage of raw materials at room or refrigeration temperature was ascribed to plasmin (endogenous milk enzyme), whereas formation of αS1-casein fragments, mainly αS1-I(6P)- and αS1-I(7P)-casein during the storage of curd was ascribed to the action of chymosin (exogenous enzyme) from rennet. Sodium dodecyl sulfate-PAGE and alkaline urea-PAGE permitted us to evaluate the freshness of the raw materials used in the manufacturing of buffalo mozzarella cheese and to reveal possible inappropriate preservation.
Collapse
Affiliation(s)
- G Petrella
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| | - S Pati
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| | - R Gagliardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici (NA), Italy
| | - A Rizzuti
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio Edile e di Chimica (DICATECh), Politecnico di Bari via Orabona 4, 70125 Bari, Italy
| | - P Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio Edile e di Chimica (DICATECh), Politecnico di Bari via Orabona 4, 70125 Bari, Italy
| | - B la Gatta
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| | - A Di Luccia
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy.
| |
Collapse
|
26
|
Vukotic G, Mirkovic N, Jovcic B, Miljkovic M, Strahinic I, Fira D, Radulovic Z, Kojic M. Proteinase PrtP impairs lactococcin LcnB activity in Lactococcus lactis BGMN1-501: new insights into bacteriocin regulation. Front Microbiol 2015; 6:92. [PMID: 25713574 PMCID: PMC4322719 DOI: 10.3389/fmicb.2015.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 11/13/2022] Open
Abstract
Proteinases and bacteriocins are of great importance to the dairy industry, but their interactions have not been studied so far. Lactococcus lactis subsp. lactis BGMN1-5 is a natural isolate from homemade semi-hard cheese which produces two bacteriocins (Lactococcin B and LsbB), as well as proteinase PrtP. A medium-dependent increase in the bacteriocin LcnB activity of L. lactis BGMN1-501, a derivate of L. lactis subsp. lactis BGMN1-5, was shown to be accompanied by a decrease in its promoter activity. A similar effect of media components on gene expression was reported for proteinase PrtP, whose gene is co-localized on the same plasmid as the lcnB gene. Thus, the PrtP-LcnB interplay was investigated. Single gene knockout mutants were constructed with disrupted prtP or lcnB genes. PrtP(-) mutants showed higher bacteriocin activity that had lost its growth medium dependence, which was in contrast to the original strain. When LcnB from this mutant was combined with proteinase from the LcnB(-) mutant in vitro, its activity was rendered to the original level, suggesting that proteinase reduces bacteriocin activity. We propose a new model of medium dependent expression of these genes with regard to the effects of their interaction in vivo.
Collapse
Affiliation(s)
- Goran Vukotic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia ; Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade Belgrade, Serbia
| | - Nemanja Mirkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia ; Department for Food Microbiology, Faculty of Agriculture, University of Belgrade Belgrade, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia ; Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade Belgrade, Serbia
| | - Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Ivana Strahinic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Djordje Fira
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia ; Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade Belgrade, Serbia
| | - Zorica Radulovic
- Department for Food Microbiology, Faculty of Agriculture, University of Belgrade Belgrade, Serbia
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| |
Collapse
|
27
|
Kotb E. The biotechnological potential of subtilisin-like fibrinolytic enzyme from a newly isolated Lactobacillus plantarum KSK-II in blood destaining and antimicrobials. Biotechnol Prog 2014; 31:316-24. [PMID: 25504817 DOI: 10.1002/btpr.2033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/06/2014] [Indexed: 11/08/2022]
Abstract
An antimicrobial oxidative- and SDS-stable fibrinolytic alkaline protease designated as KSK-II was produced by Lactobacillus plantarum KSK-II isolated from kishk, a traditional Egyptian food. Maximum enzyme productivity was obtained in medium containing 1% lactose and 0.5% soybean flour as carbon and nitrogen sources, respectively. Purification of enzyme increased its specific activity to 1,140-fold with a recovery of 33% and molecular weight of 43.6 kDa. Enzyme activity was totally lost in the presence of ethylenediaminetetraacetic acid and was restored after addition of Fe(2+) suggesting that KSK-II is a metalloprotease and Fe(2+) acts as cofactor. Enzyme hydrolyzed not only the natural proteins but also synthetic substrates, particularly Suc-Ala-Ala-Pro-Phe-pNA. KSK-II can hydrolyze the Lys-X easier than Arg-X; thus, it was considered as a subtilisin-family protease. Its apparent Km , Vmax , and Kcat were 0.41 mM, 6.4 µmol mg(-1) min(-1) , and 28.0 s(-1) , respectively. KSK-II is industrially important from the perspectives of its maximal activity at 50°C (stable up to 70°C), ability to function at alkaline pH (10.0), stability at broad pH ranges (7.5-12.0) in addition to its stability toward SDS, H2 O2 , organic solvents, and detergents. We emphasize for the first time the potential of fibrinolytic activity for alkaline proteases used in detergents especially in blood destaining.
Collapse
Affiliation(s)
- Essam Kotb
- Research Laboratory of Bacteriology, Dept. of Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt, 44519
| |
Collapse
|
28
|
Chen Y, Zhao W, Wu R, Sun Z, Zhang W, Wang J, Bilige M, Zhang H. Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk. J Dairy Sci 2014; 97:7413-25. [DOI: 10.3168/jds.2014-8520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
|
29
|
Hafeez Z, Cakir-Kiefer C, Roux E, Perrin C, Miclo L, Dary-Mourot A. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
31
|
Acquisition of amino acids by Lactobacillus delbrueckii subsp. bulgaricus 2038 when grown in the presence of casein. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Kevvai K, Kütt ML, Nisamedtinov I, Paalme T. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids. Antonie van Leeuwenhoek 2014; 105:511-22. [PMID: 24389760 DOI: 10.1007/s10482-013-0103-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Lactococcus lactis subsp. lactis IL1403 was grown in medium containing unlabelled free amino acids and (15)N-labelled yeast hydrolysate to gain insight into the role of peptides as a source of amino acids under conditions where free amino acids are abundant. A mathematical model was composed to estimate the fluxes of free and peptide-derived amino acids into and out of the intracellular amino acid pool. We observed co-consumption of peptides and free amino acids and a considerable efflux of most free amino acids during growth. We did not observe significant differences between the peptide consumption patterns of essential and non-essential amino acids, which suggests that the incorporation of a particular amino acid is more dependent on its availability in a readily assimilated form than the organism's auxotrophy for it. For most amino acids the contribution of peptide-bound forms to the formation of biomass was initially between 30 and 60 % with the remainder originating from free amino acids. During the later stages of fermentation we observed a decrease in the utilization of peptide-bound amino acids, thus indicating that the more readily assimilated peptides are gradually exhausted from the medium during growth.
Collapse
Affiliation(s)
- Kaspar Kevvai
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618, Tallinn, Estonia,
| | | | | | | |
Collapse
|
33
|
Chang OK, Seol KH, Jeong SG, Oh MH, Park BY, Perrin C, Ham JS. Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J Dairy Sci 2013; 96:5544-55. [PMID: 23871374 DOI: 10.3168/jds.2013-6687] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/08/2013] [Indexed: 11/19/2022]
Abstract
Milk protein is a well-known precursor protein for the generation of bioactive peptides using lactic acid bacteria. This study investigated the antioxidant activity of bovine casein hydrolysate after fermentation with Bifidobacterium longum KACC91563 using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay and total phenolic content (TPC). The antioxidant activities of the 24-h and 48-h hydrolysates were higher than that of the 4-h hydrolysate (2,045.5 and 1,629.3 μM gallic acid equivalents, respectively, vs. 40.3 μM) in the ABTS assay. In contrast, TPC values showed activities of 43.2 and 52.4 μM gallic acid equivalents for the 4-h and 24-h hydrolysates, respectively. Three fractions (≥10 kDa, ≥3 but <10 kDa, and <3 kDa) were separated from the 24-h hydrolysate by ultrafiltration. Among these fractions, the <3 kDa fraction exhibited the highest antioxidant activity (936.7 μM) compared with the other fractions (42.1 and 34.2 μM for >10 kDa and 3-10 kDa fractions, respectively). Through liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, 2 peptides, VLSLSQSKVLPVPQK and VLSLSQSKVLPVPQKAVPYPQRDMPIQA, containing the fragment VLPVPQ that has antioxidant properties, were identified in the <3kDa fraction after 24h of hydrolysis. The present study demonstrates the possibility of antioxidant peptide production from bovine casein using Bifidobacterium longum.
Collapse
Affiliation(s)
- O K Chang
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Suwon, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Miclo L, Roux E, Genay M, Brusseaux E, Poirson C, Jameh N, Perrin C, Dary A. Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:554-565. [PMID: 22103626 DOI: 10.1021/jf202176d] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Milk proteins contain numerous potential bioactive peptides, which may be released by digestive proteases or by the proteolytic system of lactic acid bacteria during food processing. The capacity of Streptococcus thermophilus to generate peptides, especially bioactive peptides, from bovine caseins was investigated. Strains expressing various levels of the cell envelope proteinase, PrtS, were incubated with α(s1)-, α(s2)-, or β-casein. Analysis of the supernatants by LC-ESI-MS/MS showed that the β-casein was preferentially hydrolyzed, followed by α(s2)-casein and then α(s1)-casein. Numbers and types of peptides released were strain-dependent. Hydrolysis appeared to be linked with the accessibility of different casein regions by protease. Analysis of bonds hydrolyzed in the region 1-23 of α(s1)-casein suggests that PrtS is at least in part responsible for the peptide production. Finally, among the generated peptides, 13 peptides from β-casein, 5 from α(s2)-casein, and 2 from α(s1)-casein have been reported as bioactive, 15 of them being angiotensin-converting enzyme inhibitors.
Collapse
Affiliation(s)
- Laurent Miclo
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Équipe Protéolyse et Biofonctionnalités des Protéines et des Peptides (PB2P), Nancy-Université, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Muñoz-Tamayo R, de Groot J, Wierenga PA, Gruppen H, Zwietering MH, Sijtsma L. Modeling peptide formation during the hydrolysis of β-casein by Lactococcus lactis. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Gagnaire V, Carpino S, Pediliggieri C, Jardin J, Lortal S, Licitra G. Uncommonly thorough hydrolysis of peptides during ripening of Ragusano cheese revealed by tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12443-12452. [PMID: 22017730 DOI: 10.1021/jf2027268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ragusano is a pasta filata cheese produced from raw milk in Sicily. The proteolysis was extensively analyzed after stretching (day 0), at 4 and 7 months of ripening through soluble nitrogen, urea-PAGE, and peptide identification by tandem mass spectrometry. After stretching, 123 peptides were identified: 72 arising from β-casein, 34 from α(s1)-casein, and 17 from α(s2)-casein. The main protein splitting corresponded to the action of plasmin, chymosin, cathepsin D, cell envelope proteinase, and peptidase activities of lactic acid bacteria. Unlike other types of cheeses, <10% residual β- and α(s)-caseins remained intact at 7 months, indicating original network organization based on large casein fragments. The number of identified soluble peptides also dramatically decreased after 4 and 7 months of ripening, to 47 and 25, respectively. Among them, bioactive peptides were found, that is, mineral carrier, antihypertensive, and immunomodulating peptides and phosphopeptides.
Collapse
Affiliation(s)
- Valérie Gagnaire
- UMR 1253, INRA, Science et Technologie du Lait et de l'Œuf, 65 rue de Saint Brieuc, F-35042 Rennes, France.
| | | | | | | | | | | |
Collapse
|
37
|
CHOI JONGWOO, SABIKHI LATHA, HASSAN ASHRAF, ANAND SANJEEV. Bioactive peptides in dairy products. INT J DAIRY TECHNOL 2011. [DOI: 10.1111/j.1471-0307.2011.00725.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Hydrolysis of β-casein by the cell-envelope-located PI-type protease of Lactococcus lactis: A modelling approach. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Mills S, Ross R, Hill C, Fitzgerald G, Stanton C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2010.12.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Mills S, Stanton C, Hill C, Ross R. New Developments and Applications of Bacteriocins and Peptides in Foods. Annu Rev Food Sci Technol 2011; 2:299-329. [DOI: 10.1146/annurev-food-022510-133721] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Mills
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
| | - C. Stanton
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| | - C. Hill
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - R.P. Ross
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Reid JR, Coolbear T. Altered specificity of lactococcal proteinase p(i) (lactocepin I) in humectant systems reflecting the water activity and salt content of cheddar cheese. Appl Environ Microbiol 2010; 64:588-93. [PMID: 16349501 PMCID: PMC106087 DOI: 10.1128/aem.64.2.588-593.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using various humectant systems, the specificity of hydrolysis of alpha(s1)-, beta-, and kappa-caseins by the cell envelope-associated proteinase (lactocepin; EC 3.4.21.96) with type P(1) specificity (i.e., lactocepin I) from Lactococcus lactis subsp. lactis BN1 was investigated at water activities (a(w)) and salt concentrations reflecting those in cheddar type cheese. In the presence of polyethylene glycol 20000 (PEG 20000)-NaCl (a(w) = 0.95), hydrolysis of beta-casein resulted in production of the peptides comprising residues 1 to 6 and 47 to 52, which are characteristic of type P(III) enzyme activity (lactocepin III) in buffer. The fragment comprising residues 1 through 166, inclusive (fragment 1-166), which is typical of lactocepin I activity in buffer systems, was not produced. Similarly, peptide 152-160 from kappa-casein, which is usually produced in aqueous buffers exclusively by lactocepin III, was a major product of lactocepin I. Most of the specificity differences obtained in the presence of PEG 20000-NaCl were also obtained in the presence of PEG 20000 alone (a(w) = 0.99). In addition, alpha(s1)-casein, which normally is resistant to lactocepin I activity, was rapidly hydrolyzed in the presence of PEG 20000 alone. Hydrolysis of casein in the presence of PEG 300-NaCl or glycerol-NaCl (both having an a(w) of 0.95) was generally as expected for lactocepin I activity except that beta-casein peptide 47-52 and kappa-casein fragment 1-160 were produced; both of these are normally formed by lactocepin III in buffer. The differences in lactocepin specificity obtained in the humectant systems can be attributed to a combination of a(w) and humectant hydrophobicity, both of which are parameters that are potentially relevant to the cheese-ripening environment.
Collapse
Affiliation(s)
- J R Reid
- New Zealand Dairy Research Institute, Palmerston North, New Zealand
| | | |
Collapse
|
42
|
Boonmee M. Possible synergistic effect between high lactate and insufficient intake of peptides caused biomass reduction during high-cell starter culture production. Benef Microbes 2010; 1:175-82. [PMID: 21831756 DOI: 10.3920/bm2009.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactic starter culture production is normally subjected to the end-product inhibition on growth, which limits the biomass produced per production batch. Removal of lactate ions during the biomass production has improved the biomass production. It allows for the use of higher sugar concentration so that high biomass concentration can be obtained. Lactate removal by ion exchange resin during Lactococcus lactis NZ133 cultivation was applied as a strategy for enhancing the production of lactic starter culture biomass. At high lactose concentrations of 180 g/l, the unexpected reduction in the biomass was evident regardless of the remaining sugar in the fermentation broth. The amount of protein and proteins/polypeptides pattern profile during cultivation were investigated as protein availability was suspected to be the potential cause of biomass reduction during high cell cultivation applying the ion exchange technique. Reduction in biomass concentration, after its maximum of 26 g/l, was observed after the protein concentration was unchanged while the remaining lactose continued to be utilised. A sharp decrease in protein concentration following the addition of resin corresponded to the disappearance of the smear band of protein sized 6,512-26,625 Da when more resin was added to remove lactate. The smear band remained throughout the conventional batch cultivation period. Based on the results, insufficient supply of peptides caused by the loss through adsorption onto ion exchange resin which occurred at high lactate level was postulated as the most probable cause of the biomass reduction. The result also indicated an inefficient use of supplemented protein sources supplied in correspond to the increase in lactose concentration due to the presence of appreciable amounts of residual protein at the end of cultivation process.
Collapse
Affiliation(s)
- M Boonmee
- Department of Biotechnology, Faculty of Technology, Fermentation Research Center for Value Added Agricultural Product, Khon Kaen University, Thailand
| |
Collapse
|
43
|
Yonezawa S, Xiao J, Odamaki T, Ishida T, Miyaji K, Yamada A, Yaeshima T, Iwatsuki K. Improved growth of bifidobacteria by cocultivation with Lactococcus lactis subspecies lactis. J Dairy Sci 2010; 93:1815-23. [DOI: 10.3168/jds.2009-2708] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
|
44
|
Nielsen MS, Martinussen T, Flambard B, Sørensen KI, Otte J. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.10.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
|
46
|
Lim SD, Kim KS, Do JR. Physiological Characteristics and ACE Inhibitory Activity of Lactobacillus zeae RMK354 Isolated from Raw Milk. Korean J Food Sci Anim Resour 2008. [DOI: 10.5851/kosfa.2008.28.5.587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Characterization of the pattern of alphas1- and beta-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl Environ Microbiol 2008; 74:3682-9. [PMID: 18424544 DOI: 10.1128/aem.00247-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope-associated proteinases (CEPs) of the lactobacilli have key roles in bacterial nutrition and contribute to the development of the organoleptic properties of fermented milk products as well, as they can release bioactive health-beneficial peptides from milk proteins. The influence of the peptide supply, carbohydrate source, and osmolites on the CEP activity of the cheese starter Lactobacillus delbrueckii subsp. lactis CRL 581 was investigated. The CEP activity levels were controlled by the peptide content of the growth medium. The maximum activity was observed in a basal minimal defined medium, whereas in the presence of Casitone, Casamino Acids, or yeast extract, the synthesis of CEP was inhibited 99-, 70-, and 68-fold, respectively. The addition of specific di- or tripeptides containing branched-chain amino acids, such as leucylleucine, prolylleucine, leucylglycylglycine, or leucylproline, to the growth medium negatively affected CEP activity, whereas dipeptides without branched-chain amino acids had no effect on the enzyme's production. The carbon source and osmolites did not affect CEP activity. The CEP of L. delbrueckii subsp. lactis CRL 581 exhibited a mixed-type CEP(I/III) variant caseinolytic specificity. Mass-spectrometric screening of the main peptide peaks isolated by reverse-phase high-pressure liquid chromatography allowed the identification of 33 and 32 peptides in the alpha(s1)- and beta-casein hydrolysates, respectively. By characterizing the peptide sequence in these hydrolysates, a pattern of alpha(s1)- and beta-casein breakdown was defined and is reported herein, this being the first report for a CEP of L. delbrueckii subsp. lactis. In this pattern, a series of potentially bioactive peptides (antihypertensive and phosphopeptides) which are encrypted within the precursor protein could be visualized.
Collapse
|
48
|
Ong L, Henriksson A, Shah NP. Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probioticLactobacillus caseisp. ACTA ACUST UNITED AC 2007. [DOI: 10.1051/lait:2007004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
49
|
Hayes M, Stanton C, Fitzgerald GF, Ross RP. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol J 2007; 2:435-49. [PMID: 17407211 DOI: 10.1002/biot.200700045] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A variety of milk-derived biologically active peptides have been shown to exert both functional and physiological roles in vitro and in vivo, and because of this are of particular interest for food science and nutrition applications. Biological activities associated with such peptides include immunomodulatory, antibacterial, anti-hypertensive and opioid-like properties. Milk proteins are recognized as a primary source of bioactive peptides, which can be encrypted within the amino acid sequence of dairy proteins, requiring proteolysis for release and activation. Fermentation of milk proteins using the proteolytic systems of lactic acid bacteria is an attractive approach for generation of functional foods enriched in bioactive peptides given the low cost and positive nutritional image associated with fermented milk drinks and yoghurt. In Part II of this review, we focus on examples of milk-derived bioactive peptides and their associated health benefits, to illustrate the potential of this area for the design and improvement of future functional foods.
Collapse
Affiliation(s)
- Maria Hayes
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
50
|
IKRAM-UL-HAQ, MUKHTAR HAMID. PROTEASE BIOSYNTHESIS FROM LACTOBACILLUS SPECIES: FERMENTATION PARAMETERS AND KINETICS. J FOOD PROCESS PRES 2007. [DOI: 10.1111/j.1745-4549.2007.00111.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|