1
|
Pinto D, Liu Q, Mascher T. ECF σ factors with regulatory extensions: the one-component systems of the σ universe. Mol Microbiol 2019; 112:399-409. [PMID: 31175685 DOI: 10.1111/mmi.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
The σ subunit of the bacterial RNA polymerase determines promoter specificity. The extracytoplasmic function σ factors (ECFs) represent the most abundant and diverse group of alternative σ factors and are present in the vast majority of bacterial genomes. Typically, ECFs are regulated by anti-σ factors that sequester their cognate ECFs, thereby preventing their interaction with the RNA polymerase. Beyond these ECF paradigms, a number of distinct modes of regulation have been proposed and experimentally investigated. Regulatory extensions represent one such alternative mechanism of ECF regulation that can be found in 18 phylogenetically distinct ECF groups. Here, the σ factors contain additional domains that are fused to the ECF core domains and are involved in stimulus perception and modulation of σ factor activity. We will summarize the current state of knowledge on regulating ECF activity by C-terminal extensions. We will also discuss newly identified ECF groups containing either N- or C-terminal extensions and propose possible mechanisms by which these extensions have been generated and affect ECF σ factor activity. Based on their modular architecture and the resulting physical connection between stimulus perception and transcriptional output, these ECFs are analogous to one-component systems, the primary mechanism of bacterial signal transduction.
Collapse
Affiliation(s)
- Daniela Pinto
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Qiang Liu
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| |
Collapse
|
2
|
Wilson MJ, Lamont IL. Mutational analysis of an extracytoplasmic-function sigma factor to investigate its interactions with RNA polymerase and DNA. J Bacteriol 2006; 188:1935-42. [PMID: 16484205 PMCID: PMC1426564 DOI: 10.1128/jb.188.5.1935-1942.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/13/2005] [Indexed: 01/23/2023] Open
Abstract
The extracytoplasmic-function (ECF) family of sigma factors comprises a large group of proteins required for synthesis of a wide variety of extracytoplasmic products by bacteria. Residues important for core RNA polymerase (RNAP) binding, DNA melting, and promoter recognition have been identified in conserved regions 2 and 4.2 of primary sigma factors. Seventeen residues in region 2 and eight residues in region 4.2 of an ECF sigma factor, PvdS from Pseudomonas aeruginosa, were selected for alanine-scanning mutagenesis on the basis of sequence alignments with other sigma factors. Fourteen of the mutations in region 2 had a significant effect on protein function in an in vivo assay. Four proteins with alterations in regions 2.1 and 2.2 were purified as His-tagged fusions, and all showed a reduced affinity for core RNAP in vitro, consistent with a role in core binding. Region 2.3 and 2.4 mutant proteins retained the ability to bind core RNAP, but four mutants had reduced or no ability to cause core RNA polymerase to bind promoter DNA in a band-shift assay, identifying residues important for DNA binding. All mutations in region 4.2 reduced the activity of PvdS in vivo. Two of the region 4.2 mutant proteins were purified, and each showed a reduced ability to cause core RNA polymerase to bind to promoter DNA. The results show that some residues in PvdS have functions equivalent to those of corresponding residues in primary sigma factors; however, they also show that several residues not shared with primary sigma factors contribute to protein function.
Collapse
Affiliation(s)
- Megan J Wilson
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
3
|
Real G, Pinto SM, Schyns G, Costa T, Henriques AO, Moran CP. A gene encoding a holin-like protein involved in spore morphogenesis and spore germination in Bacillus subtilis. J Bacteriol 2005; 187:6443-53. [PMID: 16159778 PMCID: PMC1236627 DOI: 10.1128/jb.187.18.6443-6453.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here studies of expression and functional analysis of a Bacillus subtilis gene, ywcE, which codes for a product with features of a holin. Primer extension analysis of ywcE transcription revealed that a single transcript accumulated from the onset of sporulation onwards, produced from a sigma(A)-type promoter bearing the TG dinucleotide motif of "extended" -10 promoters. No primer extension product was detected in vivo during growth. However, specific runoff products were produced in vitro from the ywcE promoter by purified sigma(A)-containing RNA polymerase (Esigma(A)), and the in vivo and in vitro transcription start sites were identical. These results suggested that utilization of the ywcE promoter by Esigma(A) during growth was subjected to repression. Studies with a lacZ fusion revealed that the transition-state regulator AbrB repressed the transcription of ywcE during growth. This repression was reversed at the onset of sporulation in a Spo0A-dependent manner, but Spo0A did not appear to contribute otherwise to ywcE transcription. We found ywcE to be required for proper spore morphogenesis. Spores of the ywcE mutant showed a reduced outer coat which lacked the characteristic striated pattern, and the outer coat failed to attach to the underlying inner coat. The mutant spores also accumulated reduced levels of dipicolinic acid. ywcE was also found to be important for spore germination.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
4
|
Wilson MJ, Lamont IL. Characterization of an ECF sigma factor protein from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2000; 273:578-83. [PMID: 10873648 DOI: 10.1006/bbrc.2000.2996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PvdS protein is essential for synthesis of the siderophore pyoverdine by Pseudomonas aeruginosa. PvdS has some sequence similarity to a family of alternative sigma factor proteins (the ECF [extracytoplasmic factor] family) that direct bacterial RNA polymerases to transcribe genes encoding extracytoplasmic factors. PvdS was purified as a His-tagged protein (hPvdS) and this was used to test the hypothesis that PvdS is a sigma factor protein. The purified protein caused core RNA polymerase from Escherichia coli to bind specifically to the promoters of pyoverdine synthesis genes and enabled transcription from these promoters in vitro. In addition, PvdS was found to co-purify with RNA polymerase from P. aeruginosa, indicating that PvdS associates with RNA polymerase inside the bacteria. These results show that PvdS is a sigma factor protein.
Collapse
Affiliation(s)
- M J Wilson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
5
|
Arcuri EF, Wiedmann M, Boor KJ. Phylogeny and functional conservation of sigma(E) in endospore-forming bacteria. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1593-1603. [PMID: 10878124 DOI: 10.1099/00221287-146-7-1593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conservation of the sporulation processes between Bacillus spp. and Clostridium spp. was investigated through evolutionary and complementation analyses of sigma(E). Alignment of partial predicted sigma(E) amino acid sequences from three Bacillus spp., Paenibacillus polymyxa and five Clostridium spp. revealed that amino acid residues previously reported to be involved in promoter utilization (M124, E119 and N120) and strand opening (C117) are conserved among all these species. Phylogenetic analyses of various sigma factor sequences from endospore-forming bacteria revealed that homologues of sigma(E), sigma(K) and sigma(G) clustered together regardless of genus, suggesting a common origin of sporulation sigma factors. The functional equivalence between Clostridium acetobutylicum sigma(E) and Bacillus subtilis sigma(E) was investigated by complementing a non-polar B. subtilis sigma(E) null mutant with the spoIIG operon from either B. subtilis (spoIIG(Bs)) or C. acetobutylicum (spoIIG(Ca)). Single-copy integration of spoIIG(Bs) into the amyE locus of the sigma(E) null mutant completely restored the wild-type sporulation phenotype, while spoIIG(Ca) only partially restored sporulation. Maximal expression of spoIIG(Ca)-lacZ occurred approximately 12 h later than maximal expression of spoIIG(Bs)-lacZ. Differences in temporal expression patterns for spoIIG(Ca) and spoIIG(Bs) in the B. subtilis background may at least partially explain the observed sporulation complementation phenotypes. This study suggests a common phylogenetic ancestor for sigma(E) in Bacillus spp. and Clostridium spp., although regulation of sigma(E) expression may differ in these two genera.
Collapse
Affiliation(s)
- Edna F Arcuri
- Food Science Department, Cornell University, Ithaca, NY 14853, USA1
| | - Martin Wiedmann
- Food Science Department, Cornell University, Ithaca, NY 14853, USA1
| | - Kathryn J Boor
- Food Science Department, Cornell University, Ithaca, NY 14853, USA1
| |
Collapse
|
6
|
Fenton MS, Lee SJ, Gralla JD. Escherichia coli promoter opening and -10 recognition: mutational analysis of sigma70. EMBO J 2000; 19:1130-7. [PMID: 10698953 PMCID: PMC305651 DOI: 10.1093/emboj/19.5.1130] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Revised: 12/22/1999] [Accepted: 01/10/2000] [Indexed: 11/14/2022] Open
Abstract
The opening of specific segments of DNA is required for most types of genetic readout, including sigma70-dependent transcription. To learn how this occurs, a series of single point mutations were introduced into sigma70 region 2. These were assayed for duplex DNA binding, DNA opening and DNA double strand-single strand fork junction binding. Band shift assays for closed complex formation implicated a series of arginine and aromatic residues within a minimal 26 amino acid region. Permanganate assays implicated two additional aromatic residues in DNA opening, known to form a parallel stack of the type that can accept a flipped-out base. Substitution for either of these aromatics had no effect on duplex probe recognition. However, when a single unpaired -11 nucleotide is added to the probe, the mutants fail to bind appropriately to give heparin resistance. A model for DNA opening is presented in which duplex recognition by regions 2.3, 2.4 and 2.5 of sigma positions the pair of aromatic amino acids, which then create the fork junction required for stable opening.
Collapse
Affiliation(s)
- M S Fenton
- Department of Chemistry, University of California, Los Angeles, PO Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
7
|
Huang X, Lopez de Saro FJ, Helmann JD. sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with -10 region single-stranded DNA. Nucleic Acids Res 1997; 25:2603-9. [PMID: 9185571 PMCID: PMC146786 DOI: 10.1093/nar/25.13.2603] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thesigmasubunit of RNA polymerase determines promoter recognition and catalyzes DNA strand separation. The -35 promoter region is recognized by a helix-turn-helix motif in region 4, while the -10 region is specified, at least in part, by an amphipathic helix in region 2. We have proposed that conserved aromatic residues insigmaregion 2.3 interact with the non-template strand of the -10 element to drive open complex formation. We now report that Bacillus subtilis sigmaA holoenzyme, but neither core nor sigmaA alone, binds with high selectivity to single-stranded (ss) DNA containing the non-template -10 consensus sequence. UV irradiation of holoenzyme-ssDNA complexes efficiently crosslinks sigmaA to DNA and protease mapping supports a primary contact site in or near region 2. Several mutations in sigmaA region 2.3, shown previously to impair promoter melting, affect ssDNA binding: Y184A decreases binding selectivity, while Y189A and W193A decrease the efficiency of photocrosslinking. These results support a model in which these aromatic amino acids are juxtaposed to ssDNA, consistent with their demonstrated role in stabilizing the open complex.
Collapse
Affiliation(s)
- X Huang
- Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
8
|
Seyler RW, Moran CP. Potassium permanganate susceptibility of sigma E-RNA polymerase-promoter complexes. Gene X 1996; 177:129-32. [PMID: 8921857 DOI: 10.1016/0378-1119(96)00288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We used potassium permanganate (KMnO4) to identify unpaired thymidine (T) residues in promoter complexes formed by RNA polymerase (RNAP) associated with sigma E (sigma E-RNAP) from Bacillus subtilis. We found that a region of the spoIIID promoter from at least -10 to +1 becomes melted in the presence of this polymerase. In promoter complexes formed by RNAP associated with a mutant sigma E that melts promoter DNA inefficiently, we noted additional KMnO4 sensitivity at the -11 position of the spoIIID promoter. We suggest that the base pair at -11 is unpaired in both mutant and wild type (wt) complexes; however, close proximity of wt sigma E-RNAP with the T at -11 may protect it from KMnO4 attack. The absence of a close contact between the mutant sigma E-RNAP and the base at -11 may explain why this polymerase uses promoters less efficiently than wt sigma E-RNAP.
Collapse
Affiliation(s)
- R W Seyler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA 30322, USA
| | | |
Collapse
|
9
|
Roberts CW, Roberts JW. Base-specific recognition of the nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell 1996; 86:495-501. [PMID: 8756731 DOI: 10.1016/s0092-8674(00)80122-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNA polymerase recognizes its promoters through base-specific interaction between defined segments of DNA and the sigma subunit of the enzyme. This interaction leads to separation of base pairs and exposure of the template strand for RNA synthesis. We show that base-specific recognition by the sigma 70 holoenzyme in this process involves primarily nontemplate strand bases in the -10 promoter region. We suggest that melting involves the persistence of these contacts as the bound duplex (closed) form is converted to the single-stranded (open) form of the enzyme-promoter complex.
Collapse
Affiliation(s)
- C W Roberts
- Section of Biochemistry, Molecular and Cell Biology Cornell University Ithaca, New York 14853, USA
| | | |
Collapse
|