1
|
Iturbe P, Martín AS, Hamamoto H, Marcet-Houben M, Galbaldón T, Solano C, Lasa I. Noncontiguous operon atlas for the Staphylococcus aureus genome. MICROLIFE 2024; 5:uqae007. [PMID: 38651166 PMCID: PMC11034616 DOI: 10.1093/femsml/uqae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bacteria synchronize the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of 18 NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems, and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.
Collapse
Affiliation(s)
- Pablo Iturbe
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Alvaro San Martín
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Hiroshi Hamamoto
- Faculty of Medicine, Department of Infectious diseases, Yamagata University, 2-2-2 Lida-Nishi, 990-9585 Yamagata, Japan
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Galbaldón
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| |
Collapse
|
2
|
Wang J, Li Z, Wang W, Pang S, Yao Y, Yuan F, Wang H, Xu Z, Pan G, Liu Z, Chen Y, Fan K. Dynamic Control Strategy to Produce Riboflavin with Lignocellulose Hydrolysate in the Thermophile Geobacillus thermoglucosidasius. ACS Synth Biol 2022; 11:2163-2174. [PMID: 35677969 DOI: 10.1021/acssynbio.2c00087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient utilization of both glucose and xylose, the two most abundant sugars in biomass hydrolysates, is one of the main objectives of biofermentation with lignocellulosic materials. The utilization of xylose is commonly inhibited by glucose, which is known as glucose catabolite repression (GCR). Here, we report a GCR-based dynamic control (GCR-DC) strategy aiming at better co-utilization of glucose and xylose, by decoupling the cell growth and biosynthesis of riboflavin as a product. Using the thermophilic strain Geobacillus thermoglucosidasius DSM 2542 as a host, we constructed additional riboflavin biosynthetic pathways that were activated by xylose but not glucose. The engineered strains showed a two-stage fermentation process. In the first stage, glucose was preferentially used for cell growth and no production of riboflavin was observed, while in the second stage where glucose was nearly depleted, xylose was effectively utilized for riboflavin biosynthesis. Using corn cob hydrolysate as a carbon source, the optimized riboflavin yields of strains DSM2542-DCall-MSS (full pathway dynamic control strategy) and DSM2542-DCrib (single-module dynamic control strategy) were 5.3- and 2.3-fold higher than that of the control strain DSM 2542 Rib-Gtg constitutively producing riboflavin, respectively. This GCR-DC strategy should also be applicable to the construction of cell factories that can efficiently use natural carbon sources with multiple sugar components for the production of high-value chemicals in future.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Zhen Xu
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
4
|
Mars RAT, Mendonça K, Denham EL, van Dijl JM. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2553-9. [PMID: 26115952 DOI: 10.1016/j.bbamcr.2015.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
Abstract
One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress.
Collapse
Affiliation(s)
- Ruben A T Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Karoline Mendonça
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Emma L Denham
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands; Division of Translational and Systems Medicine, Unit of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
5
|
Zhu H, Yang SM, Yuan ZM, Ban R. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microb Cell Fact 2015; 14:54. [PMID: 25890046 PMCID: PMC4403831 DOI: 10.1186/s12934-015-0237-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/31/2015] [Indexed: 11/29/2022] Open
Abstract
Background Cytidine and uridine are produced commercially by Bacillus subtilis. The production strains of cytidine and uridine were both derivatives from mutagenesis. However, the exact metabolic and genetic factors affecting the productivity remain unknown. Genetic engineering may be a promising approach to identify and confirm these factors. Results With the deletion of the cdd and hom genes, and the deregulation of the pyr operon in Bacillus subtilis168, the engineered strain produced 200.9 mg/L cytidine, 14.9 mg/L uridine and 960.1 mg/L uracil. Then, the overexpressed prs gene led to a dramatic increase of uridine by 25.9 times along with a modest increase of cytidine. Furthermore, the overexpressed pyrG gene improved the production of cytidine, uridine and uracil by 259.5%, 11.2% and 68.8%, respectively. Moreover, the overexpression of the pyrH gene increasesd the yield of cytidine by 40%, along with a modest augments of uridine and uracil. Lastly, the deletion of the nupC-pdp gene resulted in a doubled production of uridine up to 1684.6 mg/L, a 14.4% increase of cytidine to 1423 mg/L, and a 99% decrease of uracil to only 14.2 mg/L. Conclusions The deregulation of the pyr operon and the overexpression of the prs, pyrG and pyrH genes all contribute to the accumulation of pyrimidine nucleoside compounds in the medium. Among these factors, the overexpression of the pyrG and pyrH genes can particularly facilitate the production of cytidine. Meanwhile, the deletion of the nupC-pdp gene can obviously reduce the production of uracil and simultaneously improve the production of uridine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0237-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.
| | - Shao-Mei Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.
| | - Zhao-Min Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.
| | - Rui Ban
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl Microbiol Biotechnol 2010; 87:2195-207. [PMID: 20524113 DOI: 10.1007/s00253-010-2646-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
In order to test a possible approach to enhance fermentative inosine production by Bacillus subtilis, seven gene-targeted mutations were introduced in the laboratory standard strain168 in a stepwise fashion. The mutations were employed in order to prevent inosine 5'-monophosphate (IMP) from being consumed for AMP and GMP synthesis, to minimize inosine degradation, and to expand the intracellular IMP pool. First, the genes for adenylosuccinate synthase (purA) and IMP dehydrogenase (guaB) were inactivated. Second, two genes for purine nucleoside phosphorylase, punA and deoD, were inactivated. Third, to enhance purine nucleotide biosynthesis, the pur operon repressor PurR and the 5'-UTR of the operon, containing the guanine riboswitch, were disrupted. Finally, the -10 sequence of the pur promoter was optimized to elevate its transcription level. The resulting mutant was capable of producing 6 g/L inosine from 30 g/L glucose in culture broth without the detectable by-production of hypoxanthine. This indicates the validity of this approach for the breeding of the next generation of B. subtilis strains for industrial nucleoside production.
Collapse
|
7
|
Lauber MA, Running WE, Reilly JP. B. subtilis ribosomal proteins: structural homology and post-translational modifications. J Proteome Res 2009; 8:4193-206. [PMID: 19653700 DOI: 10.1021/pr801114k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomal proteins of the model gram-positive bacterium B. subtilis 168 were extensively characterized in a proteomic study. Mass spectra of the 52 proteins expected to be constitutive components of the 70S ribosome were recorded. Peptide MS/MS analysis with an average sequence coverage of 85% supported the identification of these proteins and facilitated the unambiguous assignment of post-translational modifications, including the methylation of S7, L11, and L16 and the N-terminal acetylation of S9. In addition, the high degree of structural homology between B. subtilis and other eubacterial ribosomal proteins was demonstrated through chemical labeling with S-methylthioacetimidate. One striking difference from previous characterizations of bacterial ribosomal proteins is that dozens of protein masses were found to be in error and not easily accounted for by post-translational modifications. This, in turn, led us to discover an inordinate number of sequencing errors in the reference genome of B. subtilis 168. We have found that these errors have been corrected in a recently revised version of the genome.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
8
|
Activation of the promoter of the fengycin synthetase operon by the UP element. J Bacteriol 2009; 191:4615-23. [PMID: 19447911 DOI: 10.1128/jb.00255-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis F29-3 produces an antifungal peptidic antibiotic that is synthesized nonribosomally by fengycin synthetases. Our previous work established that the promoter of the fengycin synthetase operon is located 86 nucleotides upstream of the translational initiation codon of fenC. This investigation involved transcriptional fusions with a DNA fragment that contains the region between positions -105 and +80 and determined that deleting the region between positions -55 and -42 reduces the promoter activity by 64.5%. Transcriptional fusions in the B. subtilis DB2 chromosome also indicated that mutating the sequence markedly reduces the promoter activity. An in vitro transcription analysis confirmed that the transcription is inefficient when the sequence in this region is mutated. Electrophoretic mobility shift and footprinting analyses demonstrated that the C-terminal domain of the RNA polymerase alpha subunit binds to the region between positions -55 and -39. These results indicated that the sequence is an UP element. Finally, this UP element is critical for the production of fengycin, since mutating the UP sequence in the chromosome of B. subtilis F29-3 reduces the transcription of the fen operon by 85% and prevents the cells from producing enough fengycin to suppress the germination of Paecilomyces variotii spores on agar plates.
Collapse
|
9
|
Görke B, Foulquier E, Galinier A. YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway. MICROBIOLOGY-SGM 2005; 151:3777-3791. [PMID: 16272399 DOI: 10.1099/mic.0.28172-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The HPr-like protein Crh has so far been detected only in the bacillus group of bacteria. In Bacillus subtilis, its gene is part of an operon composed of six ORFs, three of which exhibit strong similarity to genes of unknown function present in many bacteria. The promoter of the operon was determined and found to be constitutively active. A deletion analysis revealed that gene yvcK, encoded by this operon, is essential for growth on Krebs cycle intermediates and on carbon sources metabolized via the pentose phosphate pathway. In addition, cells lacking YvcK acquired media-dependent filamentous or L-shape-like aberrant morphologies. The presence of high magnesium concentrations restored normal growth and cell morphology. Furthermore, suppressor mutants cured from these growth defects appeared spontaneously with a high frequency. Such suppressing mutations were identified in a transposon mutagenesis screen and found to reside in seven different loci. Two of them mapped in genes of central carbon metabolism, including zwf, which encodes glucose-6-phosphate dehydrogenase and cggR, the product of which regulates the synthesis of glyceraldehyde-3-phosphate dehydrogenase. All these results suggest that YvcK has an important role in carbon metabolism, probably in gluconeogenesis required for the synthesis of cell wall precursor molecules. Interestingly, the Escherichia coli homologous protein, YbhK, can substitute for YvcK in B. subtilis, suggesting that the two proteins have been functionally conserved in these different bacteria.
Collapse
Affiliation(s)
- Boris Görke
- Laboratoire de Chimie Bactérienne, UPR 9043, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UPR 9043, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UPR 9043, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
10
|
Gat O, Inbar I, Aloni-Grinstein R, Zahavy E, Kronman C, Mendelson I, Cohen S, Velan B, Shafferman A. Use of a promoter trap system in Bacillus anthracis and Bacillus subtilis for the development of recombinant protective antigen-based vaccines. Infect Immun 2003; 71:801-13. [PMID: 12540560 PMCID: PMC145393 DOI: 10.1128/iai.71.2.801-813.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently reported Bacillus anthracis attenuated live vaccine strains efficiently expressing recombinant protective antigen (rPA) and have shown a direct correlation between the level of rPA secreted by these cells and efficacy (S. Cohen, I. Mendelson, Z. Altboum, D. Kobiler, E. Elhanany, T. Bino, M. Leitner, I. Inbar, H. Rosenberg, Y. Gozes, R. Barak, M. Fisher, C. Kronman, B. Velan, and A. Shafferman, Infect. Immun. 68:4549-4558, 2000). To isolate more potent Bacillus promoters for a further increase in the production of rPA, we developed a promoter trap system based on various gfp reporter genes adapted for use in both Bacillus subtilis and B. anthracis backgrounds. Accordingly, a B. anthracis library of 6,000 clones harboring plasmids with chromosomal B. anthracis DNA fragments inserted upstream from gfpuv was constructed. Based on fluorescence intensity, 57 clones carrying potentially strong promoters were identified, some of which were DNA sequenced. The most potent B. anthracis promoter identified (Pntr; 271 bp) was 500 times more potent than the native pagA promoter and 70 times more potent than the alpha-amylase promoter (Pamy). This very potent promoter was tested along with the other promoters (which are three, six, and eight times more potent than Pamy) for the ability to drive expression of rPA in either B. subtilis or B. anthracis. The number of cell-associated pre-PA molecules in B. anthracis was found to correlate well with the strength of the promoter. However, there appeared to be an upper limit to the amount of mature PA secreted into the medium, which did not exceed that driven by Pamy. Furthermore, the rPA constructs fused to the very potent promoters proved to be deleterious to the bacterial hosts and consequently led to genetic instability of the PA expression plasmid. Immunization with attenuated B. anthracis expressing rPA under the control of promoters more potent than Pamy was less efficient in eliciting anti-PA antibodies than that attained with Pamy. The results are consistent with the notion that overexpression of PA leads to severe secretion stress and have practical implications for the design of second-generation rPA-based vaccines.
Collapse
Affiliation(s)
- O Gat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gardan R, Duché O, Leroy-Sétrin S, Labadie J. Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol 2003; 69:154-61. [PMID: 12513990 PMCID: PMC152465 DOI: 10.1128/aem.69.1.154-161.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen with the ability to grow under conditions of high osmolarity. In a previous study, we reported the identification of 12 proteins showing high induction after salt stress. One of these proteins is highly similar to the general stress protein Ctc of Bacillus subtilis. In this study, induction of Ctc after salt stress was confirmed at the transcriptional level by using RNA slot blot experiments. To explore the role of the ctc gene product in resistance to stresses, we constructed a ctc insertional mutant. No difference in growth was observed between the wild-type strain LO28 and the ctc mutant either in rich medium after osmotic or heat stress or in minimal medium after heat stress. However, in minimal medium after osmotic stress, the growth rate of the mutant was increased by a factor of 2. Moreover, electron microscopy analysis showed impaired morphology of the mutant grown under osmotic stress conditions in minimal medium. Addition of the osmoprotectant glycine betaine to the medium completely abolished the osmotic sensitivity phenotype of the ctc mutant. Altogether, these results suggest that the Ctc protein of L. monocytogenes is involved in osmotic stress tolerance in the absence of any osmoprotectant in the medium.
Collapse
Affiliation(s)
- Rozenn Gardan
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, Theix, 63122 Saint-Genès Champanelle, France.
| | | | | | | |
Collapse
|
12
|
Duché O, Trémoulet F, Namane A, Labadie J. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett 2002; 215:183-8. [PMID: 12399033 DOI: 10.1111/j.1574-6968.2002.tb11389.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein variations in Listeria monocytogenes were analyzed by 2-D electrophoresis. Bacteria were grown either in a rich medium or in a chemically defined medium. Three proteins, which are more expressed in the chemically defined medium than in the rich medium, were identified by mass spectrometry. They are closely related to AppA, Ctc and YvyD. After an osmotic shock, according to the medium and the NaCl concentration, the synthesis rate (P<0.05) of 59 proteins is altered by salinity. Half of them were more expressed, some of these proteins were closely related to Ctc, GbuA and the 30S ribosomal protein S6. Among the proteins which were down-expressed in the presence of salt, two were similar to AckA and PdhD.
Collapse
Affiliation(s)
- Ophélie Duché
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, 63122, Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
13
|
Duché O, Trémoulet F, Glaser P, Labadie J. Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 2002; 68:1491-8. [PMID: 11916660 PMCID: PMC123839 DOI: 10.1128/aem.68.4.1491-1498.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Listeria monocytogenes to tolerate salt stress is of particular importance, as this pathogen is often exposed to such environments during both food processing and food preservation. In order to understand the survival mechanisms of L. monocytogenes, an initial approach using two-dimensional polyacrylamide gel electrophoresis was performed to analyze the pattern of protein synthesis in response to salt stress. Of 400 to 500 visible proteins, the synthesis of 40 proteins (P < 0.05) was repressed or induced at a higher rate during salt stress. Some of the proteins were identified on the basis of mass spectrometry or N-terminal sequence analysis and database searching. Twelve proteins showing high induction after salt stress were similar to general stress proteins (Ctc and DnaK), transporters (GbuA and mannose-specific phosphotransferase system enzyme IIAB), and general metabolism proteins (alanine dehydrogenase, CcpA, CysK, EF-Tu, Gap, GuaB, PdhA, and PdhD).
Collapse
Affiliation(s)
- Ophélie Duché
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, Theix, 63122 Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
14
|
Horsburgh MJ, Thackray PD, Moir A. Transcriptional responses during outgrowth of Bacillus subtilis endospores. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2933-41. [PMID: 11700344 DOI: 10.1099/00221287-147-11-2933] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis 168 genome contains an array of alternative sigma factors, many of which play important roles in reprogramming expression during stress and sporulation. The role of the different sigma factors during outgrowth, when the germinated endospore is converted back to a vegetative cell, is less well characterized. The activity of the alternative sigma factors sigmaB, sigmaD and sigmaH during endospore outgrowth was analysed by Northern blotting and lacZ reporter assays. While sigmaD and sigmaH were transcriptionally active during outgrowth, sigmaB-dependent transcription was not observed until after the first cell division, when growth slowed. Using an IPTG-controllable copy of sigA, an optimal level of expression was required to maintain growth rate at the end of outgrowth. The genes encoding the putative extracytoplasmic function (ECF) sigma factors sigmaI, sigmaV, sigmaW, sigmaZ and YlaC were insertionally inactivated using pMUTIN4. These strains, together with sigM and sigX mutants, were tested to determine their role and measure their expression during endospore outgrowth. Transcripts or beta-galactosidase activity were observed for each of the ECF sigma factors early after germination. With the exception of MJH003 (sigM), which showed an exacerbated salt stress defect, inactivation of the ECF sigma factor genes did not affect outgrowth in the conditions tested.
Collapse
Affiliation(s)
- M J Horsburgh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
15
|
Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol 1999; 181:5718-24. [PMID: 10482513 PMCID: PMC94092 DOI: 10.1128/jb.181.18.5718-5724.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A consensus-directed search for sigma(B) promoters was used to locate potential candidates for new sigma(B)-dependent genes in Bacillus subtilis. Screening of those candidates by oligonucleotide hybridizations with total RNA from exponentially growing or ethanol-stressed cells of the wild type as well as a sigB mutant revealed 22 genes that required sigma(B) for induction by ethanol. Although almost 50% of the proteins encoded by the newly discovered sigma(B)-dependent stress genes seem to be membrane localized, biochemical functions have so far not been defined for any of the gene products. Allocation of the genes to the sigma(B)-dependent stress regulon may indicate a potential function in the establishment of a multiple stress resistance. AldY and YhdF show similarities to NAD(P)-dependent dehydrogenases and YdbP to thioredoxins, supporting our suggestion that sigma(B)-dependent proteins may be involved in the maintenance of the intracellular redox balance after stress.
Collapse
Affiliation(s)
- A Petersohn
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Bernhardt JR, V Lker U, V Lker A, Antelmann H, Schmid R, Mach H, Hecker M. Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. MICROBIOLOGY (READING, ENGLAND) 1997; 143:999-1017. [PMID: 9296790 DOI: 10.1099/00221287-143-3-999] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in B. subtilis wild-type strains and sigB mutants in response to heat shock, salt and ethanol stress, and glucose of phosphate starvation. The data provided evidence that the induction of a least 42 general stress proteins absolutely required the alternative sigma factor sigmaB. However, at least seven stress proteins, among them ClpC, ClpP, Sod, AhpC and AhpF, remained stress-inducible in a sigB mutant. Such a detailed analysis also premitted the description of subgroups of general stress proteins which are subject to additional regulatory circuits, indicating a very thorough fine-tuning of this complex response. The relative synthesis rate of the general stress proteins constituted up to 40% of the total protein synthesis of stressed cells and thereby emphasizes the importance of the stress regulon. Besides the induction of these general or rather unspecific stress proteins, the induction of stress-specific proteins is shown and discussed.
Collapse
Affiliation(s)
- J Rg Bernhardt
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Uwe V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Andrea V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Haike Antelmann
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Roland Schmid
- Universit�t Osnabr�ck, Abteilung f�r Mikrobiologie, 49076 Osnabr�ck, Germany
| | - Hiltraut Mach
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Michael Hecker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| |
Collapse
|
17
|
Abstract
The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gcaD) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus PRPP synthase was resistant to heat treatment at 70 degrees C to a much higher extent than PRPP synthase from B. subtilis.
Collapse
Affiliation(s)
- B N Krath
- Center for Enzyme Research, University of Copenhagen, Denmark
| | | |
Collapse
|