1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Demeester W, De Baets J, Duchi D, De Mey M, De Paepe B. MoBioS: Modular Platform Technology for High-Throughput Construction and Characterization of Tunable Transcriptional Biological Sensors. BIOSENSORS 2023; 13:590. [PMID: 37366955 DOI: 10.3390/bios13060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
All living organisms have evolved and fine-tuned specialized mechanisms to precisely monitor a vast array of different types of molecules. These natural mechanisms can be sourced by researchers to build Biological Sensors (BioS) by combining them with an easily measurable output, such as fluorescence. Because they are genetically encoded, BioS are cheap, fast, sustainable, portable, self-generating and highly sensitive and specific. Therefore, BioS hold the potential to become key enabling tools that stimulate innovation and scientific exploration in various disciplines. However, the main bottleneck in unlocking the full potential of BioS is the fact that there is no standardized, efficient and tunable platform available for the high-throughput construction and characterization of biosensors. Therefore, a modular, Golden Gate-based construction platform, called MoBioS, is introduced in this article. It allows for the fast and easy creation of transcription factor-based biosensor plasmids. As a proof of concept, its potential is demonstrated by creating eight different, functional and standardized biosensors that detect eight diverse molecules of industrial interest. In addition, the platform contains novel built-in features to facilitate fast and efficient biosensor engineering and response curve tuning.
Collapse
Affiliation(s)
- Wouter Demeester
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Jasmine De Baets
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Dries Duchi
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Giannopoulou EA, Senda M, Koentjoro MP, Adachi N, Ogawa N, Senda T. Crystal structure of the full-length LysR-type transcription regulator CbnR in complex with promoter DNA. FEBS J 2021; 288:4560-4575. [PMID: 33576566 DOI: 10.1111/febs.15764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/01/2022]
Abstract
LysR-type transcription regulators (LTTRs) comprise one of the largest families of transcriptional regulators in bacteria. They are typically homo-tetrameric proteins and interact with promoter DNA of ~ 50-60 bp. Earlier biochemical studies have suggested that LTTR binding to promoter DNA bends the DNA and, upon inducer binding, the bend angle of the DNA is reduced through a quaternary structure change of the tetrameric LTTR, leading to the activation of transcription. To date, crystal structures of full-length LTTRs, DNA-binding domains (DBD) with their target DNAs, and the regulatory domains with and without inducer molecules have been reported. However, these crystal structures have not provided direct evidence of the quaternary structure changes of LTTRs or of the molecular mechanism underlying these changes. Here, we report the first crystal structure of a full-length LTTR, CbnR, in complex with its promoter DNA. The crystal structure showed that, in the absence of bound inducer molecules, the four DBDs of the tetrameric CbnR interact with the promoter DNA, bending the DNA by ~ 70°. Structural comparison between the DNA-free and DNA-bound forms demonstrates that the quaternary structure change of the tetrameric CbnR required for promoter region-binding arises from relative orientation changes of the three domains in each subunit. The mechanism of the quaternary structure change caused by inducer binding is also discussed based on the present crystal structure, affinity analysis between CbnR and the promoter DNA, and earlier mutational studies on CbnR. DATABASE: Atomic coordinates and structure factors for the full-length Cupriavidus necator NH9 CbnR in complex with promoter DNA are available in the Protein Data Bank under the accession code 7D98.
Collapse
Affiliation(s)
- Evdokia-Anastasia Giannopoulou
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Maharani Pertiwi Koentjoro
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,The United Graduate School of Agricultural Science, Gifu University, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University, Japan.,Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Japan
| |
Collapse
|
4
|
Oliver P, Peralta-Gil M, Tabche ML, Merino E. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. BMC Genomics 2016; 17:686. [PMID: 27567672 PMCID: PMC5002191 DOI: 10.1186/s12864-016-3025-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goal of most programs developed to find transcription factor binding sites (TFBSs) is the identification of discrete sequence motifs that are significantly over-represented in a given set of sequences where a transcription factor (TF) is expected to bind. These programs assume that the nucleotide conservation of a specific motif is indicative of a selective pressure required for the recognition of a TF for its corresponding TFBS. Despite their extensive use, the accuracies reached with these programs remain low. In many cases, true TFBSs are excluded from the identification process, especially when they correspond to low-affinity but important binding sites of regulatory systems. RESULTS We developed a computational protocol based on molecular and structural criteria to perform biologically meaningful and accurate phylogenetic footprinting analyses. Our protocol considers fundamental aspects of the TF-DNA binding process, such as: i) the active homodimeric conformations of TFs that impose symmetric structures on the TFBSs, ii) the cooperative binding of TFs, iii) the effects of the presence or absence of co-inducers, iv) the proximity between two TFBSs or one TFBS and a promoter that leads to very long spurious motifs, v) the presence of AT-rich sequences not recognized by the TF but that are required for DNA flexibility, and vi) the dynamic order in which the different binding events take place to determine a regulatory response (i.e., activation or repression). In our protocol, the abovementioned criteria were used to analyze a profile of consensus motifs generated from canonical Phylogenetic Footprinting Analyses using a set of analysis windows of incremental sizes. To evaluate the performance of our protocol, we analyzed six members of the LysR-type TF family in Gammaproteobacteria. CONCLUSIONS The identification of TFBSs based exclusively on the significance of the over-representation of motifs in a set of sequences might lead to inaccurate results. The consideration of different molecular and structural properties of the regulatory systems benefits the identification of TFBSs and enables the development of elaborate, biologically meaningful and precise regulatory models that offer a more integrated view of the dynamics of the regulatory process of transcription.
Collapse
Affiliation(s)
- Patricia Oliver
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martín Peralta-Gil
- Escuela Superior de Apan de la Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km 8, Chimalpa Tlalayote s/n, Colonia Chimalpa, Apan, Hidalgo, México
| | - María-Luisa Tabche
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
5
|
Abstract
This review focuses on the steps unique to methionine biosynthesis, namely the conversion of homoserine to methionine. The past decade has provided a wealth of information concerning the details of methionine metabolism and the review focuses on providing a comprehensive overview of the field, emphasizing more recent findings. Details of methionine biosynthesis are addressed along with key cellular aspects, including regulation, uptake, utilization, AdoMet, the methyl cycle, and growing evidence that inhibition of methionine biosynthesis occurs under stressful cellular conditions. The first unique step in methionine biosynthesis is catalyzed by the metA gene product, homoserine transsuccinylase (HTS, or homoserine O-succinyltransferase). Recent experiments suggest that transcription of these genes is indeed regulated by MetJ, although the repressor-binding sites have not yet been verified. Methionine also serves as the precursor of S-adenosylmethionine, which is an essential molecule employed in numerous biological processes. S-adenosylhomocysteine is produced as a consequence of the numerous AdoMet-dependent methyl transfer reactions that occur within the cell. In E. coli and Salmonella, this molecule is recycled in two discrete steps to complete the methyl cycle. Cultures challenged by oxidative stress appear to experience a growth limitation that depends on methionine levels. E. coli that are deficient for the manganese and iron superoxide dismutases (the sodA and sodB gene products, respectively) require the addition of methionine or cysteine for aerobic growth. Modulation of methionine levels in response to stressful conditions further increases the complexity of its regulation.
Collapse
|
6
|
Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 2011; 79:4105-21. [PMID: 21768276 DOI: 10.1128/iai.01390-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to d-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source.
Collapse
|
7
|
Fraser KR, Tuite NL, Bhagwat A, O'Byrne CP. Global effects of homocysteine on transcription in Escherichia coli: induction of the gene for the major cold-shock protein, CspA. MICROBIOLOGY-SGM 2006; 152:2221-2231. [PMID: 16849789 DOI: 10.1099/mic.0.28804-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homocysteine (Hcy) is a thiol-containing amino acid that is considered to be medically important because it is linked to the development of several life-threatening diseases in humans, including cardiovascular disease and stroke. It inhibits the growth of Escherichia coli when supplied in the growth medium. Growth inhibition is believed to arise as a result of partial starvation for isoleucine, which occurs because Hcy perturbs the biosynthesis of this amino acid. This study attempted to further elucidate the inhibitory mode of action of Hcy by examining the impact of exogenously supplied Hcy on the transcriptome. Using gene macroarrays the transcript levels corresponding to 68 genes were found to be reproducibly altered in the presence of 0.5 mM Hcy. Of these genes, the biggest functional groups affected were those involved in translation (25 genes) and in amino acid metabolism (19 genes). Genes involved in protection against oxidative stress were repressed in Hcy-treated cells and this correlated with a decrease in catalase activity. The gene showing the strongest induction by Hcy was cspA, which encodes the major cold-shock protein CspA. RT-PCR and reporter fusion experiments confirmed that cspA was induced by Hcy. Induction of cspA by Hcy was not caused by nutritional upshift, a stimulus known to induce CspA expression, nor was it dependent on the presence of a functional CspA protein. The induction of cspA by Hcy was suppressed when isoleucine was included in the growth medium. These data suggest that the induction of CspA expression in the presence of Hcy occurs because of a limitation for isoleucine. The possibility that Hcy-induced cspA expression is triggered by translational stalling that occurs when the cells are limited for isoleucine is discussed.
Collapse
Affiliation(s)
- Katy R Fraser
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Nina L Tuite
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Arvind Bhagwat
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705-2350, USA
| | - Conor P O'Byrne
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
8
|
Golic N, Schliekelmann M, Fernández M, Kleerebezem M, van Kranenburg R. Molecular characterization of the CmbR activator-binding site in the metC–cysK promoter region in Lactococcus lactis. Microbiology (Reading) 2005; 151:439-446. [PMID: 15699193 DOI: 10.1099/mic.0.27411-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ThemetC–cysKoperon involved in sulphur metabolism inLactococcus lactisis positively regulated by the LysR-type protein CmbR. Transcription from themetCpromoter is activated when concentrations of methionine and cysteine in the growth medium are low. ThemetCpromoter region contains two direct and three inverted repeats. Deletion analysis indicated that direct repeat 2 (DR2) is required for activation of themetCpromoter by CmbR. Gel mobility shift assays confirmed that CmbR binds to a 407 bp DNA fragment containing themetCpromoter. This binding was stimulated byO-acetyl-l-serine. Competition experiments with deletion variants of themetCpromoter showed that CmbR binding only occurred with fragments containing an intact DR2, confirming that DR2 is the CmbR binding site within themetCpromoter.
Collapse
Affiliation(s)
- Natasa Golic
- Institute of Molecular Genetics and Genetic Engineering, Belgrade, Yugoslavia
- Flavour, Nutrition and Ingredients Department, NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| | - Martijn Schliekelmann
- Flavour, Nutrition and Ingredients Department, NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| | - María Fernández
- Flavour, Nutrition and Ingredients Department, NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Flavour, Nutrition and Ingredients Department, NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| | - Richard van Kranenburg
- Flavour, Nutrition and Ingredients Department, NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| |
Collapse
|
9
|
Urbanowski ML, Lostroh CP, Greenberg EP. Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 2004; 186:631-7. [PMID: 14729687 PMCID: PMC321501 DOI: 10.1128/jb.186.3.631-637.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/27/2003] [Indexed: 11/20/2022] Open
Abstract
The Vibrio fischeri LuxR protein is the founding member of a family of acyl-homoserine lactone-responsive quorum-sensing transcription factors. Previous genetic evidence indicates that in the presence of its quorum-sensing signal, N-(3-oxohexanoyl) homoserine lactone (3OC6-HSL), LuxR binds to lux box DNA within the promoter region of the luxI gene and activates transcription of the luxICDABEG luminescence operon. We have purified LuxR from recombinant Escherichia coli. Purified LuxR binds specifically and with high affinity to DNA containing a lux box. This binding requires addition of 3OC6-HSL to the assay reactions, presumably forming a LuxR-3OC6-HSL complex. When bound to the lux box at the luxI promoter in vitro, LuxR-3OC6-HSL enables E. coli RNA polymerase to initiate transcription from the luxI promoter. Unlike the well-characterized LuxR homolog TraR in complex with its signal (3-oxo-octanoyl-HSL), the LuxR-30C6-HSL complex can be reversibly inactivated by dilution, suggesting that 3OC6-HSL in the complex is not tightly bound and is in equilibrium with the bulk solvent. Thus, although LuxR and TraR both bind 3-oxoacyl-HSLs, the binding is qualitatively different. The differences have implications for the ways in which these proteins respond to decreases in signal concentrations or rapid drops in population density.
Collapse
Affiliation(s)
- M L Urbanowski
- Department of Microbiology and W. M. Keck Microbial Communities and Cell Signaling Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
10
|
Fernández M, Kleerebezem M, Kuipers OP, Siezen RJ, van Kranenburg R. Regulation of the metC-cysK operon, involved in sulfur metabolism in Lactococcus lactis. J Bacteriol 2002; 184:82-90. [PMID: 11741847 PMCID: PMC134770 DOI: 10.1128/jb.184.1.82-90.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur metabolism in gram-positive bacteria is poorly characterized. Information on the molecular mechanisms of regulation of genes involved in sulfur metabolism is limited, and no regulator genes have been identified. Here we describe the regulation of the lactococcal metC-cysK operon, encoding a cystathionine beta-lyase (metC) and cysteine synthase (cysK). Its expression was shown to be negatively affected by high concentrations of cysteine, methionine, and glutathione in the culture medium, while sulfur limitation resulted in a high level of expression. Other sulfur sources tested showed no significant effect on metC-cysK gene expression. In addition we found that O-acetyl-l-serine, the substrate of cysteine synthase, was an inducer of the metC-cysK operon. Using a random mutagenesis approach, we identified two genes, cmbR and cmbT, involved in regulation of metC-cysK expression. The cmbT gene is predicted to encode a transport protein, but its precise role in regulation remains unclear. Disruption of cmbT resulted in a two- to threefold reduction of metC-cysK transcription. A 5.7-kb region containing the cmbR gene was cloned and sequenced. The encoded CmbR protein is homologous to the LysR family of regulator proteins and is an activator of the metC-cysK operon. In analogy to CysB from Escherichia coli, we propose that CmbR requires acetylserine to be able to bind the activation sites and subsequently activate transcription of the metC-cysK operon.
Collapse
Affiliation(s)
- María Fernández
- Wageningen Centre for Food Sciences, Wageningen, and Department of Flavour, Nutrition and Ingredients, NIZO Food Research, Ede, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Fritsch PS, Urbanowski ML, Stauffer GV. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 2000; 182:5539-50. [PMID: 10986259 PMCID: PMC110999 DOI: 10.1128/jb.182.19.5539-5550.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many transcription factors activate by directly interacting with RNA polymerase (RNAP). The C terminus of the RNAP alpha subunit (alphaCTD) is a common target of activators. We used both random mutagenesis and alanine scanning to identify alphaCTD residues that are crucial for MetR-dependent activation of metE and metH. We found that these residues localize to two distinct faces of the alphaCTD. The first is a complex surface consisting of residues important for alpha-DNA interactions, activation of both genes (residues 263, 293, and 320), and activation of either metE only (residues 260, 276, 302, 306, 309, and 322) or metH only (residues 258, 264, 290, 294, and 295). The second is a distinct cluster of residues important for metE activation only (residues 285, 289, 313, and 314). We propose that a difference in the location of the MetR binding site for activation at these two promoters accounts for the differences in the residues of alpha required for MetR-dependent activation. We have designed an in vitro reconstitution-purification protocol that allows us to specifically orient wild-type or mutant alpha subunits to either the beta-associated or the beta'-associated position within RNAP (comprising alpha(2), beta, beta', and sigma subunits). In vitro transcriptions using oriented alpha RNAP indicate that a single alphaCTD on either the beta- or the beta'-associated alpha subunit is sufficient for MetR activation of metE, while MetR interacts preferentially with the alphaCTD on the beta-associated alpha subunit at metH. We propose that the different alphaCTD requirements at these two promoters are due to a combination of the difference in the location of the activation site and limits on the rotational flexibility of the alphaCTD.
Collapse
Affiliation(s)
- P S Fritsch
- Molecular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
12
|
Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 2000; 37:856-68. [PMID: 10972807 DOI: 10.1046/j.1365-2958.2000.02051.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli gcvB gene encodes a small RNA transcript that is not translated in vivo. Transcription from the gcvB promoter is activated by the GcvA protein and repressed by the GcvR protein, the transcriptional regulators of the gcvTHP operon encoding the enzymes of the glycine cleavage system. A strain carrying a chromosomal deletion of gcvB exhibits normal regulation of gcvTHP expression and glycine cleavage enzyme activity. However, this mutant has high constitutive synthesis of OppA and DppA, the periplasmic-binding protein components of the two major peptide transport systems normally repressed in cells growing in rich medium. The altered regulation of oppA and dppA was also demonstrated using oppA-phoA and dppA-lacZ gene fusions. Although the mechanism(s) involving gcvB in the repression of these two genes is not known, oppA regulation appears to be at the translational level, whereas dppA regulation occurs at the mRNA level.
Collapse
Affiliation(s)
- M L Urbanowski
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
13
|
Jafri S, Urbanowski ML, Stauffer GV. The glutamic acid residue at amino acid 261 of the alpha subunit is a determinant of the intrinsic efficiency of RNA polymerase at the metE core promoter in Escherichia coli. J Bacteriol 1996; 178:6810-6. [PMID: 8955301 PMCID: PMC178580 DOI: 10.1128/jb.178.23.6810-6816.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A mutation in the rpoA gene (which encodes the alpha subunit of RNA polymerase) that changed the glutamic acid codon at position 261 to a lysine codon decreased the level of expression of a metE-lacZ fusion 10-fold; this decrease was independent of the MetR-mediated activation of metE-lacZ. Glutamine and alanine substitutions at this position are also metE-lacZ down mutations, suggesting that the glutamic acid residue at position 261 is essential for metE expression. In vitro transcription assays with RNA polymerase carrying the lysine residue at codon 261 indicated that the decreased level of metE-lacZ expression was not due to a failure of the mutant polymerase to respond to any other trans-acting factors, and a deletion analysis using a lambda metE-lacZ gene fusion suggested that there is no specific cis-acting sequence upstream of the -35 region of the metE promoter that interacts with the alpha subunit. Our data indicate that the glutamic acid at position 261 in the alpha subunit of RNA polymerase influences the intrinsic ability of the enzyme to transcribe the metE core promoter.
Collapse
Affiliation(s)
- S Jafri
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
14
|
Abstract
We determined the relative binding affinity of the MetR protein for wild-type and mutant MetR binding sites 1 and 2 in the Escherichia coli glyA control region. The results show that MetR binding site 1 has a higher affinity for the MetR protein than binding site 2. In addition, the results suggest that binding of MetR to the glyA promoter is cooperative. Mutations that decrease the ability of MetR to bind to either site 1 or site 2 have no significant effect on MetR's ability to bend DNA.
Collapse
Affiliation(s)
- E Lorenz
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
15
|
Belitsky BR, Janssen PJ, Sonenshein AL. Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J Bacteriol 1995; 177:5686-95. [PMID: 7559359 PMCID: PMC177381 DOI: 10.1128/jb.177.19.5686-5695.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Bacillus subtilis gltAB genes, coding for the two subunits of glutamate synthase, are transcribed divergently from the gltC gene, encoding a LysR-type transcriptional activator of gltAB. The predicted gltA and gltC transcription start sites are separated by 51 to 52 bp. A 15-bp, consensus binding site (Box I) for LysR-type proteins was found centered at position -64 with respect to the gltA transcription start. This site was shown by mutational analysis to be required both for GltC-mediated activation of gltA and for autorepression of gltC. Box II, which is similar to Box I, is centered 22 bp downstream of Box I and overlaps the -35 region of the gltA promoter. Box II was found to be essential for activation of gltA but not for gltC autoregulation. Introduction of approximately one additional helical turn of DNA between Box I and Box II enhanced gltA expression 7- to 40-fold under nonactivating conditions and about 2-fold under activating conditions. Expression of gltA was dramatically decreased when the distance between Box I and Box II was altered by a nonintegral number of helical turns of DNA. gltC autorepression was abolished by most of the inserts between Box I and Box II but was augmented by adding one helical turn.
Collapse
Affiliation(s)
- B R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|