1
|
McDowell MA, Marcoux J, McVicker G, Johnson S, Fong YH, Stevens R, Bowman LAH, Degiacomi MT, Yan J, Wise A, Friede ME, Benesch JLP, Deane JE, Tang CM, Robinson CV, Lea SM. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol Microbiol 2015; 99:749-66. [PMID: 26538516 PMCID: PMC4832279 DOI: 10.1111/mmi.13267] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/06/2022]
Abstract
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic‐ring (C‐ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non‐flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF‐T3SS C‐ring component in Shigella flexneri is alternatively translated to produce both full‐length (Spa33‐FL) and a short variant (Spa33‐C), with both required for secretion. They associate in a 1:2 complex (Spa33‐FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33‐C2 and identification of an unexpected intramolecular pseudodimer in Spa33‐FL reveal a molecular model for their higher order assembly within NF‐T3SS. Spa33‐FL and Spa33‐C are identified as functional counterparts of a FliM–FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima
FliM and FliN form a 1:3 complex structurally equivalent to Spa33‐FL/C2, allowing us to propose a unified model for C‐ring assembly by NF‐T3SS and flagellar‐T3SS.
Collapse
Affiliation(s)
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yu Hang Fong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Stevens
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lesley A H Bowman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jun Yan
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Adam Wise
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Miriam E Friede
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Janet E Deane
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Notti RQ, Bhattacharya S, Lilic M, Stebbins CE. A common assembly module in injectisome and flagellar type III secretion sorting platforms. Nat Commun 2015; 6:7125. [PMID: 25994170 PMCID: PMC4443714 DOI: 10.1038/ncomms8125] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Translocating proteins across the double membrane of Gram-negative bacteria, type III secretion systems (T3SS) occur in two evolutionarily related forms: injectisomes, delivering virulence factors into host cells, and the flagellar system, secreting the polymeric filament used for motility. While both systems share related elements of a cytoplasmic sorting platform that facilitates the hierarchical secretion of protein substrates, its assembly and regulation remain unclear. Here we describe a module mediating the assembly of the sorting platform in both secretion systems, and elucidate the structural basis for segregation of homologous components among these divergent T3SS subtypes sharing a common cytoplasmic milieu. These results provide a foundation for the subtype-specific assembly of T3SS sorting platforms and will support further mechanistic analysis and anti-virulence drug design.
Collapse
Affiliation(s)
- Ryan Q Notti
- 1] Laboratory of Structural Microbiology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Tri-Institutional Medical Scientist Training Program, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, USA
| | - Shibani Bhattacharya
- New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Mirjana Lilic
- Laboratory of Structural Microbiology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - C Erec Stebbins
- Laboratory of Structural Microbiology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
3
|
Fang X, Gomelsky M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 2010; 76:1295-305. [PMID: 20444091 DOI: 10.1111/j.1365-2958.2010.07179.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elevated levels of the second messenger cyclic dimeric GMP, c-di-GMP, promote transition of bacteria from single motile cells to surface-attached multicellular communities. Here we describe a post-translational mechanism by which c-di-GMP initiates this transition in enteric bacteria. High levels of c-di-GMP induce the counterclockwise bias in Escherichia coli flagellar rotation, which results in smooth swimming. Based on co-immunoprecipitation, two-hybrid and mutational analyses, the E. coli c-di-GMP receptor YcgR binds to the FliG subunit of the flagellum switch complex, and the YcgR-FliG interaction is strengthened by c-di-GMP. The central fragment of FliG binds to YcgR as well as to FliM, suggesting that YcgR-c-di-GMP biases flagellum rotation by altering FliG-FliM interactions. The c-di-GMP-induced smooth swimming promotes trapping of motile bacteria in semi-solid media and attachment of liquid-grown bacteria to solid surfaces, whereas c-di-GMP-dependent mechanisms not involving YcgR further facilitate surface attachment. The YcgR-FliG interaction is conserved in the enteric bacteria, and the N-terminal YcgR/PilZN domain of YcgR is required for this interaction. YcgR joins a growing list of proteins that regulate motility via the FliG subunit of the flagellum switch complex, which suggests that FliG is a common regulatory entryway that operates in parallel with the chemotaxis that utilizes the FliM-entryway.
Collapse
Affiliation(s)
- Xin Fang
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
4
|
Sarkar MK, Paul K, Blair DF. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J Biol Chem 2009; 285:675-84. [PMID: 19858188 DOI: 10.1074/jbc.m109.068676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization in the switch complex have been deduced previously, but details of subunit organization in the lower part of the C-ring and the molecular movements responsible for motor switching remain unclear. In this study, we use cross-linking, binding, and mutational experiments to examine subunit organization in the bottom of the C-ring and to probe movements that occur upon switching. The results show that FliN tetramers alternate with FliM C-terminal domains to form the bottom of the C-ring in an arrangement that closely reproduces the major features observed in electron microscopic reconstructions. When motors were switched to clockwise rotation by a repellent stimulus, cross-link yields were altered in a pattern indicating relative movement of FliN and FliM(C). These results are discussed in the framework of a structurally grounded hypothesis for the switching mechanism.
Collapse
Affiliation(s)
- Mayukh K Sarkar
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
5
|
Chalmeau J, Dagkessamanskaia A, Le Grimellec C, Francois JM, Sternick J, Vieu C. Contribution to the elucidation of the structure of the bacterial flagellum nano-motor through AFM imaging of the M-Ring. Ultramicroscopy 2009; 109:845-53. [DOI: 10.1016/j.ultramic.2009.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Thomas DR, Francis NR, Xu C, DeRosier DJ. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:7039-48. [PMID: 17015643 PMCID: PMC1636246 DOI: 10.1128/jb.00552-06] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM.
Collapse
Affiliation(s)
- Dennis R Thomas
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Flagellated bacteria, such as Escherichia coli, swim by rotating thin helical filaments, each driven at its base by a reversible rotary motor, powered by an ion flux. A motor is about 45 nm in diameter and is assembled from about 20 different kinds of parts. It develops maximum torque at stall but can spin several hundred Hz. Its direction of rotation is controlled by a sensory system that enables cells to accumulate in regions deemed more favorable. We know a great deal about motor structure, genetics, assembly, and function, but we do not really understand how it works. We need more crystal structures. All of this is reviewed, but the emphasis is on function.
Collapse
Affiliation(s)
- Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
8
|
Young HS, Dang H, Lai Y, DeRosier DJ, Khan S. Variable symmetry in Salmonella typhimurium flagellar motors. Biophys J 2003; 84:571-7. [PMID: 12524310 PMCID: PMC1302638 DOI: 10.1016/s0006-3495(03)74877-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Electron cryomicroscopy of rotor complexes of the Salmonella typhimurium flagellar motor, overproduced in a nonmotile Escherichia coli host, has revealed a variation in subunit symmetry of the cytoplasmic ring (C ring) module. C rings with subunit symmetries ranging from 31 to 38 were found. They formed a Gaussian distribution around a mean between 34 and 35, a similar number to that determined for native C rings. C-ring diameter scaled with the number of subunits, indicating that the elliptical-shaped subunits maintained constant intersubunit spacing. Taken together with evidence that the M ring does not correspondingly increase in size, this finding indicates that rotor assembly does not require strict stoichiometric interactions between the M- and C-ring subunits. Implications for motor function are discussed.
Collapse
Affiliation(s)
- Howard S Young
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
9
|
Brown PN, Hill CP, Blair DF. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 2002; 21:3225-34. [PMID: 12093724 PMCID: PMC126082 DOI: 10.1093/emboj/cdf332] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. The structure of the C-terminal domain, which functions specifically in rotation, was reported previously. Here, we describe the crystal structure of a larger fragment of the FliG protein from Thermotoga maritima, which encompasses the middle and C-terminal parts of the protein (termed FliG-MC). The FliG-MC molecule consists of two compact globular domains, linked by an alpha-helix and an extended segment that contains a well-conserved Gly-Gly motif. Mutational studies indicate that FliM binds to both of the globular domains, and given the flexibility of the linking segment, FliM is likely to determine the relative orientation of the domains in the flagellum. We propose a model for the organization of FliG-MC molecules in the flagellum, and suggest that CW/CCW switching might occur by movement of the C-terminal domain relative to other parts of FliG, under the control of FliM.
Collapse
Affiliation(s)
- Perry N. Brown
- Departments of
Biology and Biochemistry, University of Utah, Salt Lake City, UT, USA Corresponding authors e-mail: or
| | - Christopher P. Hill
- Departments of
Biology and Biochemistry, University of Utah, Salt Lake City, UT, USA Corresponding authors e-mail: or
| | - David F. Blair
- Departments of
Biology and Biochemistry, University of Utah, Salt Lake City, UT, USA Corresponding authors e-mail: or
| |
Collapse
|
10
|
Abstract
A model for the transduction of energy occurring in bacterial flagellar motors is presented. In this model, the influx of ions across the channel causes the cyclic conformational change of the channel itself, which in turn produces travelling waves in one of the subcomponents of the motor, the C ring. This wave stabilizes the cyclical movement of the channel which generates the rotating force. The estimated frequency of cyclic conformational change is between 36 kHz and 6.3 MHz, i.e. in the ultrasonic range. This phenomenon is therefore referred to as the ultrasonic micromotor of microorganisms.
Collapse
Affiliation(s)
- T Atsumi
- Protonic NanoMachine Project, ERATO JST, 1-7 Hikaridai, Seika, Kyoto, 619-0237, Japan.
| |
Collapse
|
11
|
Abstract
Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so.
Collapse
Affiliation(s)
- H C Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Thomas DR, Morgan DG, DeRosier DJ. Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci U S A 1999; 96:10134-9. [PMID: 10468575 PMCID: PMC17855 DOI: 10.1073/pnas.96.18.10134] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FliG, FliM, and FliN, key proteins for torque generation, are located in two rings. The first protein is in the M ring and the last two are in the C ring. The rotational symmetries of the C and M rings have been determined to be about 34 (this paper) and 26 (previous work), respectively. The mechanism proposed here depends on the symmetry mismatch between the rings: the C ring extends 34 levers, of which 26 can bind to the 26 equivalent sites on the M ring. The remaining 8 levers bind to proton-pore complexes (studs) to form 8 torque generators. Movement results from the swapping of stud-bound levers with M ring-bound levers. The model predicts that both the M and C rings rotate in the same direction but at different speeds.
Collapse
Affiliation(s)
- D R Thomas
- W. M. Keck Institute for Cellular Visualization, Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02254, USA
| | | | | |
Collapse
|
13
|
Abstract
The FliM protein of Escherichia coli is required for the assembly and function of flagella. Genetic analyses and binding studies have shown that FliM interacts with several other flagellar proteins, including FliN, FliG, phosphorylated CheY, other copies of FliM, and possibly MotA and FliF. Here, we examine the effects of a set of linker insertions and partial deletions in FliM on its binding to FliN, FliG, CheY, and phospho-CheY and on its functions in flagellar assembly and rotation. The results suggest that FliM is organized into multiple domains. A C-terminal domain of about 90 residues binds to FliN in coprecipitation experiments, is most stable when coexpressed with FliN, and has some sequence similarity to FliN. This C-terminal domain is joined to the rest of FliM by a segment (residues 237 to 247) that is poorly conserved, tolerates linker insertion, and may be an interdomain linker. Binding to FliG occurs through multiple segments of FliM, some in the C-terminal domain and others in an N-terminal domain of 144 residues. Binding of FliM to CheY and phospho-CheY was complex. In coprecipitation experiments using purified FliM, the protein bound weakly to unphosphorylated CheY and more strongly to phospho-CheY, in agreement with previous reports. By contrast, in experiments using FliM in fresh cell lysates, the protein bound to unphosphorylated CheY about as well as to phospho-CheY. Determinants for binding CheY occur both near the N terminus of FliM, which appears most important for binding to the phosphorylated protein, and in the C-terminal domain, which binds more strongly to unphosphorylated CheY. Several different deletions and linker insertions in FliM enhanced its binding to phospho-CheY in coprecipitation experiments with protein from cell lysates. This suggests that determinants for binding phospho-CheY may be partly masked in the FliM protein as it exists in the cytoplasm. A model is proposed for the arrangement and function of FliM domains in the flagellar motor.
Collapse
Affiliation(s)
- M A Mathews
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
14
|
Khan S, Zhao R, Reese TS. Architectural features of the Salmonella typhimurium flagellar motor switch revealed by disrupted C-rings. J Struct Biol 1998; 122:311-9. [PMID: 9774535 DOI: 10.1006/jsbi.1998.3999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional surface topology of rapid-frozen Salmonella typhimurium flagellar hook basal body complexes was studied by stereo-examination of thin-film metal replicas. The complexes contained the extended cytoplasmic structure, composed of the switch complex proteins; FliG, FliM, and FliN. Distinct nanometer-scale element arrays, separated by grooves, defined the outer surface of the cytoplasmic (C-) ring. The number of array elements was comparable to previously determined FliG and FliM copy numbers in the basal body. In addition to basal body complexes lacking C-rings, complexes containing incomplete C-rings were identified. The incomplete C-rings had lost segments of the proximal array. Basal bodies with the distal C-ring array alone were not found. These findings are compatible with the spatial organization of the flagellar switch suggested by previous biochemical data.
Collapse
Affiliation(s)
- S Khan
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | | | |
Collapse
|
15
|
Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 1998; 180:2729-35. [PMID: 9573160 PMCID: PMC107227 DOI: 10.1128/jb.180.10.2729-2735.1998] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rotation of the bacterial flagellar motor is powered by a transmembrane gradient of protons or, in some species, sodium ions. The molecular mechanism of coupling between ion flow and motor rotation is not understood. The proteins most closely involved in motor rotation are MotA, MotB, and FliG. MotA and MotB are transmembrane proteins that function in transmembrane proton conduction and that are believed to form the stator. FliG is a soluble protein located on the cytoplasmic face of the rotor. Two other proteins, FliM and FliN, are known to bind to FliG and have also been suggested to be involved to some extent in torque generation. Proton (or sodium)-binding sites in the motor are likely to be important to its function and might be formed from the side chains of acidic residues. To investigate the role of acidic residues in the function of the flagellar motor, we mutated each of the conserved acidic residues in the five proteins that have been suggested to be involved in torque generation and measured the effects on motility. None of the conserved acidic residues of MotA, FliG, FliM, or FliN proved essential for torque generation. An acidic residue at position 32 of MotB did prove essential. Of 15 different substitutions studied at this position, only the conservative-replacement D32E mutant retained any function. Previous studies, together with additional data presented here, indicate that the proteins involved in motor rotation do not contain any conserved basic residues that are critical for motor rotation per se. We propose that Asp 32 of MotB functions as a proton-binding site in the bacterial flagellar motor and that no other conserved, protonatable residues function in this capacity.
Collapse
Affiliation(s)
- J Zhou
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- S Khan
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Toker AS, Macnab RM. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol 1997; 273:623-34. [PMID: 9356251 DOI: 10.1006/jmbi.1997.1335] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The FliG, FliM, and FliN proteins of the bacterial flagellar motor are believed to interact with one another to form the switch complex, which in turn is thought to interact with one of the chemotaxis proteins, CheY. In particular, FliM appears to be an intermediary between CheY and FliG: the current model suggests that CheY, when phosphorylated (CheY-P), binds to FliM and produces a conformational change in FliM that is propagated to FliG. The result of these interactions is to induce clockwise rotation of the flagellar motors and tumbling of the cell. Various genetic and biochemical studies have provided evidence that the switch proteins associate with each other and that CheY-P binds to FliM. Here, we have used affinity blotting to obtain direct evidence of interaction between Salmonella typhimurium FliM and FliN, FliM and FliG, and FliM and CheY-P. We have also examined the ability of various FliM deletion and truncation mutant proteins to bind to FliN, FliG, and CheY-P. From these data, we conclude that distinct regions of the FliM protein bind to each of these other proteins. We propose a model in which the N-terminal region of FliM binds to CheY-P, the middle region of FliM binds to FliG, and the C-terminal region binds to FliN.
Collapse
Affiliation(s)
- A S Toker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
18
|
Lloyd SA, Blair DF. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 1997; 266:733-44. [PMID: 9102466 DOI: 10.1006/jmbi.1996.0836] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The FliG protein of Escherichia coli is essential for assembly and function of the flagellar motor. Certain mutations in FliG give a non-motile, or Mot-, phenotype, in which flagella are assembled but do not rotate. Mutations with this property are clustered in a C-terminal segment of FliG that is stable when expressed alone, and thus probably constitutes an independently folded domain. Previously, we suggested that this domain forms the rotor portion of the active site for torque generation in the motor. In this work, we have used a mutational approach to identify the amino acid residues in the C-terminal domain of FliG that are most important for motor function. Site-directed mutagenesis was used to replace each of the conserved residues in this domain with alanine, and the effects on motor function were measured. Because charged residues have often been suggested to have important roles in torque generation, conserved charged residues were changed individually and in all pairwise combinations. The results show that three charged residues of FliG, Arg279, Asp286 and Asp287, are directly involved in torque generation. Mutations in these residues cause motility defects that suggest that they function jointly, in an active site whose most important property is a specific arrangement of charges. Two other charged residues, Lys262 and Arg295, may also be involved in torque generation, but are less critical than Arg279, Asp286 or Asp287. Unchanged residues of the FliG motility domain do not appear to have direct roles in torque generation, although some are needed for the stability of the protein or for normal clockwise/ counter-clockwise switching. The Mot- mutations of fliG isolated previously by random mutagenesis do not alter the putative active-site residues, but render the proteins abnormally susceptible to proteolysis, suggesting significantly altered conformations or reduced stabilities.
Collapse
Affiliation(s)
- S A Lloyd
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
19
|
Kubori T, Yamaguchi S, Aizawa S. Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J Bacteriol 1997; 179:813-7. [PMID: 9006037 PMCID: PMC178764 DOI: 10.1128/jb.179.3.813-817.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cytoplasmic portion of the bacterial flagellum is thought to consist of at least two structural components: a switch complex and an export apparatus. These components seem to assemble around the MS ring complex, which is the first flagellar basal body substructure and is located in the cytoplasmic membrane. In order to elucidate the process of assembly of cytoplasmic substructures, the membrane localization of each component of the switch complex (FliG, FliM, and FliN) in various nonflagellated mutants was examined by immunoblotting. It was found that all these switch proteins require the MS ring protein FliF to associate with the cell membrane. FliG does not require FliM and FliN for this association, but FliM and FliN associate cooperatively with the membrane only through FliG. Furthermore, all three switch proteins were detected in membranes isolated from fliE, fliH, fliI, fliJ, fliO, fliP, fliQ, fliR, flhA, flhB, and flgJ mutants, indicating that the switch complex assembles on the MS ring complex without any other flagellar proteins involved in the early stage of flagellar assembly. The relationship between the switch complex and the export apparatus is discussed.
Collapse
Affiliation(s)
- T Kubori
- Department of Biosciences, School of Science and Engineering, Teikyo University, Toyosatodai, Utsunomiya, Japan.
| | | | | |
Collapse
|
20
|
Toker AS, Kihara M, Macnab RM. Deletion analysis of the FliM flagellar switch protein of Salmonella typhimurium. J Bacteriol 1996; 178:7069-79. [PMID: 8955386 PMCID: PMC178617 DOI: 10.1128/jb.178.24.7069-7079.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The flagellar switch of Salmonella typhimurium and Escherichia coli is composed of three proteins, FliG, FliM, and FliN. The switch complex modulates the direction of flagellar motor rotation in response to information about the environment received through the chemotaxis signal transduction pathway. In particular, chemotaxis protein CheY is believed to bind to switch protein FliM, inducing clockwise filament rotation and tumbling. To investigate the function of FliM and its interactions with FliG and FliN, we engineered a series of 34 FliM deletion mutant proteins, each lacking a different 10-amino-acid segment. We have determined the phenotype associated with each mutant protein, the ability of each mutant protein to interfere with the motility of wild-type cells, and the effect of additional FliG and FliN on the function of selected FliM mutant proteins. Overall, deletions at the N terminus produced a counterclockwise switch bias, deletions in the central region of the protein produced poorly motile or nonflagellate cells, and deletions near the C terminus produced only nonflagellate cells. On the basis of this evidence and the results of a previous study of spontaneous FliM mutants (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992), we propose a division of the FliM protein into four functional regions: an N-terminal region primarily involved in switching, an extended N-terminal region involved in switching and assembly, a middle region involved in switching and motor rotation, and a C-terminal region primarily involved in flagellar assembly.
Collapse
Affiliation(s)
- A S Toker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|