1
|
Torres R, Serrano E, Alonso JC. Bacillus subtilis RecA interacts with and loads RadA/Sms to unwind recombination intermediates during natural chromosomal transformation. Nucleic Acids Res 2019; 47:9198-9215. [PMID: 31350886 PMCID: PMC6755099 DOI: 10.1093/nar/gkz647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
During natural transformation Bacillus subtilis RecA, polymerized onto the incoming single-stranded (ss) DNA, catalyses DNA strand invasion resulting in a displacement loop (D-loop) intermediate. A null radA mutation impairs chromosomal transformation, and RadA/Sms unwinds forked DNA in the 5′→3′ direction. We show that in the absence of RadA/Sms competent cells require the RecG translocase for natural chromosomal transformation. RadA/Sms tetracysteine motif (C13A and C13R) variants, which fail to interact with RecA, are also deficient in plasmid transformation, but this defect is suppressed by inactivating recA. The RadA/Sms C13A and C13R variants bind ssDNA, and this interaction stimulates their ATPase activity. Wild-type (wt) RadA/Sms interacts with and inhibits the ATPase activity of RecA, but RadA/Sms C13A fails to do it. RadA/Sms and its variants, C13A and C13R, bound to the 5′-tail of a DNA substrate, unwind DNA in the 5′→3′ direction. RecA interacts with and loads wt RadA/Sms to promote unwinding of a non-cognate 3′-tailed or 5′-fork DNA substrate, but RadA/Sms C13A or C13R fail to do it. We propose that wt RadA/Sms interaction with RecA is crucial to recruit the former onto D-loop DNA, and both proteins in concert catalyse D-loop extension to favour integration of ssDNA during chromosomal transformation.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
2
|
Inoue M, Fukui K, Fujii Y, Nakagawa N, Yano T, Kuramitsu S, Masui R. The Lon protease-like domain in the bacterial RecA paralog RadA is required for DNA binding and repair. J Biol Chem 2017; 292:9801-9814. [PMID: 28432121 DOI: 10.1074/jbc.m116.770180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.
Collapse
Affiliation(s)
- Masao Inoue
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Kenji Fukui
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Yuki Fujii
- the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, and
| | - Noriko Nakagawa
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Takato Yano
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Seiki Kuramitsu
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Ryoji Masui
- the Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Pham TH, Liang ZX, Marcellin E, Turner MS. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 2016; 62:731-738. [PMID: 27074767 DOI: 10.1007/s00294-016-0600-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023]
Abstract
Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.
Collapse
Affiliation(s)
- Thi Huong Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Cooper DL, Lovett ST. Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli. eLife 2016; 5. [PMID: 26845522 PMCID: PMC4786428 DOI: 10.7554/elife.10807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
RadA (also known as 'Sms') is a highly conserved protein, found in almost all eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in homologous recombination. We investigate here the biochemical properties of the E. coli RadA protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and can stimulate the branch migration phase of RecA-mediated strand transfer reactions. RadA cannot mediate synaptic pairing between homologous DNA molecules but can drive branch migration to extend the region of heteroduplex DNA, even without RecA. Unlike other branch migration factors RecG and RuvAB, RadA stimulates branch migration within the context of the RecA filament, in the direction of RecA-mediated strand exchange. We propose that RadA-mediated branch migration aids recombination by allowing the 3’ invading strand to be incorporated into heteroduplex DNA and to be extended by DNA polymerases. DOI:http://dx.doi.org/10.7554/eLife.10807.001 Damage to the DNA of a cell can cause serious harm, and so cells have several ways in which they can repair DNA. Most of these processes rely on the fact that each of the two strands that make up a DNA molecule can be used as a template to build the other strand. However, this is not possible if both strands of the DNA break in the same place. This form of damage can be repaired in a process called homologous recombination, which uses an identical copy of the broken DNA molecule to repair the broken strands. As a result, this process can only occur during cell division shortly after a cell has duplicated its DNA. One important step of homologous recombination is called strand exchange. This involves one of the broken strands swapping places with part of the equivalent strand in the intact DNA molecule. To do so, the strands of the intact DNA molecule separate in the region that will be used for the repair, and the broken strand can then use the other non-broken DNA strand as a template to replace any missing sections of DNA. The region of the intact DNA molecule where the strands need to separate often grows during this process: this is known as branch migration. In bacteria, a protein called RecA plays a fundamental role in controlling strand exchange, but there are other, similar proteins whose roles in homologous recombination are less well known. Cooper and Lovett have now purified one of these proteins, called RadA, from the Escherichia coli species of bacteriato study how it affects homologous recombination. This revealed that RadA can bind to single-stranded DNA and stimulate branch migration to increase the rate of homologous recombination. Further investigation revealed that RadA allows branch migration to occur even when RecA is missing, but that RadA is unable to begin strand exchange if RecA is not present. The process of branch migration stabilizes the DNA molecules during homologous recombination and may also allow the repaired DNA strand to engage the machinery that copies DNA. Cooper and Lovett also used genetic techniques to alter the structure of specific regions of RadA and found out which parts of the protein affect the ability of RadA to stimulate branch migration. Future challenges are to find out what effect RadA has on the structure of RecA and how RadA promotes branch migration. DOI:http://dx.doi.org/10.7554/eLife.10807.002
Collapse
Affiliation(s)
- Deani L Cooper
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Susan T Lovett
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
5
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
6
|
Cooper DL, Boyle DC, Lovett ST. Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions. Mol Microbiol 2015; 95:769-79. [PMID: 25484163 PMCID: PMC4357459 DOI: 10.1111/mmi.12899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 01/03/2023]
Abstract
The RadA/Sms protein is a RecA-related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double-strand break repair for YejH.
Collapse
Affiliation(s)
- Deani L Cooper
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454-9110, USA
| | | | | |
Collapse
|
7
|
Zhang L, He ZG. Radiation-sensitive gene A (RadA) targets DisA, DNA integrity scanning protein A, to negatively affect cyclic Di-AMP synthesis activity in Mycobacterium smegmatis. J Biol Chem 2013; 288:22426-36. [PMID: 23760274 DOI: 10.1074/jbc.m113.464883] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
8
|
Richardson NC, Sargentini NJ, Singh VK, Stuart MK. Monoclonal antibodies against the Escherichia coli DNA repair protein RadA/Sms. Hybridoma (Larchmt) 2012; 31:25-31. [PMID: 22316482 DOI: 10.1089/hyb.2011.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The RadA/Sms protein facilitates DNA repair in Escherichia coli cells damaged by UV radiation, X-rays, and chemical agents. However, the precise mechanism by which RadA/Sms aids DNA repair is unknown. Here we report the production of monoclonal antibodies (MAbs) specific for RadA/Sms for use in biochemical and physiological investigations. Histidine-tagged RadA/Sms (RadA-6xHis) was overproduced in E. coli BL21 cells transformed with the radA/sms coding region in plasmid pRSET A and purified by nickel affinity chromatography. Splenocytes from female BALB/c mice hyperimmunized with the purified protein were fused to SP2/0-Ag14 myeloma cells, and the resultant hybridomas were selected in HAT medium. MAbs were detected in hybridoma culture supernatants by indirect ELISA and Western blot analysis against purified RadA-6xHis. MAbs from four cell lines were further evaluated by Western blotting against peptide maps generated by endoproteinase Glu-C digestion of RadA-6xHis. Each of the four MAbs recognized a unique epitope on the fusion protein. Two of the MAbs (6F5 and 2A2) also detected wild-type (tagless) RadA/Sms produced from the pJS003 plasmid in E. coli K-12 cells. We anticipate that these antibodies will prove useful for the detection, isolation, and functional analysis of RadA/Sms.
Collapse
Affiliation(s)
- Nastassia C Richardson
- Department of Microbiology/Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, 800 W. Jefferson Street, Kirksville, MO 63501, USA
| | | | | | | |
Collapse
|
9
|
Proteomic and physiological responses of Kineococcus radiotolerans to copper. PLoS One 2010; 5:e12427. [PMID: 20865147 PMCID: PMC2928746 DOI: 10.1371/journal.pone.0012427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/14/2010] [Indexed: 01/21/2023] Open
Abstract
Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration.
Collapse
|
10
|
Persky NS, Lovett ST. Mechanisms of Recombination: Lessons fromE. coli. Crit Rev Biochem Mol Biol 2009; 43:347-70. [DOI: 10.1080/10409230802485358] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Roux CM, Booth NJ, Bellaire BH, Gee JM, Roop RM, Kovach ME, Tsolis RM, Elzer PH, Ennis DG. RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions following oxidative burst. J Bacteriol 2006; 188:5187-95. [PMID: 16816190 PMCID: PMC1539968 DOI: 10.1128/jb.01994-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.
Collapse
Affiliation(s)
- Christelle M Roux
- Department of Biology, P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
13
|
Boekema BKHL, Van Putten JPM, Stockhofe-Zurwieden N, Smith HE. Host cell contact-induced transcription of the type IV fimbria gene cluster of Actinobacillus pleuropneumoniae. Infect Immun 2004; 72:691-700. [PMID: 14742510 PMCID: PMC321578 DOI: 10.1128/iai.72.2.691-700.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) of gram-negative species share many characteristics, including a common architecture and conserved biogenesis pathway. Much less is known about the regulation of Tfp expression in response to changing environmental conditions. We investigated the diversity of Tfp regulatory systems by searching for the molecular basis of the reported variable expression of the Tfp gene cluster of the pathogen Actinobacillus pleuropneumoniae. Despite the presence of an intact Tfp gene cluster consisting of four genes, apfABCD, no Tfp were formed under standard growth conditions. Sequence analysis of the predicted major subunit protein ApfA showed an atypical alanine residue at position -1 from the prepilin peptidase cleavage site in 42 strains. This alanine deviates from the consensus glycine at this position in Tfp from other species. Yet, cloning of the apfABCD genes under a constitutive promoter in A. pleuropneumoniae resulted in pilin and Tfp assembly. Tfp promoter-luxAB reporter gene fusions demonstrated that the Tfp promoter was intact but tightly regulated. Promoter activity varied with bacterial growth phase and was detected only when bacteria were grown in chemically defined medium. Infection experiments with cultured epithelial cells demonstrated that Tfp promoter activity was upregulated upon adherence of the pathogen to primary cultures of lung epithelial cells. Nonadherent bacteria in the culture supernatant exhibited virtually no promoter activity. A similar upregulation of Tfp promoter activity was observed in vivo during experimental infection of pigs. The host cell contact-induced and in vivo-upregulated Tfp promoter activity in A. pleuropneumoniae adds a new dimension to the diversity of Tfp regulation.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Division of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health, ID-Lelystad, 8200 AB Lelystad, The Netherlands
| | | | | | | |
Collapse
|
14
|
Beam CE, Saveson CJ, Lovett ST. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 2002; 184:6836-44. [PMID: 12446634 PMCID: PMC135464 DOI: 10.1128/jb.184.24.6836-6844.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.
Collapse
Affiliation(s)
- Cynthia E Beam
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
15
|
Abstract
It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) the levels and types of DNA damage present as a function of growth conditions, (b) which types of damage and other barriers actually halt replication, (c) the structures of the stalled/collapsed replication forks, (d) the number of recombinational repair paths available and their mechanistic details, (e) the enzymology of some of the key reactions required for repair, (f) the role of certain recombination proteins that have not yet been studied, and (g) the molecular origin of certain in vivo observations associated with recombinational DNA repair during the SOS response. The current status of each of these topics is reviewed.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
16
|
Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, Blumenthal KM, Niederhoffer EC, Morris RE, Needham D, Dean GE, Wani MA, Hassett DJ. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 2000; 182:4545-56. [PMID: 10913088 PMCID: PMC94626 DOI: 10.1128/jb.182.16.4545-4556.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we have cloned the ankB gene, encoding an ankyrin-like protein in Pseudomonas aeruginosa. The ankB gene is composed of 549 bp encoding a protein of 183 amino acids that possesses four 33-amino-acid ankyrin repeats that are a hallmark of erythrocyte and brain ankyrins. The location of ankB is 57 bp downstream of katB, encoding a hydrogen peroxide-inducible catalase, KatB. Monomeric AnkB is a 19.4-kDa protein with a pI of 5.5 that possesses 22 primarily hydrophobic amino acids at residues 3 to 25, predicting an inner-membrane-spanning motif with the N terminus in the cytoplasm and the C terminus in the periplasm. Such an orientation in the cytoplasmic membrane and, ultimately, periplasmic space was confirmed using AnkB-BlaM and AnkB-PhoA protein fusions. Circular dichroism analysis of recombinant AnkB minus its signal peptide revealed a secondary structure that is approximately 65% alpha-helical. RNase protection and KatB- and AnkB-LacZ translational fusion analyses indicated that katB and ankB are part of a small operon whose transcription is induced dramatically by H(2)O(2), and controlled by the global transactivator OxyR. Interestingly, unlike the spherical nature of ankyrin-deficient erythrocytes, the cellular morphology of an ankB mutant was identical to that of wild-type bacteria, yet the mutant produced more membrane vesicles. The mutant also exhibited a fourfold reduction in KatB activity and increased sensitivity to H(2)O(2), phenotypes that could be complemented in trans by a plasmid constitutively expressing ankB. Our results suggest that AnkB may form an antioxidant scaffolding with KatB in the periplasm at the cytoplasmic membrane, thus providing a protective lattice work for optimal H(2)O(2) detoxification.
Collapse
Affiliation(s)
- M L Howell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
18
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|