1
|
Abstract
Many integral membrane proteins form oligomeric complexes, but the assembly of these structures is poorly understood. Here, we show that the assembly of OmpC, a trimeric porin that resides in the Escherichia coli outer membrane (OM), can be reconstituted in vitro. Although we observed the insertion of both urea-denatured and in vitro-synthesized OmpC into pure lipid vesicles at physiological pH, the protein assembled only into dead-end dimers. In contrast, in vitro-synthesized OmpC was inserted into proteoliposomes that contained the barrel assembly machinery (Bam) complex, a conserved heterooligomer that catalyzes protein integration into the bacterial OM, and folded into heat-stable trimers by passing through a short-lived dimeric intermediate. Interestingly, complete OmpC assembly was also dependent on the addition of lipopolysaccharide (LPS), a glycolipid located exclusively in the OM. Our results strongly suggest that trimeric porins form through a stepwise process that requires the integration of the protein into the OM in an assembly-competent state. Furthermore, our results provide surprising evidence that interaction with LPS is required not only for trimerization but also for the productive insertion of individual subunits into the lipid bilayer.
Collapse
|
2
|
Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies. J Mol Graph Model 2016; 65:1-7. [DOI: 10.1016/j.jmgm.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 02/06/2016] [Indexed: 01/27/2023]
|
3
|
van den Berg B. Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 2012; 287:41044-52. [PMID: 23066028 DOI: 10.1074/jbc.m112.408518] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Substrate-specific outer membrane channels of gram-negative bacteria mediate uptake of many small molecules, including carbohydrates. The mechanism of sugar uptake by enterobacterial channels, such as Escherichia coli LamB (maltoporin), has been characterized in great detail. In pseudomonads and related organisms, sugar uptake is not mediated by LamB but by OprB channels. Beyond the notion that OprB channels seem to prefer monosaccharides as substrates, very little is known about OprB-mediated sugar uptake. Here I report the X-ray crystal structure of an OprB channel from Pseudomonas putida F1. The structure shows that OprB forms a monomeric, 16-stranded β-barrel with a constriction formed by extracellular loops L2 and L3. The side chains of two highly conserved arginine residues (Arg(83) and Arg(110)) and a conserved glutamate (Glu(106)) line the channel constriction and interact with a bound glucose molecule. Liposome swelling uptake assays show a strong preference for monosaccharide transport over disaccharides. Moreover, substrates with a net negative charge are disfavored by the channel, probably due to the negatively charged character of the constriction. The architecture of the eyelet and the absence of a greasy slide provide an explanation for the observed specificity of OprB for monosaccharides rather than the oligosaccharides preferred by LamB and related enterobacterial channels.
Collapse
Affiliation(s)
- Bert van den Berg
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
4
|
Naveed H, Jimenez-Morales D, Tian J, Pasupuleti V, Kenney LJ, Liang J. Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J Mol Biol 2012; 419:89-101. [PMID: 22391420 DOI: 10.1016/j.jmb.2012.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
Biogenesis of β-barrel membrane proteins is a complex, multistep, and as yet incompletely characterized process. The bacterial porin family is perhaps the best-studied protein family among β-barrel membrane proteins that allows diffusion of small solutes across the bacterial outer membrane. In this study, we have identified residues that contribute significantly to the protein-protein interaction (PPI) interface between the chains of outer membrane protein F (OmpF), a trimeric porin, using an empirical energy function in conjunction with an evolutionary analysis. By replacing these residues through site-directed mutagenesis either with energetically favorable residues or substitutions that do not occur in natural bacterial outer membrane proteins, we succeeded in engineering OmpF mutants with dimeric and monomeric oligomerization states instead of a trimeric oligomerization state. Moreover, our results suggest that the oligomerization of OmpF proceeds through a series of interactions involving two distinct regions of the extensive PPI interface: two monomers interact to form a dimer through the PPI interface near G19. This dimer then interacts with another monomer through the PPI interface near G135 to form a trimer. We have found that perturbing the PPI interface near G19 results in the formation of the monomeric OmpF only. Thermal denaturation of the designed dimeric OmpF mutant suggests that oligomer dissociation can be separated from the process of protein unfolding. Furthermore, the conserved site near G57 and G59 is important for the PPI interface and might provide the essential scaffold for PPIs.
Collapse
Affiliation(s)
- Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
5
|
Naveed H, Xu Y, Jackups R, Liang J. Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins. J Am Chem Soc 2012; 134:1775-81. [PMID: 22148174 DOI: 10.1021/ja209895m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They are important for pore formation, membrane anchoring, and enzyme activity. These proteins are also often responsible for bacterial virulence. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank. We have developed a computational method for predicting structures of the transmembrane (TM) domains of β-barrel membrane proteins. Based on physical principles, our method can predict structures of the TM domain of β-barrel membrane proteins of novel topology, including those from eukaryotic mitochondria. Our method is based on a model of physical interactions, a discrete conformational state space, an empirical potential function, as well as a model to account for interstrand loop entropy. We are able to construct three-dimensional atomic structure of the TM domains from sequences for a set of 23 nonhomologous proteins (resolution 1.8-3.0 Å). The median rmsd of TM domains containing 75-222 residues between predicted and measured structures is 3.9 Å for main chain atoms. In addition, stability determinants and protein-protein interaction sites can be predicted. Such predictions on eukaryotic mitochondria outer membrane protein Tom40 and VDAC are confirmed by independent mutagenesis and chemical cross-linking studies. These results suggest that our model captures key components of the organization principles of β-barrel membrane protein assembly.
Collapse
Affiliation(s)
- Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
6
|
Solov'eva TF, Likhatskaya GN, Khomenko VA, Stenkova AM, Kim NY, Portnyagina OY, Novikova OD, Trifonov EV, Nurminski EA, Isaeva MP. A novel OmpY porin from Yersinia pseudotuberculosis: structure, channel-forming activity and trimer thermal stability. J Biomol Struct Dyn 2011; 28:517-33. [PMID: 21142221 DOI: 10.1080/07391102.2011.10508592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.
Collapse
Affiliation(s)
- T F Solov'eva
- Pacific Institute of Bioorganic Chemistry FEBRAS, prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meng G, Fronzes R, Chandran V, Remaut H, Waksman G. Protein oligomerization in the bacterial outer membrane (Review). Mol Membr Biol 2009; 26:136-45. [PMID: 19225986 DOI: 10.1080/09687680802712422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view.
Collapse
Affiliation(s)
- Guoyu Meng
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | | | | | | | | |
Collapse
|
8
|
Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A 2009; 106:2531-6. [PMID: 19181862 DOI: 10.1073/pnas.0807830106] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts harbor beta-barrel proteins. The signals that allow precursors of such proteins to be targeted to mitochondria were not characterized so far. To better understand the mechanism by which beta-barrel precursor proteins are recognized and sorted within eukaryotic cells, we expressed the bacterial beta-barrel proteins PhoE, OmpA, Omp85, and OmpC in Saccharomyces cerevisiae and demonstrated that they were imported into mitochondria. A detailed investigation of the import pathway of PhoE revealed that it is shared with mitochondrial beta-barrel proteins. PhoE interacts initially with surface import receptors, and its further sorting depends on components of the TOB/SAM complex. The bacterial Omp85 and PhoE integrated into the mitochondrial outer membrane as native-like oligomers. For the latter protein this assembly depended on the C-terminal Phe residue, which is important also for the correct assembly of PhoE into the bacterial outer membrane. Collectively, it appears that mitochondrial beta-barrel proteins have not evolved eukaryotic-specific signals to ensure their import into mitochondria. Furthermore, the signal for assembly of beta-barrel proteins into the bacterial outer membrane is functional in mitochondria.
Collapse
|
9
|
Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, Cocco MJ, Peterson EM, de la Maza LM. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 2007; 189:6222-35. [PMID: 17601785 PMCID: PMC1951919 DOI: 10.1128/jb.00552-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Subbarao GV, van den Berg B. Crystal Structure of the Monomeric Porin OmpG. J Mol Biol 2006; 360:750-9. [PMID: 16797588 DOI: 10.1016/j.jmb.2006.05.045] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/21/2006] [Accepted: 05/18/2006] [Indexed: 11/17/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded beta-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 A. The structure shows a 14-stranded beta-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ( approximately 13 A) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin alpha-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.
Collapse
Affiliation(s)
- Gowtham V Subbarao
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
11
|
Likhatskaya GN, Solov'eva TF, Novikova OD, Issaeva MP, Gusev KV, Kryzhko IB, Trifonov EV, Nurminski EA. Homology Models of theYersinia PseudotuberculosisandYersinia PestisGeneral Porins and Comparative Analysis of Their Functional and Antigenic Regions. J Biomol Struct Dyn 2005; 23:163-74. [PMID: 16060690 DOI: 10.1080/07391102.2005.10507056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The amino acid sequences of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) have recently deduced but their three-dimensional structures were not known. These sequences were analyzed using the servers 3D-PSSM and PredPort. The YPS and YPT porins were shown to have a high degree of identity (above 50%) in primary and secondary structures. The three-dimensional models of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) were obtained using the homology modeling approach, SWISS-MODEL Protein Modeling Server and 3-D structure of PhoE porin from E. coli as template. The superposition of the Calpha-atoms of the monomers of the Yersinia porins and PhoE porin gave a root mean square deviations of 0.47 A and 0.43 A for YPS and YPT respectively. Yersinia porins were found to be very similar in their three-dimensional structure to other non-specific enterobacterial porins, having the same features of overall fold and disposition of loop L3. The intrinsic structures of the monomer pores of YPS and YPT were investigated and their conductances were predicted with the program HOLE. The good correspondence between the theoretical and experimental magnitudes of YPS conductance was found. The Yersinia porins were determined to be unusual in containing the substitution, Glu replaced by Val, in a highly conserved pentapeptide (Pro-Glu-Phe-Gly-Gly-Asp), located in the loop L3 tip that disturbs the functionally important cluster of the acidic amino acids in the constriction site. Comparative analysis of structural organization of YPS and E. coli OmpF porin in the regions involved in subunit association and pore lumen was performed. The YPS porin functional properties were predicted. The differences between these porins in polar interactions playing a significant role in stabilization of the porin trimers were found and discussed in term of the variations in trimer stability. The Yersinia porins were shown to have the highest degree of the structural similarity. The differences between the porins were observed in their external loops. Their loops L6 and loops L8 showed 71.4 and 52.9% of sequence identity, respectively. The arrangement of charged residues clustered in the channel external vestibule of these porins was found to be also different suggesting the possible differences in their functional properties. The surface exposed regions of Yersinia porins involved in their potential sequential antigenic determinants were compared. The structural basis of their cross reactivity and antigenic differences is discussed.
Collapse
Affiliation(s)
- G N Likhatskaya
- Pacific Institute of Bioorganic Chemistry of Far East Branch of Russian Academy of Sciences, Vladivostok, pr. 100 let Vladivostoku 159, 690022 Russia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Goulhen F, Dé E, Pagès JM, Bolla JM. Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochem J 2004; 378:851-6. [PMID: 14662009 PMCID: PMC1224022 DOI: 10.1042/bj20031239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/05/2003] [Accepted: 12/08/2003] [Indexed: 11/17/2022]
Abstract
Functional and structural studies of outer membrane proteins from Gram-negative bacteria are frequently carried out using refolded proteins. Recombinant proteins are produced in Escherichia coli as inclusion bodies and then tediously refolded by dilution in buffered detergent solutions. In the present work, we obtained the refolding of MOMP (major outer membrane protein) from Campylobacter assisted by the molecular chaperone GroEL. Refolded MOMP recovered its native pore-forming activity when reconstituted in planar lipid bilayers. Both proteins were purified from the Campylobacter jejuni strain 85H. The purity of GroEL was assessed by silver staining and MS. Its native ultrastructure was observed by the use of transmission electron microscopy. Denaturation of MOMP was performed in urea at 65 degrees C followed by dialysis against 100 mM acetic acid, and was assessed by CD analysis. MOMP refolding reached a maximum efficiency in the presence of GroEL (at a MOMP/GroEL molar ratio of 9:1) and ATP. Under these conditions, 95% of denatured MOMP was refolded after a 15 min incubation. This approach represents an alternative method in studies of membrane protein refolding.
Collapse
Affiliation(s)
- Florence Goulhen
- EA 2197, IFR 48, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | |
Collapse
|
13
|
Conlan S, Zhang Y, Cheley S, Bayley H. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry 2000; 39:11845-54. [PMID: 11009596 DOI: 10.1021/bi001065h] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recombinant form of the porin OmpG, OmpGm, lacking the signal sequence, has been expressed in Escherichia coli. After purification under denaturing conditions, the protein was refolded in the detergent Genapol X-080, where it gained a structure rich in beta sheet as evidenced by a CD spectrum similar to that of the native form. Electrophoretic analysis and limited proteolysis experiments suggested that refolded OmpGm exists in at least three forms. Nevertheless, the recombinant protein formed uniform channels in planar bilayers with a conductance of 0.81 nS (1 M NaCl, pH 7.5). Previous biochemical studies had suggested that OmpG is a monomeric porin, rather than the usual trimer. Bilayer recordings substantiated this proposal; voltage-induced closures occurred consistently in a single step, and channel block by Gd(3+) lacked the cooperativity seen with the trimeric porin OmpF. The availability of milligram amounts of a monomeric porin will be useful both for basic studies of porin function and for membrane protein engineering.
Collapse
Affiliation(s)
- S Conlan
- Department of Medical Biochemistry & Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
14
|
Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 2000; 37:239-53. [PMID: 10931321 DOI: 10.1046/j.1365-2958.2000.01983.x] [Citation(s) in RCA: 838] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.
Collapse
Affiliation(s)
- R Koebnik
- Biozentrum Basel, Abteilung Mikrobiologie, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
15
|
Jansen C, Heutink M, Tommassen J, de Cock H. The assembly pathway of outer membrane protein PhoE of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3792-800. [PMID: 10848998 DOI: 10.1046/j.1432-1327.2000.01417.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The assembly of the wild-type and several mutant forms of the trimeric outer membrane porin PhoE of Escherichia coli was investigated in vitro and in vivo. In in vivo pulse-chase experiments, approximately half of the wild-type PhoE molecules assembled within the 30-s pulse in the native conformation in the cell envelope. The other half of the molecules followed slower kinetics, and three intermediates in this multistep assembly process were detected: a soluble trypsin-sensitive monomer, a trypsin-sensitive monomeric form that was loosely associated with the cell envelope and a metastable trimer, which was integrated into the membranes and converted to the stable trimeric configuration within minutes. The metastable trimers disassembled during sample preparation for standard SDS/PAGE into folded monomers. In vitro, the isolated PhoE protein could efficiently be folded in the presence of N,N-dimethyldodecylamine-N-oxide (LDAO). A mutant PhoE protein, DeltaF330, which lacks the C-terminal phenylalanine residue, mainly followed the slower kinetic pathway observed in vivo, resulting in increased amounts of the various assembly intermediates. It appears that the DeltaF330 mutant protein is intrinsically able to fold, because it was able to fold in vitro with LDAO with similar efficiencies as the wild-type protein. Therefore, we propose that the conserved C-terminal Phe is (part of) a sorting signal, directing the protein efficiently to the outer membrane. Furthermore, we analysed a mutant protein with a hydrophilic residue introduced at the hydrophobic side of one of the membrane-spanning amphipathic beta strands. The assembly of this mutant protein was not affected in vivo or in vitro in the presence of LDAO. However, it was not able to form folded monomers in a previously established in vitro folding system, which requires the presence of lipopolysaccharides and Triton. Hence, a folded monomer might not be a true assembly intermediate of PhoE in vivo.
Collapse
Affiliation(s)
- C Jansen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
16
|
Dé E, Jullien M, Labesse G, Pagès JM, Molle G, Bolla JM. MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Lett 2000; 469:93-7. [PMID: 10708763 DOI: 10.1016/s0014-5793(00)01244-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The great majority of trimeric porins of Gram-negative bacteria cannot be dissociated into monomers without disrupting their folded conformation. The porin of Campylobacter jejuni, however, displays two folded structures, a classical oligomer and a monomer resistant to detergent denaturation. We probed the transition of trimer to monomer using light scattering experiments and examined the secondary structures of these two molecular states by infra-red spectroscopy. The channel-forming properties of both trimer and monomer were studied after incorporation into artificial lipid bilayers. In these conditions, the trimer induced ion channels with a conductance value of 1200 pS in 1 M NaCl. The pores showed marked cationic selectivity and sensitivity to low voltage. Analysis of the isolated monomer showed nearly the same single-channel conductance and the same selectivity and sensitivity to voltage. These results indicate that the folded monomer form of C. jejuni MOMP displays essentially the same pore-forming properties as the native trimer.
Collapse
Affiliation(s)
- E Dé
- UMR 6522, CNRS, IFRMP 23, Faculté des Sciences, 76821, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
17
|
Danese PN, Silhavy TJ. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 1999; 32:59-94. [PMID: 9928475 DOI: 10.1146/annurev.genet.32.1.59] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escherichia coli must actively transport many of its proteins to extracytoplasmic compartments such as the periplasm and outer membrane. To perform this duty, E. coli employs a collection of Sec (secretion) proteins that catalyze the translocation of various polypeptides through the inner membrane. After translocation across the inner membrane, periplasmic and outer-membrane proteins are folded and targeted to their appropriate destinations. Here we review our knowledge of protein translocation across the inner membrane. We also discuss the various signal transduction systems that monitor extracytoplasmic protein folding and targeting, and we consider how these signal transduction systems may ultimately control these processes.
Collapse
Affiliation(s)
- P N Danese
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
18
|
Phale PS, Philippsen A, Kiefhaber T, Koebnik R, Phale VP, Schirmer T, Rosenbusch JP. Stability of trimeric OmpF porin: the contributions of the latching loop L2. Biochemistry 1998; 37:15663-70. [PMID: 9843370 DOI: 10.1021/bi981215c] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The channel-forming protein OmpF porin from Escherichia coli spans the bacterial outer membrane. Each of the three monomers comprises a hollow, 16-stranded beta-barrel. These are associated to homotrimers which are unusually stable, due mostly to hydrophobic interactions between the beta-barrels. In addition, a loop, L2 connects one subunit to its neighbor by latching into its channel. Residue E71 on loop 2 is integrated into an ionic network and forms salt bridges and hydrogen bonds with R100 and R132 on the channel wall in the adjacent subunit. To examine these contributions quantitatively, six single-site, two double, and one deletion mutant were constructed on the basis of the atomic coordinates of the protein. Differential scanning calorimetric analysis showed that the salt-bridge, E71-R100, contributes significantly to trimer stability: the substitution E71Q causes a decrease of the transition temperature from 72 to 48 degreesC, with DeltaHcal diminishing from 430 to 201 kcal mol-1. A nearby substitution in the loop, D74N, has lesser effects on thermal stability, while the deletion in L2 (Delta69-77) has an effect comparable to that of E71Q. X-ray structure analysis to 3.0 A resolution revealed only local structural differences in the mutants except for the substitution R100A, where another residue, R132, is found to fill the gap left by the truncated side chain of A100. Functional assays in planar lipid bilayers show significantly increased cation selectivities if the charge distribution was affected.
Collapse
Affiliation(s)
- P S Phale
- Division of Microbiology, Biozentrum, University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
20
|
Cosma CL, Crotwell MD, Burrows SY, Silhavy TJ. Folding-based suppression of extracytoplasmic toxicity conferred by processing-defective LamB. J Bacteriol 1998; 180:3120-30. [PMID: 9620961 PMCID: PMC107812 DOI: 10.1128/jb.180.12.3120-3130.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 04/14/1998] [Indexed: 02/07/2023] Open
Abstract
We have utilized processing-defective derivatives of the outer membrane maltoporin, LamB, to study protein trafficking functions in the cell envelope of Escherichia coli. Our model proteins contain amino acid substitutions in the consensus site for cleavage by signal peptidase. As a result, the signal sequence is cleaved with reduced efficiency, effectively tethering the precursor protein to the inner membrane. These mutant porins are toxic when secreted to the cell envelope. Furthermore, strains producing these proteins exhibit altered outer membrane permeability, suggesting that the toxicity stems from some perturbation of the cell envelope (J. H. Carlson and T. J. Silhavy, J. Bacteriol. 175:3327-3334, 1993). We have characterized a multicopy suppressor of the processing-defective porins that appears to act by a novel mechanism. Using fractionation experiments and conformation-specific antibodies, we found that the presence of this multicopy suppressor allowed the processing-defective LamB precursors to be folded and localized to the outer membrane. Analysis of the suppressor plasmid revealed that these effects are mediated by the presence of a truncated derivative of the polytopic inner membrane protein, TetA. The suppression mediated by TetA' is independent of the CpxA/CpxR regulon and the sigma E regulon, both of which are involved in regulating protein trafficking functions in the cell envelope.
Collapse
Affiliation(s)
- C L Cosma
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | | | |
Collapse
|
21
|
Van Gelder P, Saint N, Phale P, Eppens EF, Prilipov A, van Boxtel R, Rosenbusch JP, Tommassen J. Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. J Mol Biol 1997; 269:468-72. [PMID: 9217251 DOI: 10.1006/jmbi.1997.1063] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The porins PhoE and OmpF form anion and cation-selective pores, respectively, in the outer membrane of Escherichia coli. Each monomer of these trimeric proteins consists of a 16-stranded beta-barrel, which contains a constriction at half the height of the channel. The functional significance of a transverse electrical field that is formed by charged amino acid residues within the constriction zone was investigated. For this purpose, the PhoE residues R37, R75, K18 and E110 were substituted by neutral amino acids. The mutant pores allowed an increased permeation of beta-lactam antibiotics across the outer membrane in vivo, although the single channel conductance, measured in planar lipid bilayers, was not increased or even slightly decreased. Replacement of the positively charged residues resulted in a decreased voltage sensitivity, whereas the substitution of a negatively charged residue resulted in an increased voltage sensitivity. Similar substitutions in OmpF caused the opposite effects, i.e. the substitution of positive and negative charges resulted in increased and decreased voltage sensitivity, respectively. Together, the results suggest that opposite charges, i.e. positive charges in anion-selective and negative charges in cation-selective porins, act as sensors for voltage gating.
Collapse
Affiliation(s)
- P Van Gelder
- Department of Molecular Cell Biology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|