1
|
Abdeljelil N, Ben Miloud Yahia N, Landoulsi A, Chatti A, Wattiez R, Gillan D, Van Houdt R. Proteomic and morphological insights into the exposure of Cupriavidus metallidurans CH34 planktonic cells and biofilms to aluminium. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133403. [PMID: 38215523 DOI: 10.1016/j.jhazmat.2023.133403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Aluminium (Al) is one of the most popular materials for industrial and domestic use. Nevertheless, research has proven that this metal can be toxic to most organisms. This light metal has no known biological function and to date very few aluminium-specific biological pathways have been identified. In addition, information about the impact of this metal on microbial life is scarce. Here, we aimed to study the effect of aluminium on the metal-resistant soil bacterium Cupriavidus metallidurans CH34 in different growth modes, i.e. planktonic cells, adhered cells and mature biofilms. Our results indicated that despite a significant tolerance to aluminium (minimal inhibitory concentration of 6.25 mM Al₂(SO₄)₃.18H₂O), the exposure of C. metallidurans to a sub-inhibitory dose (0.78 mM) caused early oxidative stress and an increase in hydrolytic activity. Changes in the outer membrane surface of planktonic cells were observed, in addition to a rapid disruption of mature biofilms. On protein level, aluminium exposure increased the expression of proteins involved in metabolic activity such as pyruvate kinase, formate dehydrogenase and poly(3-hydroxybutyrate) polymerase, whereas proteins involved in chemotaxis, and the production and transport of iron scavenging siderophores were significantly downregulated.
Collapse
Affiliation(s)
- Nissem Abdeljelil
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium; Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | | | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - David Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
2
|
Schulz V, Galea D, Herzberg M, Nies DH. Protecting the Achilles heel: three FolE_I-type GTP-cyclohydrolases needed for full growth of metal-resistant Cupriavidus metallidurans under a variety of conditions. J Bacteriol 2024; 206:e0039523. [PMID: 38226602 PMCID: PMC10882993 DOI: 10.1128/jb.00395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.
Collapse
Affiliation(s)
- Vladislava Schulz
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Galea
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
3
|
Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes. Appl Environ Microbiol 2023; 89:e0142822. [PMID: 36541797 PMCID: PMC9888253 DOI: 10.1128/aem.01428-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The number of genes encoding β-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for β-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further β-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The β-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding β-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.
Collapse
|
4
|
Chemistry and Biology of Siderophores from Marine Microbes. Mar Drugs 2019; 17:md17100562. [PMID: 31569555 PMCID: PMC6836290 DOI: 10.3390/md17100562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
Microbial siderophores are multidentate Fe(III) chelators used by microbes during siderophore-mediated assimilation. They possess high affinity and selectivity for Fe(III). Among them, marine siderophore-mediated microbial iron uptake allows marine microbes to proliferate and survive in the iron-deficient marine environments. Due to their unique iron(III)-chelating properties, delivery system, structural diversity, and therapeutic potential, marine microbial siderophores have great potential for further development of various drug conjugates for antibiotic-resistant bacteria therapy or as a target for inhibiting siderophore virulence factors to develop novel broad-spectrum antibiotics. This review covers siderophores derived from marine microbes.
Collapse
|
5
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
6
|
Siderophore-Mediated Iron Acquisition Enhances Resistance to Oxidative and Aromatic Compound Stress in Cupriavidus necator JMP134. Appl Environ Microbiol 2018; 85:AEM.01938-18. [PMID: 30366993 DOI: 10.1128/aem.01938-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023] Open
Abstract
Many bacteria secrete siderophores to enhance iron uptake under iron-restricted conditions. In this study, we found that Cupriavidus necator JMP134, a well-known aromatic pollutant-degrading bacterium, produces an unknown carboxylate-type siderophore named cupriabactin to overcome iron limitation. Using genome mining, targeted mutagenesis, and biochemical analysis, we discovered an operon containing six open reading frames (cubA-F) in the C. necator JMP134 genome that encodes proteins required for the biosynthesis and uptake of cupriabactin. As the dominant siderophore of C. necator JMP134, cupriabactin promotes the growth of C. necator JMP134 under iron-limited conditions via enhanced ferric iron uptake. Furthermore, we demonstrated that the iron concentration-dependent expression of the cub operon is mediated by the ferric uptake regulator (Fur). Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and resistance to oxidative and aromatic compound stress in C. necator JMP134. In conclusion, we identified a carboxylate-type siderophore named cupriabactin, which plays important roles in iron scavenging, bacterial motility, biofilm formation, and stress resistance.IMPORTANCE Since siderophores have been widely exploited for agricultural, environmental, and medical applications, the identification and characterization of new siderophores from different habitats and organisms will have great beneficial applications. Here, we identified a novel siderophore-producing gene cluster in C. necator JMP134. This gene cluster produces a previously unknown carboxylate siderophore, cupriabactin. Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and oxidative stress resistance. Most notably, this system also plays important roles in increasing the resistance of C. necator JMP134 to stress caused by aromatic compounds, which provide a promising strategy to engineer more efficient approaches to degrade aromatic pollutants.
Collapse
|
7
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
8
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Madsen JLH, Johnstone TC, Nolan EM. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J Am Chem Soc 2015; 137:9117-27. [DOI: 10.1021/jacs.5b04557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie L. H. Madsen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans. J Bacteriol 2014; 196:3461-71. [PMID: 25049092 DOI: 10.1128/jb.01713-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc importer ZupT is required for the efficient allocation of zinc to zinc-dependent proteins in the metal-resistant bacterium Cupriavidus metallidurans but not for zinc import per se. The expression of zupT is upregulated under conditions of zinc starvation. C. metallidurans contains three members of the Fur family of regulators that qualify as candidates for the zupT regulator. The expression of a zupT-lacZ reporter gene fusion was strongly upregulated in a ΔfurC mutant but not in a ΔfurA or ΔfurB mutant. Expression of the genes for transition-metal importers (pitA, corA1, corA2, and corA3) was not changed in this pattern in all three Δfur mutants, but they were still downregulated under conditions of elevated zinc concentrations, indicating the presence of another zinc-dependent regulator. FurA was a central regulator of the iron metabolism in C. metallidurans, and furA was constitutively expressed under the conditions tested. Expression of furB was upregulated under conditions of iron starvation, and FurB could be an iron starvation Fur connecting general metal and iron homeostasis, as indicated by the phenotype of a ΔfurB ΔfurC double mutant. FurC was purified as a Strep-tagged protein and retarded the electrophoretic mobility of a DNA fragment upstream of zupT. Binding of FurC to this operator region was influenced by the presence of zinc ions and EDTA. Thus, FurC is the main zinc uptake regulator (Zur) of C. metallidurans and represses synthesis of the central zinc importer ZupT when sufficient zinc is present.
Collapse
|
11
|
Olsson-Francis K, VAN Houdt R, Mergeay M, Leys N, Cockell CS. Microarray analysis of a microbe-mineral interaction. GEOBIOLOGY 2010; 8:446-456. [PMID: 20718869 DOI: 10.1111/j.1472-4669.2010.00253.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and long-term climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Micro-organisms are known to play a role in rock weathering yet the genomics and genetics of biological rock weathering are unknown. We apply DNA microarray technology to determine putative genes involved in weathering using the heavy metal-resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium does not depend on siderophores. Instead, the up-regulation of porins and transporters which are employed concomitantly with genes associated with biofilm formation suggests that novel passive and active iron uptake systems are involved. We hypothesize that these mechanisms induce rock weathering by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal-resistant genes. Some of the earliest environments on the Earth were volcanic. Therefore, these results not only elucidate the mechanisms by which micro-organisms might have sequestered nutrients on the early Earth but also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity.
Collapse
|
12
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Diels L, Van Roy S, Taghavi S, Van Houdt R. From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie van Leeuwenhoek 2009; 96:247-58. [DOI: 10.1007/s10482-009-9361-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
|
15
|
Cotton JL, Tao J, Balibar CJ. Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Biochemistry 2009; 48:1025-35. [PMID: 19138128 DOI: 10.1021/bi801844c] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are key virulence factors that allow bacteria to grow in iron-restricted environments. The Gram-positive pathogen Staphylococcus aureus is known to produce four siderophores for which genetic and/or structural data are unknown. Here we characterize the gene cluster responsible for producing the prevalent siderophore staphyloferrin A. In addition to expressing the cluster in the heterologous host Escherichia coli, which confers the ability to synthesize the siderophore, we reconstituted staphyloferrin A biosynthesis in vitro by expressing and purifying two key enzymes in the pathway. As with other polycarboxylate siderophores, staphyloferrin A is biosynthesized using the recently described nonribosomal peptide synthetase independent siderophore (NIS) biosynthetic pathway. Two NIS synthetases condense two molecules of citric acid to d-ornithine in a stepwise ordered process with SfnaD using the delta-amine as a nucleophile to form the first amide followed by SfnaB utilizing the alpha-amine to complete staphyloferrin A synthesis.
Collapse
Affiliation(s)
- Jennifer L Cotton
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, 500 Technology Square, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
16
|
Cuív PÓ, Clarke P, O'Connell M. Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2006; 152:945-954. [PMID: 16549659 DOI: 10.1099/mic.0.28552-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa utilizes several xenosiderophores under conditions of iron limitation, including the citrate hydroxamate siderophore aerobactin. Analysis of the P. aeruginosa genome sequence revealed the presence of two genes, chtA (PA4675) and PA1365, encoding proteins displaying significant similarity to the aerobactin outer-membrane receptor, IutA, of Escherichia coli. The chtA and PA1365 genes were mutated by insertional inactivation and it was demonstrated that ChtA is the outer-membrane receptor for aerobactin. ChtA also mediated the utilization of rhizobactin 1021 and schizokinen, which are structurally similar to aerobactin. In contrast to the utilization of other xenosiderophores by P. aeruginosa, there was no apparent redundancy in the utilization of aerobactin, rhizobactin 1021 and schizokinen. The utilization of citrate hydroxamate siderophores by P. aeruginosa was demonstrated to be TonB1 dependent. A Fur box was identified in the region directly upstream of chtA and it was demonstrated by the in vivo Fur titration assay that this region is capable of binding Fur and accordingly that expression of chtA is iron regulated. The PA1365 mutant was unaffected in the utilization of citrate hydroxamate siderophores.
Collapse
Affiliation(s)
- Páraic Ó Cuív
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
17
|
Bhatt G, Denny TP. Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. J Bacteriol 2004; 186:7896-904. [PMID: 15547261 PMCID: PMC529077 DOI: 10.1128/jb.186.23.7896-7904.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhcA is a transcriptional regulator that activates expression of multiple virulence genes in the plant pathogen Ralstonia solanacearum. Relative to their wild-type parents, phcA mutants overproduced iron-scavenging activity detected with chrome azurol S siderophore detection medium. Transposon mutagenesis of strain AW1-PC (phcA1) generated strain GB6, which was siderophore negative but retained weak iron-scavenging activity. The ssd gene inactivated in GB6 encodes a protein similar to group IV amino acid decarboxylases, and its transcription was repressed by iron(III) and PhcA. ssd is the terminal gene in a putative operon that also appears to encode three siderophore synthetase subunits, a integral membrane exporter, and three genes with no obvious role in siderophore production. A homologous operon was found in the genomes of Ralstonia metallidurans and Staphylococcus aureus, both of which produce the polycarboxylate siderophore staphyloferrin B. Comparison of the siderophores present in culture supernatants of R. solanacearum, R. metallidurans, and Bacillus megaterium using chemical tests, a siderophore utilization bioassay, thin-layer chromatography, and mass spectroscopy indicated that R. solanacearum produces staphyloferrin B rather than schizokinen as was reported previously. Inactivation of ssd in a wild-type AW1 background resulted in a mutant almost incapable of scavenging iron but normally virulent on tomato plants. AW1 did not produce siderophore activity when cultured in tomato xylem sap, suggesting that the main location in tomato for R. solanacearum during pathogenesis is iron replete.
Collapse
Affiliation(s)
- Garima Bhatt
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
18
|
Smajs D, Smarda J, Weinstock GM. The Escherichia fergusonii iucABCD iutA genes are located within a larger chromosomal region similar to pathogenicity Islands. Folia Microbiol (Praha) 2003; 48:139-47. [PMID: 12800494 DOI: 10.1007/bf02930946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Three strains of Escherichia fergusonii (EF873, EF1496, EF939) of 50 strains tested produced the hydroxamate siderophore aerobactin. Screening of a cosmid library of the strain EF873 chromosomal DNA (in aerobactin nonproducing Escherichia coli VCS257) for aerobactin production identified iucABCD and iutA gene orthologues. The predicted IucABCD and IutA proteins showed 59-65% identity to the corresponding proteins of Shigella flexneri and E. coli. Aerobactin molecules synthesized by E. fergusonii and E. coli strains stimulated growth of aerobactin indicator strains harboring either E. coli or E. fergusonii iutA genes. In the 12 kb upstream and 17 kb downstream regions of the iuc and iut genes, 20 additional ORFs were identified. Their gene products showed homology to proteins from E. coli, S. flexneri, Klebsiella aerogenes, Pseudomonas aeruginosa and Vibrio cholerae. Probes recognizing DNA sequences from a region of more than 25 kb, which included the iucABCD and iutA genes, hybridized with chromosomal DNA of two aerobactin-producing strains (EF873 and EF939), but not with other nonproducing E. fergusonii strains tested. These data, together with the genetic organization of this region, suggest that E. fergusonii iucABCD iutA genes are a portion of a larger segment of DNA similar to pathogenicity islands of other bacteria.
Collapse
Affiliation(s)
- D Smajs
- Department of Microbiology and Molecular Genetics, Center for the Study of Emerging and Re-emerging Pathogens, Houston Medical School, University of Texas, Houston, Texas, USA
| | | | | |
Collapse
|
19
|
Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 2003; 27:385-410. [PMID: 12829276 DOI: 10.1016/s0168-6445(03)00045-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ralstonia metallidurans, formerly known as Alcaligenes eutrophus and thereafter as Ralstonia eutropha, is a beta-Proteobacterium colonizing industrial sediments, soils or wastes with a high content of heavy metals. The type strain CH34 carries two large plasmids (pMOL28 and pMOL30) bearing a variety of genes for metal resistance. A chronological overview describes the progress made in the knowledge of the plasmid-borne metal resistance mechanisms, the genetics of R. metallidurans CH34 and its taxonomy, and the applications of this strain in the fields of environmental remediation and microbial ecology. Recently, the sequence draft of the genome of R. metallidurans has become available. This allowed a comparison of these preliminary data with the published genome data of the plant pathogen Ralstonia solanacearum, which harbors a megaplasmid (of 2.1 Mb) carrying some metal resistance genes that are similar to those found in R. metallidurans CH34. In addition, a first inventory of metal resistance genes and operons across these two organisms could be made. This inventory, which partly relied on the use of proteomic approaches, revealed the presence of numerous loci not only on the large plasmids pMOL28 and pMOL30 but also on the chromosome. It suggests that metal-resistant Ralstonia, through evolution, are particularly well adapted to the harsh environments typically created by extreme anthropogenic situations or biotopes.
Collapse
Affiliation(s)
- Max Mergeay
- Laboratories for Microbiology and Radiobiology, Belgium Nuclear Research Center, SCK/CEN, B-2400 Mol, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Melchior F, Ledrich ML, Foucaud L, Falla JA. Rapid identification of Ralstonia eutropha strain CH34 using monoclonal antibodies. HYBRIDOMA AND HYBRIDOMICS 2002; 20:325-32. [PMID: 11839250 DOI: 10.1089/15368590152740725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ralstonia eutropha strain CH34 (formerly Alcaligenes eutrophus CH34) is an aerobic Gram-negative and facultative chemolithotrophic bacteria with plasmid-bound resistance to heavy metals. The presence of Ralstonia eutropha strain CH34 is an indication of environmental heavy metals pollution. The major purpose of this work was to produce monoclonal antibodies (MAbs) against the metal transport outer membrane proteins. In this way, bacteria outer membranes, grown with or without iron, were purified. The electrophoretic pattern of the outer membrane revealed that, in iron starvation conditions, at least four proteins were overexpressed. These outer membranes were used to immunize mice to produce MAbs. About 200 hybridomas were tested by enzyme-linked immunoadsorbent assay (ELISA). Most of these hybridomas exhibited cross reactions with Escherichia coli and Klebsiella aerogenes. Two hybridomas, AE5/7 and AE5/9, produced MAbs that detected specifically Ralstonia eutropha strain CH34. Analysis by Western blotting showed that these MAbs recognized a protein with a molecular weight of about 41 kDa. Moreover, the presence of the two megaplasmids was required for the full expression of the 41-kDa protein, as demonstrated by screening of the derivatives strains by ELISA. These MAbs could be used for a specific and rapid detection of Ralstonia eutropha strain CH34, using direct immunological methods.
Collapse
Affiliation(s)
- F Melchior
- Institut Universitaire de Technologie de Metz, Département de Génie Biologique, Laboratoire d'Immunologie/Microbiologie, Impasse Alfred Kastler, 57970 YUTZ France
| | | | | | | |
Collapse
|
21
|
Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2002; 4:101-115. [PMID: 12655804 DOI: 10.1080/15226510208500076] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated bacterial populations associated with the Zn hyperaccumulator Thlaspi caerulescens subsp. calaminaria grown in a soil collected from an abandoned Zn-Pb mine and smelter in Plombières, Belgium. The bacterial population of the nonrhizospheric soil consisted of typical soil bacteria, some exhibiting multiple heavy-metal resistance characteristics that often are associated with polluted substrates: 7.8% and 4% of the population survived in the presence of elevated levels of Zn (1 mM) and Cd (0.8 mM), respectively. For the bacterial population isolated from the rhizosphere, the comparable survival rates were 88 and 78%. This observation indicates a selective enrichment of the metal-resistant strains due to an increased availability of the metals in soils near the roots compared with nonrhizospheric soil. The endophytic inhabitants of the roots and shoots were isolated, identified, and characterized. Although similar endophytic species were isolated from both compartments, those from the rhizoplane and roots showed lower resistance to Zn and Cd than the endophytic bacteria isolated from the shoots. In addition, root endophytic bacteria had additional requirements. Contrary to the rootresiding inhabitants, the shoot represented a niche rich in metal-resistant bacteria and even seemed to contain species that were exclusively abundant there. These differences in the characteristics of the bacterial microflora associated with T. caerulescens might possibly reflect altered metal speciation in the different soils and plant compartments studied.
Collapse
Affiliation(s)
- C Lodewyckx
- Department SBG, Environmental Biology, Limburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
| | | | | | | | | |
Collapse
|
22
|
Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 2001; 183:5651-8. [PMID: 11544228 PMCID: PMC95457 DOI: 10.1128/jb.183.19.5651-5658.2001] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lead resistance operon, pbr, of Ralstonia metallidurans (formerly Alcaligenes eutrophus) strain CH34 is unique, as it combines functions involved in uptake, efflux, and accumulation of Pb(II). The pbr lead resistance locus contains the following structural resistance genes: (i) pbrT, which encodes a Pb(II) uptake protein; (ii) pbrA, which encodes a P-type Pb(II) efflux ATPase; (iii) pbrB, which encodes a predicted integral membrane protein of unknown function; and (iv) pbrC, which encodes a predicted prolipoprotein signal peptidase. Downstream of pbrC, the pbrD gene, encoding a Pb(II)-binding protein, was identified in a region of DNA, which was essential for functional lead sequestration. Pb(II)-dependent inducible transcription of pbrABCD from the PpbrA promoter is regulated by PbrR, which belongs to the MerR family of metal ion-sensing regulatory proteins. This is the first report of a mechanism for specific lead resistance in any bacterial genus.
Collapse
Affiliation(s)
- B Borremans
- VITO, Vlaamse Instelling voor Technologisch Onderzoek, Environmental Technology Centre, Boeretang 200, 2400 Mol, Belgium
| | | | | | | | | |
Collapse
|
23
|
Katoh H, Hagino N, Grossman AR, Ogawa T. Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2001; 183:2779-84. [PMID: 11292796 PMCID: PMC99493 DOI: 10.1128/jb.183.9.2779-2784.2001] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition in Synechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reported sll1878 (Katoh et al., J. Bacteriol. 182:6523-6524, 2000) and were designated futA1, futA2, futB, and futC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1 and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. The futA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue of feoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.
Collapse
Affiliation(s)
- H Katoh
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
24
|
Garg RP, Yindeeyoungyeon W, Gilis A, Denny TP, Van Der Lelie D, Schell MA. Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system. Mol Microbiol 2000; 38:359-67. [PMID: 11069661 DOI: 10.1046/j.1365-2958.2000.02131.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self-produced signal molecule [3-hydroxypalmitic acid methyl ester (3-OH PAME)], an atypical two-component system (PhcS/PhcR), and a LysR-type activator (PhcA) to regulate a reversible switching between two different physiological states. While Phc is present in most R. solanacearum strains, it is apparently absent from other pseudomonad plant pathogens and prokaryotic genomes that have been sequenced. Here, we report discovery of a phcA orthologue in the non-pathogenic, facultative chemolithoautotroph Ralstonia eutropha (Alcaligenes eutrophus) that fully complements R. solanacearum phcA mutants. We also demonstrate that some R. eutropha produce an extracellular factor that complements R. solanacearum mutants deficient in production of the 3-OH PAME signal molecule that controls phcA. Additionally, Southern blot hybridization analysis suggested that R. eutropha harbours other Phc components, such as PhcB (a biosynthetic enzyme for 3-OH PAME) and PhcS (a 3-OH PAME-responsive sensor kinase). Analysis of a phcA-null mutant of R. eutropha showed that phcA (and probably Phc) positively activates motility, in contrast to R. solanacearum where it represses motility. Similarly, the R. eutropha phcA mutant was unaffected in siderophore production, whereas inactivation of phcA in R. solanacearum increases siderophore production. Although our data strongly suggest that R. eutropha has a functional Phc-like system and support the phylogeny of Ralstonia, it implies that Phc may have a different physiological and ecological function in R. eutropha.
Collapse
Affiliation(s)
- R P Garg
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
25
|
Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 2000; 182:749-57. [PMID: 10633110 PMCID: PMC94339 DOI: 10.1128/jb.182.3.749-757.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which Legionella pneumophila, a facultative intracellular parasite and the agent of Legionnaires' disease, acquires iron are largely unexplained. Several earlier studies indicated that L. pneumophila does not elaborate siderophores. However, we now present evidence that supernatants from L. pneumophila cultures can contain a nonproteinaceous, high-affinity iron chelator. More specifically, when aerobically grown in a low-iron, chemically defined medium (CDM), L. pneumophila secretes a substance that is reactive in the chrome azurol S (CAS) assay. Importantly, the siderophore-like activity was only observed when the CDM cultures were inoculated to relatively high density with bacteria that had been grown overnight to log or early stationary phase in CDM or buffered yeast extract. Inocula derived from late-stationary-phase cultures, despite ultimately growing, consistently failed to result in the elaboration of siderophore-like activity. The Legionella CAS reactivity was detected in the culture supernatants of the serogroup 1 strains 130b and Philadelphia-1, as well as those from representatives of other serogroups and other Legionella species. The CAS-reactive substance was resistant to boiling and protease treatment and was associated with the <1-kDa supernatant fraction. As would also be expected for a siderophore, the addition of 0.5 or 2.0 microM iron to the cultures repressed the expression of the CAS-reactive substance. Interestingly, the supernatants were negative in the Arnow, Csáky, and Rioux assays, indicating that the Legionella siderophore was not a classic catecholate or hydroxamate and, hence, might have a novel structure. We have designated the L. pneumophila siderophore legiobactin.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
26
|
Abstract
Historical emissions of old nonferrous factories lead to large geographical areas of metals-contaminated sites. At least 50 sites in Europe are contaminated with metals like Zn, Cd, Cu, and Pb. Several methods, based on granular differentiation, were developed to reduce the metals content. However, the obtained cleaned soil is just sand. Methods based on chemical leaching or extraction or on electrochemistry do release a soil without any salts and with an increased bioavailability of the remaining metals content. In this review a method is presented for the treatment of sandy soil contaminated with heavy metals. The system is based on the metal solubilization on biocyrstallization capacity of Alcaligenes eutrophus CH34. The bacterium can solubilize the metals (or increase their bioavailability) via the production of siderophores and adsorb the metals in their biomass on metal-induced outer membrane proteins and by bioprecipitation. After the addition of CH34 to a soil slurry, the metals move toward the biomass. As the bacterium tends to float quite easily, the biomass is separated from the water via a flocculation process. The Cd concentration in sandy soils could be reduced from 21 mg Cd/kg to 3.3 mg Cd/kg. At the same time, Zn was reduced from 1070 mg Zn/kg to 172 mg Zn/kg. The lead concentration went down from 459 mg Pb/kg to 74 mg Pb/kg. With the aid of biosensors, a complete decrease in bioavailability of the metals was measured.
Collapse
Affiliation(s)
- L Diels
- Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium
| | | | | | | |
Collapse
|