1
|
Bento CM, van Calster K, Piller T, Oliveira GS, de Vooght L, Cappoen D, Cos P, Gomes MS, Silva T. Characterization of novel double-reporter strains of Mycobacterium abscessus for drug discovery: a study in mScarlet. Microbiol Spectr 2024; 12:e0036224. [PMID: 39189762 PMCID: PMC11448253 DOI: 10.1128/spectrum.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging pathogen that poses a severe health threat, especially in people with cystic fibrosis and other chronic lung diseases. Available drugs are largely ineffective due to an exquisite intrinsic resistance, making Mab infections only comparable to multidrug-resistant tuberculosis. Current treatment is based on lengthy multidrug therapy, complicated by poor outcomes and high rates of treatment failure, recurrence, and mortality. Thus, finding new and more efficient drugs to combat this pathogen is urgent. However, drug discovery efforts targeting Mab have been limited, and traditional drug screening methods are labor-intensive, low-throughput, and do not reflect clinical effectiveness. Therefore, this work aimed to develop a new, efficient, and reliable tool for drug screening against Mab that can be used in vitro for identifying hits in a high-throughput manner and in vivo to select drug candidates for future clinical trials. We engineered two stable double-reporter strains of Mab capable of emitting strong fluorescent and luminescent signals. This is due to the expression of mScarlet protein and luciferase enzyme or the entire lux operon. Importantly, these strains maintain the same ground characteristics as the non-transformed Mab strain. We show that these new strains can be applied to various setups, from MIC determination in broth cultures and macrophage infection assays to in vivo infection (using the Galleria mellonella model). Using these strains enhances the potential for high-throughput screening of thousands of compounds in a fast and reliable way. IMPORTANCE Mycobacterium abscessus (Mab) is currently considered an "incurable nightmare." Its intrinsic resistance, high toxicity, long duration, and low cure rates of available therapies often lead to the clinical decision not to treat. Moreover, one of the significant drawbacks of anti-Mab drug development is the lack of correlation between in vitro susceptibility and clinical efficacy. Most drug screening assays are performed on Mab growing in liquid cultures. But being an intracellular pathogen, inducing granulomas and biofilm formation, the broth culture is far from ideal as in vitro drug-testing setup. This study presents new double-reporter Mab strains that allow direct real-time bacterial detection and quantification in a non-invasive way. These strains can be applied to an extensive range of experimental settings, far surpassing the utility of single-reporter bacteria. They can be used in all steps of the pre-clinical anti-Mab drug development pipeline, constituting a highly valuable tool to increase its success.
Collapse
Affiliation(s)
- Clara M Bento
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Kevin van Calster
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Tatiana Piller
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Gabriel S Oliveira
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Linda de Vooght
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - M Salomé Gomes
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
3
|
Hailu E, Cantillon D, Madrazo C, Rose G, Wheeler PR, Golby P, Adnew B, Gagneux S, Aseffa A, Gordon SV, Comas I, Young DB, Waddell SJ, Larrouy-Maumus G, Berg S. Lack of methoxy-mycolates characterizes the geographically restricted lineage 7 of Mycobacterium tuberculosis complex. Microb Genom 2023; 9:mgen001011. [PMID: 37171244 PMCID: PMC10272862 DOI: 10.1099/mgen.0.001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.
Collapse
Affiliation(s)
- Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Daire Cantillon
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
- Present address: Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carlos Madrazo
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Graham Rose
- Francis Crick Institute, London, UK
- Present address: North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK
| | | | - Paul Golby
- Animal and Plant Health Agency, Weybridge, UK
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Iñaki Comas
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Douglas B. Young
- Francis Crick Institute, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon J. Waddell
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, UK
- Present address: Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
4
|
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ. Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system. Synth Syst Biotechnol 2022; 7:1002-1011. [PMID: 35782483 PMCID: PMC9213222 DOI: 10.1016/j.synbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.
Collapse
|
5
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
6
|
Chen Y, Zhan Z, Zhang H, Bi L, Zhang XE, Fu YV. Kinetic analysis of DNA compaction by mycobacterial integration host factor at the single-molecule level. Tuberculosis (Edinb) 2019; 119:101862. [PMID: 31733417 DOI: 10.1016/j.tube.2019.101862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/14/2019] [Accepted: 09/08/2019] [Indexed: 11/19/2022]
Abstract
Nucleoid-associated proteins (NAPs) play an important role on chromosome condensation and organization. Mycobacterial integration host factor (mIHF) is one of the few mycobacterial NAPs identified so far. mIHF has the ability to stimulate mycobacteriophage L5 integration and compact DNA into nucleoid-like or higher order filamentous structures by atomic force microscopy observation. In this study, M. smegmatis IHF (MsIHF), which possesses the sequence essential for mIHF's functions, binds 30-bp dsDNA fragments in a sequence-independent manner and displays sensitivity to ion strength in bio-layer interferometry (BLI) experiments. The DNA compaction process of MsIHF was observed at the single-molecule level using the total internal reflection fluorescence microscopy (TIRFM). MsIHF efficiently compacted λ DNA into a highly condensed structure with the concentration of 0.25 and 1.0 μM, and the packing ratios were higher than 10. Further kinetic analysis revealed MsIHF compacts DNA in a three-step mechanism, which consists of two compaction steps with different compacting rates separated by a lag step. This study would help us better understand the mechanisms of chromosomal DNA organization in mycobacteria.
Collapse
Affiliation(s)
- Yuanyuan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Manina G, Griego A, Singh LK, McKinney JD, Dhar N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J 2019; 38:e101876. [PMID: 31583725 PMCID: PMC6856624 DOI: 10.15252/embj.2019101876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.
Collapse
Affiliation(s)
- Giulia Manina
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Anna Griego
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Lalit Kumar Singh
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
| | - John D McKinney
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Neeraj Dhar
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
8
|
Laxmikanthan G, Xu C, Brilot AF, Warren D, Steele L, Seah N, Tong W, Grigorieff N, Landy A, Van Duyne GD. Structure of a Holliday junction complex reveals mechanisms governing a highly regulated DNA transaction. eLife 2016; 5. [PMID: 27223329 PMCID: PMC4880445 DOI: 10.7554/elife.14313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
The molecular machinery responsible for DNA expression, recombination, and compaction has been difficult to visualize as functionally complete entities due to their combinatorial and structural complexity. We report here the structure of the intact functional assembly responsible for regulating and executing a site-specific DNA recombination reaction. The assembly is a 240-bp Holliday junction (HJ) bound specifically by 11 protein subunits. This higher-order complex is a key intermediate in the tightly regulated pathway for the excision of bacteriophage λ viral DNA out of the E. coli host chromosome, an extensively studied paradigmatic model system for the regulated rearrangement of DNA. Our results provide a structural basis for pre-existing data describing the excisive and integrative recombination pathways, and they help explain their regulation. DOI:http://dx.doi.org/10.7554/eLife.14313.001 Some viruses can remain dormant inside an infected cell and only become active when conditions are right to multiply and infect other cells. Bacteriophage λ is a much-studied model virus that adopts this lifecycle by inserting its genetic information into the chromosome of a bacterium called Escherichia coli. Certain signals can later trigger the viral DNA to be removed from the bacterial chromosome, often after many generations, so that it can replicate and make new copies of the virus. Specific sites on the viral and bacterial DNA earmark where the virus’s genetic information will insert and how it will be removed. Remarkably, each of these two site-specific reactions (i.e. insertion and removal) cannot be reversed once started, and their onset is precisely controlled. These reactions involve a molecular machine or complex that consists of four enzymes that cut and reconnect the DNA strands and seven DNA-bending proteins that bring distant sites closer together. Despite decades of work by many laboratories, no one had provided a three-dimensional image of this complete molecular machine together with the DNA it acts upon. Now, Laxmikanthan et al. reveal a three-dimensional structure of this machine with all its components by trapping and purifying the complex at the halfway point in the removal process, when the DNA forms a structure known as a “Holliday junction”. The structure was obtained using electron microscopy of complexes frozen in ice. The structure answers many of the long-standing questions about the removal and insertion reactions. For example, it shows how the DNA-bending proteins and enzymes assemble into a large complex to carry out the removal reaction, which is different from the complex that carries out the insertion reaction. It also shows that the removal and insertion reactions are each prevented from acting in the opposite direction because the two complexes have different requirements. These new findings improve our understanding of how the insertion and removal reactions are precisely regulated. Laxmikanthan et al.’s results also serve as examples for thinking about the complicated regulatory machines that are widespread in biology. DOI:http://dx.doi.org/10.7554/eLife.14313.002
Collapse
Affiliation(s)
- Gurunathan Laxmikanthan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Chen Xu
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Axel F Brilot
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - David Warren
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Lindsay Steele
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Nicole Seah
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Wenjun Tong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Nikolaus Grigorieff
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Lunt BL, Hatfull GF. Brujita Integrase: A Simple, Arm-Less, Directionless, and Promiscuous Tyrosine Integrase System. J Mol Biol 2016; 428:2289-2306. [PMID: 27113630 DOI: 10.1016/j.jmb.2016.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
Mycobacteriophage Brujita is an unusual temperate phage in which establishment of superinfection immunity is dependent on chromosomal integration. Integration is mediated by a non-canonical tyrosine integrase (Int) lacking an N-terminal domain typically associated with binding to arm-type sites within the phage attachment site (attP). This raises the question as to how these Ints bind their DNA substrates, if they form higher-order protein DNA complexes, and how site selection and recombinational directionality are determined. Here we show that Brujita Int is a simple recombinase, whose properties more closely resemble those of FLP and Cre than it does the canonical phage Ints. Brujita Int uses relatively small DNA substrates, fails to discriminate between attP and attB, cleaves attachment site DNA to form a 6-base overlap region, and lacks directional control. Brujita Int also has an unusual pattern of binding to its DNA substrates. It binds to two half sites (B and B') at attB, although binding to the B half site is strongly dependent on occupancy of B'. In contrast, binding to the P half site is not observed, even when Int is bound at P'. However, an additional Int binding site (P1) is displaced to the left of the crossover site at attP, is required for recombination and is predicted to facilitate binding of Int to the P half site during synapsis. These simple phage Int systems may reflect ancestral states of phage evolution with the complexities of higher-order complex formation and directional control representing subsequent adaptations.
Collapse
Affiliation(s)
- Bryce L Lunt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Abstract
UNLABELLED Subcellular organization of the bacterial nucleoid and spatiotemporal dynamics of DNA replication and segregation have been studied intensively, but the functional link between these processes remains poorly understood. Here we use quantitative time-lapse fluorescence microscopy for single-cell analysis of chromosome organization and DNA replisome dynamics in Mycobacterium smegmatis. We report that DNA replication takes place near midcell, where, following assembly of the replisome on the replication origin, the left and right replication forks colocalize throughout the replication cycle. From its initial position near the cell pole, a fluorescently tagged chromosomal locus (attB, 245° from the origin) moves rapidly to the replisome complex just before it is replicated. The newly duplicated attB loci then segregate to mirror-symmetric positions relative to midcell. Genetic ablation of ParB, a component of the ParABS chromosome segregation system, causes marked defects in chromosome organization, condensation, and segregation. ParB deficiency also results in mislocalization of the DNA replication machinery and SMC (structural maintenance of chromosome) protein. These observations suggest that ParB and SMC play important and overlapping roles in chromosome organization and replisome dynamics in mycobacteria. IMPORTANCE We studied the spatiotemporal organization of the chromosome and DNA replication machinery in Mycobacterium smegmatis, a fast-growing relative of the human pathogen Mycobacterium tuberculosis. We show that genetic ablation of the DNA-binding proteins ParB and SMC disturbs the organization of the chromosome and causes a severe defect in subcellular localization and movement of the DNA replication complexes. These observations suggest that ParB and SMC provide a functional link between chromosome organization and DNA replication dynamics. This work also reveals important differences in the biological roles of the ParABS and SMC systems in mycobacteria versus better-characterized model organisms, such as Escherichia coli and Bacillus subtilis.
Collapse
|
11
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
12
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
13
|
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr 2014; 2:1-36. [PMID: 25328854 PMCID: PMC4199240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
14
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
16
|
Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2012; 49:237-48. [PMID: 23246436 DOI: 10.1016/j.molcel.2012.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Collapse
Affiliation(s)
- Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
17
|
Huff J, Czyz A, Landick R, Niederweis M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene 2010; 468:8-19. [PMID: 20692326 DOI: 10.1016/j.gene.2010.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
Genes must be stably integrated into bacterial chromosomes for complementation of gene deletion mutants in animal infection experiments or to express antigens in vaccine strains. However, with currently available vectors it is cumbersome to create multiple, stable, unmarked chromosomal integrations in mycobacteria. Here, we have constructed a novel integration vector for mycobacteria that enables expression of genes from a cassette protected from transcriptional interference by bi-directional transcriptional terminators proven to be highly efficient in in vitro transcription termination assays. Removal of the integrase gene by a site-specific recombinase, easily identifiable by loss of a backbone reporter gene, stabilizes the integration cassette and makes this vector ideally suitable for infection experiments. This integration vector can be easily adapted to different mycobacteriophage attachment sites (attB) due to its modular design. Integration of a gfp expression cassette at the L5, Giles and Ms6 attB sites in the chromosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis yielded identical gfp expression levels, indicating that none of these sites are compromised for gene expression. The copy number of pAL5000-based extrachromosomal plasmids is 23 in M. smegmatis as determined by quantitative real-time PCR and accounts for the previously observed drastic reduction of gene expression upon integration of plasmids into the chromosome of mycobacteria. Gfp expression and fluorescence of M. smegmatis and M. tuberculosis strains with multiple integrations of gfp increased concomitantly with the copy number demonstrating that these vectors can be used to generate stronger phenotypes and/or to analyze several genes simultaneously in vivo.
Collapse
Affiliation(s)
- Jason Huff
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
18
|
Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother 2010; 54:2806-13. [PMID: 20421401 DOI: 10.1128/aac.00400-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans causes Buruli ulcer, an emerging infectious disease for which antimicrobial therapy has only recently proven to be beneficial. The discovery and development of new drugs against M. ulcerans are severely impeded by its very slow growth. Recombinant bioluminescent strains have proven useful in drug development for other mycobacterial infections, but the ability of such strains to discriminate bacteriostatic from bactericidal activity has not been well demonstrated. We engineered recombinant M. ulcerans strains to express luxAB from Vibrio harveyi. In drug susceptibility tests employing a wide range of antimicrobial agents and concentrations, the relative light unit (RLU) count measured in real time was a reliable surrogate marker for CFU counts available 3 months later, indicating utility for the rapid determination of drug susceptibility and discrimination of bacteriostatic and bactericidal effects. A second important finding of this study is that the addition of subinhibitory concentrations of the ATP-binding cassette transporter inhibitor reserpine increases the susceptibility of M. ulcerans to tetracycline and erythromycin, indicating that drug efflux may explain at least part of the intrinsic resistance of M. ulcerans to these agents.
Collapse
|
19
|
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428-43. [PMID: 20071371 PMCID: PMC2853133 DOI: 10.1093/nar/gkp1226] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
20
|
Saviola B. Phage L5 integrating vectors are present within the Mycobacterial Cell in an equilibrium between integrated and excised states. CANCER THERAPY 2009; 7:35-42. [PMID: 26316877 PMCID: PMC4548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrating mycobacterial plasmids containing the phage L5 attachment site (attP) are able to insert into the mycobacterial chromosome attB site. Plasmids containing the attP site and chromosome containing the attB site are present in equilibrium between the inserted and the excised states in the presence of the phage L5 integrase.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona CA 91766
| |
Collapse
|
21
|
Modification of the mycobacteriophage Ms6 attP core allows the integration of multiple vectors into different tRNAala T-loops in slow- and fast-growing mycobacteria. BMC Mol Biol 2006; 7:47. [PMID: 17173678 PMCID: PMC1762012 DOI: 10.1186/1471-2199-7-47] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022] Open
Abstract
Background Mycobacteriophage Ms6 integrates into Mycobacterium smegmatis and M. bovis BCG chromosome at the 3' end of tRNAala genes. Homologous recombination occurs between the phage attP core and the attB site located in the T-loop. Integration-proficient vectors derived from Ms6 are useful genetic tools, but their insertion sites in the BCG chromosome remain poorly defined. The primary objective of this study was to identify Ms6 target genes in M. smegmatis and BCG. We then aimed to modify the attP site in Ms6-derived vectors, to switch integration to other tRNAala loci. This provided the basis for the development of recombinant M. bovis BCG strains expressing several reporter genes inserted into different tRNAala genes. Results The three tRNAala genes are highly conserved in M. smegmatis and BCG. However, in the T-loop of tRNAalaU and tRNAalaV containing the attB site, a single base difference was observed between the two species. We observed that the tRNAalaU gene was the only site into which Ms6-derived integration-proficient vectors integrated in M. smegmatis, whereas in BCG, the tRNAalaV gene was used as the target. No integration occurred in the BCG tRNAalaU T-loop, despite a difference of only one base from the 26-base Ms6 attP core. We mutated the attP core to give a perfect match with the other tRNAala T-loops from M. smegmatis and BCG. Modification of the seven-base T-loop decreased integration efficiency, identifying this site as a possible site of strand exchange. Finally, two Ms6 vectors were constructed to integrate two reporter genes into the tRNAalaU and tRNAalaV T-loops of the same BCG chromosome. Conclusion Small changes in the 7 bp T-loop attP site of Ms6 made it possible to use another attB site, albeit with a lower integration efficiency. These molecular studies on BCG tRNAala genes made it possible to create valuable tools for the site-directed insertion of several genes in the same BCG strain. These tools will be useful for the development of novel multivalent vaccines and genetic studies.
Collapse
|
22
|
Rajeev L, Salyers AA, Gardner JF. Characterization of the integrase of NBU1, a Bacteroides mobilizable transposon. Mol Microbiol 2006; 61:978-90. [PMID: 16859497 DOI: 10.1111/j.1365-2958.2006.05282.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NBU1 is a Bacteroides mobilizable transposon (MTn) that is integrated within the host chromosome and requires CTnDOT functions for its excision and transfer into a new host. The NBU1 integrase IntN1 has been classified as a tyrosine recombinase based on the presence of conserved residues. We created alanine mutants of the residues R291, K314, H393, R396, H419 and the conserved substitution Y429F and tested them for integration efficiency. The results suggest that these residues in IntN1 are important for integration, and Y429 could be the catalytic nucleophile. We employed suicide substrates and partially purified IntN1 to determine the positions of IntN1 cleavage within the 14 bp common core region that is identical in both NBU1 att sites. We show that IntN1 makes 7 bp staggered cuts on the top and bottom strands. From previous mutational analysis of the att sites, we show that two specific mutations near the site of bottom strand cleavage within this 7 bp region increased integration, and mutations of the two bases near top strand cleavage site had no effect on integration. These results indicate that IntN1 lacks the strict requirement for homology between the recombining sites seen with other tyrosine recombinases. We also show that phosphorothioate substitutions at the cleavage site and 1 bp downstream inhibited cleavage by IntN1. This differs from other studied tyrosine recombinases where inhibition occurs by substitutions at the cleavage site only.
Collapse
Affiliation(s)
- Lara Rajeev
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
23
|
Santhosh RS, Pandian SK, Lini N, Shabaana AK, Nagavardhini A, Dharmalingam K. Cloning of mce1 locus of Mycobacterium leprae in Mycobacterium smegmatis mc2 155 SMR5 and evaluation of expression of mce1 genes in M. smegmatis and M. leprae. ACTA ACUST UNITED AC 2005; 45:291-302. [PMID: 15949925 DOI: 10.1016/j.femsim.2005.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 01/26/2005] [Accepted: 05/05/2005] [Indexed: 11/27/2022]
Abstract
Plasmid pSET152 is a broad host range mobilizable vector which integrates into streptomyces chromosome utilizing att site and int function of slashed circleC31. Transformation of this plasmid into Mycobacterium smegmatis mc2 155 SMR5 gave stable transformants carrying the pSET152 as an integrated copy. Integration occurred at the cross over sequence 5'TTG disrupting the gatA gene (Glu-tRNA(Gln) amidotransferase subunitA), which is non-essential under conditions used. Recombinant pSET152 plasmids carrying mce1 locus of Mycobacterium leprae were used to construct M. smegmatis transformants carrying the mce1 locus in their chromosome. RT-PCR analysis revealed specific transcripts of M. leprae mce in M. smegmatis. The transcribed mRNA carried intergenic regions between genes of mce1 locus indicating that mce1 locus is an operon. Examination of M. leprae specific mRNA from lepromatous leprosy patient's biopsy showed that mce locus is transcribed as an operon in the pathogen also.
Collapse
MESH Headings
- Attachment Sites, Microbiological/genetics
- Bacterial Proteins/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- Gene Expression
- Genes, Bacterial
- Genetic Vectors
- Humans
- Leprosy, Lepromatous/microbiology
- Molecular Sequence Data
- Mycobacterium leprae/genetics
- Mycobacterium leprae/pathogenicity
- Mycobacterium smegmatis/genetics
- Operon
- Plasmids/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transformation, Genetic
Collapse
Affiliation(s)
- Ramachandran Sarojini Santhosh
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Palkalainagar, Madurai 625 021, India
| | | | | | | | | | | |
Collapse
|
24
|
Saviola B, Bishai WR. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res 2004; 32:e11. [PMID: 14718555 PMCID: PMC373307 DOI: 10.1093/nar/gnh005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to create a system in which two independent plasmids can be integrated into a mycobacterial chromosome, a mycobacterial plasmid was constructed containing the phage attachment site attP from the mycobacteriophage L5 genome and additionally containing the bacterial attachment site, attB. This plasmid will integrate into the mycobacterial chromosome via recombination of the plasmid-borne attP site with the chromosomal attB site in the presence of a mycobacterial vector carrying the L5 integrase (int) gene. The integrated plasmid has a plasmid-borne attB site that is preserved and will accept the integration of additional mycobacterial plasmids containing the L5 attP site. This system should be useful in the construction of novel mycobacterial strains. In particular, this system provides a method by which several recombinant antigens or reporter constructs can be sequentially inserted into a mycobacterial strain and subsequently tested.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | |
Collapse
|
25
|
Dotson EM, Plikaytis B, Shinnick TM, Durvasula RV, Beard CB. Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2003; 3:103-9. [PMID: 12809804 DOI: 10.1016/s1567-1348(03)00002-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elimination of vector populations through the use of insecticides is the principal means of controlling Chagas disease. Because of the limitations of insecticide use, we have been developing a new potential method of control, to be used in conjunction with insecticide programs, a method which utilizes genetically modified symbiotic bacteria. These transformed bacteria can express anti-parasitic agents in the gut of the bug where the trypanosomes also are found. Previous studies have shown that it is possible to transform Rhodococcus rhodnii with a shuttle plasmid that contains the gene for cecropin A, an insect anti-microbial peptide. The bacteria expressed this peptide and reduced or eliminated the number of trypanosomes in the bug Rhodnius prolixus [Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 3274]. In an effort to improve efficacy and transformation stability, we have begun using plasmids that contain integrative elements from the L1 mycobacteriophage to insert DNA into the genome of the bacterium. The integrative plasmid pBP5 contains the attachment site (attP) and integrase gene (int) of the L1 mycobacteriophage, an antibiotic resistance gene and the lacZ gene. After transforming R. rhodnii with pBP5, nine positive clones were obtained and six different insertions sites were identified. In each clone, the integrative plasmid is inserted only once, the lacZ gene is expressed intensely and, all clones but one, remained stable for 100 generations of culture in the absence of antibiotic selection. In addition, the construct remains stable throughout the life cycle of the bug. These data demonstrate that L1 mycobacteriophage integrative plasmids are significantly more stable than episomally located plasmids used in previous studies and will be greatly beneficial for use in the transformation of symbiotic bacteria of Chagas disease vectors.
Collapse
Affiliation(s)
- Ellen M Dotson
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, NCID, DPD, MS F-22, 4770 Buford Highway, Atlanta, GA 30341, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Insertion of viral DNA into host chromosomes is an ancient process essential for propagation in the proviral form. Many present-day bacteriophages insert at specific sites on the host chromosome. Insertion by two coliphage families (lambdoid and P4-like) is compared. For both families, insertion sites frequently lie within tRNA genes. The lambdoid phages insert at anticodon loops, whereas the p4-like phages insert in the TpsiC loops downstream from them. The association of both groups with tRNA genes suggests that the primordial insertion site of both groups may have been within a tRNA gene. The integrase proteins used in phage insertion may have originated at that stage, with subsequent diversification of specificity.
Collapse
Affiliation(s)
- Allan Campbell
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Saviola B, Woolwine SC, Bishai WR. Isolation of acid-inducible genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect Immun 2003; 71:1379-88. [PMID: 12595455 PMCID: PMC148880 DOI: 10.1128/iai.71.3.1379-1388.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A better understanding of mycobacterial gene regulation under certain stress conditions (e.g., low pH) may provide insight into mechanisms of adaptation during infection. To identify mycobacterial promoters induced at low pH, we adapted the recombinase-based in vivo expression technology (RIVET) promoter trap system for use with mycobacteria. Our results show that the TnpR recombinase of transposon gammadelta is active in Mycobacterium smegmatis and Mycobacterium tuberculosis. We developed a method to perform sequential double selection with mycobacteria by using RIVET, with a kanamycin preselection and a sucrose postselection. A library of M. tuberculosis DNA inserted upstream of tnpR was created, and using the double selection, we identified two promoters which are upregulated at low pH. The promoter regions drive the expression of a gene encoding a putative lipase, lipF (Rv3487c), as well as a PE-PGRS gene, Rv0834c, in a pH-dependent manner in both M. smegmatis and M. tuberculosis. The acid inducibility of lipF and Rv0834c was independent of the stress response sigma factor, SigF, as acid induction of the two genes in an M. tuberculosis sigF mutant strain was similar to that in the wild-type strain. No induction of lipF or Rv0834c was observed during infection of J774 murine macrophages, an observation which is in agreement with previous reports on the failure of phagosomes containing M. tuberculosis to acidify.
Collapse
Affiliation(s)
- Beatrice Saviola
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|
28
|
Abstract
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.
Collapse
Affiliation(s)
- John A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
29
|
Abstract
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3' end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3' end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3' end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
30
|
Serre MC, Letzelter C, Garel JR, Duguet M. Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem 2002; 277:16758-67. [PMID: 11875075 DOI: 10.1074/jbc.m200707200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SSV1 is a virus infecting the extremely thermophilic archaeon Sulfolobus shibatae. The viral-encoded integrase is responsible for site-specific integration of SSV1 into its host genome. The recombinant enzyme was expressed in Escherichia coli, purified to homogeneity, and its biochemical properties investigated in vitro. We show that the SSV1 integrase belongs to the tyrosine recombinases family and that Tyr(314) is involved in the formation of a 3'-phosphotyrosine intermediate. The integrase cleaves both strands of a synthetic substrate in a temperature-dependent reaction, the cleavage efficiency increasing with temperature. A discontinuity was observed in the Arrhenius plot above 50 degrees C, suggesting that a conformational transition may occur in the integrase at this temperature. Analysis of cleavage time course suggested that noncovalent binding of the integrase to its substrate is rate-limiting in the cleavage reaction. The cleavage positions were localized on each side of the anticodon loop of the tRNA gene where SSV1 integration takes place. Finally, the SSV1 integrase is able to cut substrates harboring mismatches in the binding site. For the cleavage step, the chemical nature of the base in position -1 of cleavage seems to be more important than its pairing to the opposite strand.
Collapse
Affiliation(s)
- Marie-Claude Serre
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS Bat. 34, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
31
|
Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866-75. [PMID: 11842097 PMCID: PMC100330 DOI: 10.1093/nar/30.4.866] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most classical integrases of prokaryotic genetic elements specify integration into tRNA or tmRNA genes. Sequences shared between element and host integration sites suggest that crossover can occur at any of three sublocations within a tRNA gene, two with flanking symmetry (anticodon-loop and T-loop tDNA) and the third at the asymmetric 3' end of the gene. Integrase phylogeny matches this classification: integrase subfamilies use exclusively either the symmetric sublocations or the asymmetric sublocation, although tRNA genes of several different aminoacylation identities may be used within any subfamily. These two familial sublocation preferences imply two modes by which new integration site usage evolves. The tmRNA gene has been adopted as an integration site in both modes, and its distinctive structure imposes some constraints on proposed evolutionary mechanisms.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
32
|
Semsey S, Blaha B, Köles K, Orosz L, Papp PP. Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 2002; 184:177-82. [PMID: 11741858 PMCID: PMC134759 DOI: 10.1128/jb.184.1.177-182.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Institute of Genetics, Agricultural Biotechnology Center, Gödöllö, Szent-Györgyi A. 4., H-2100, Hungary
| | | | | | | | | |
Collapse
|
33
|
Peña CE, Kahlenberg JM, Hatfull GF. Assembly and activation of site-specific recombination complexes. Proc Natl Acad Sci U S A 2000; 97:7760-5. [PMID: 10869430 PMCID: PMC16618 DOI: 10.1073/pnas.140014297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific recombination is responsible for a broad range of biological phenomena, including DNA inversion, resolution of transposition intermediates, and the integration and excision of bacteriophage genomes. Integration of mycobacteriophage L5 is catalyzed by a phage-encoded integrase with recombination occurring between specific attachment sites on the phage and mycobacterial chromosomes (attP and attB, respectively). Although some site-specific recombination systems simply involve binding of the recombinase to the sites of strand exchange, synapsis, and recombination, phage systems typically require the assembly of higher-order structures within which the recombinational potential of integrase is activated. The requirement for these structures derives from the necessity to regulate the directionality of recombination-either integration or excision-which must be closely coordinated with other aspects of the phage growth cycles. We show herein that there are multiple pathways available for the assembly of L5 recombination complexes, including the early synapsis of the attP and attB DNAs. This process is in contrast to the model for lambda integration and illustrates the different usage of molecular machineries to accomplish the same biological outcome.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
34
|
Abstract
The well-characterized mycobacteriophage L5 forms stable lysogens in Mycobacterium smegmatis. Establishment of lysogeny involves integration of the phage genome into the chromosome of its mycobacterial hosts through an integrase-mediated site-specific recombination event. As L5 lysogens spontaneously generate free phage particles, prophage excision must also occur, although an L5 excisionase gene had not been identified. We show here that L5 gene 36 encodes the phage excisionase and is a small, heat-stable 56-amino-acid protein that strongly stimulates excisive recombination both in vivo and in vitro. The ability to manipulate the highly directional phage integration and excision reactions will provide powerful tools for the introduction, curing and recovery of foreign genes in recombinant mycobacterial strains.
Collapse
Affiliation(s)
- J A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
35
|
Auvray F, Coddeville M, Ordonez RC, Ritzenthaler P. Unusual structure of the attB site of the site-specific recombination system of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 1999; 181:7385-9. [PMID: 10572145 PMCID: PMC103704 DOI: 10.1128/jb.181.23.7385-7389.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.
Collapse
Affiliation(s)
- F Auvray
- Laboratoire de Microbiologie et de Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|
36
|
Stolt P, Zhang Q, Ehlers S. Identification of promoter elements in mycobacteria: mutational analysis of a highly symmetric dual promoter directing the expression of replication genes of the Mycobacterium plasmid pAL5000. Nucleic Acids Res 1999; 27:396-402. [PMID: 9862957 PMCID: PMC148192 DOI: 10.1093/nar/27.2.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 120 bp origin of replication (ori) for the Mycobacterium plasmid pAL5000 has been shown to comprise the binding sites for the replication protein RepB as well as the start site of transcription for the repA and repB genes, encoding the replication proteins RepA and RepB. In this work it is demonstrated that a third gene product, Rap, is involved in replication in addition to the previously described proteins. Mycobacterium smegmatis cells transformed with replicons carrying the rap gene recover markedly faster upon electroporation than those transformed with the minimal replicon, which lacks rap. The rap gene, oppositely orientated to repA/B, was shown to be transcribed from a promoter orientated back-to-back to and overlapping the repA/B promoter. As a consequence of the extensive dyad symmetry in this region the two promoters share several elements, most of which are situated inside the high-affinity RepB-binding motif in the ori. Transcription of rap runs through the low-affinity RepB-binding site, which is part of the ori and necessary for replication. Both promoters were shown to be repressed by RepB. These divergent promoters were studied through site-specific mutagenesis in a xylE reporter gene assay. The analysis furnished evidence supporting the existence of a distal as well as a proximal element in mycobacterial promoters.
Collapse
Affiliation(s)
- P Stolt
- Division of Molecular Infection Biology, Research Centre Borstel, Parkallee 22, D-23845 Borstel, Germany.
| | | | | |
Collapse
|
37
|
Peña CE, Kahlenberg JM, Hatfull GF. Protein-DNA complexes in mycobacteriophage L5 integrative recombination. J Bacteriol 1999; 181:454-61. [PMID: 9882658 PMCID: PMC93398 DOI: 10.1128/jb.181.2.454-461.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate mycobacteriophage L5 integrates site specifically into the genomes of Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium bovis bacillus Calmette-Guérin. This integrative recombination event occurs between the phage L5 attP site and the mycobacterial attB site and requires the phage-encoded integrase and mycobacterial-encoded integration host factor mIHF. Here we show that attP, Int-L5, and mIHF assemble into a recombinationally active complex, the intasome, which is capable of attB capture and formation of products. The arm-type integrase binding sites within attP play specialized roles in the formation of specific protein-DNA architectures; the intasome is constructed by the formation of intramolecular integrase bridges between one pair of sites, P4-P5, and the attP core, while an additional pair of sites, P1-P2, is required for interaction with attB.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
38
|
Peña CE, Stoner J, Hatfull GF. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene X 1998; 225:143-51. [PMID: 9931474 DOI: 10.1016/s0378-1119(98)00490-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Mycobacteriophage D29 is a lytic phage that infects both fast- and slow-growing species of the mycobacteria. D29 forms clear plaques on lawns of Mycobacterium smegmatis and Mycobacterium bovis bacille Calmette-Guérin (BCG) in which a very high proportion of infected cells are killed. However, genomic analysis of D29 demonstrates that it is a close relative of the temperate mycobacteriophage L5, and is presumably a non-temperate derivative of a temperate parent. The D29 genome encodes a putative integrase protein with a primary amino acid sequence similar to that of the L5 integrase; the corresponding int genes fall in colinear positions within the D29 and L5 genomes, immediately flanking and transcribed away from their associated attP sites. We show here that the D29 integrase is functional and catalyzes integrative recombination between the D29 attP site and the M. smegmatis attB site in vitro in an mIHF-dependent manner. D29 integrase also mediates recombination between the L5 attP site and attB DNA and, reciprocally, L5 integrase catalyzes recombination with D29 attP DNA. However, in both in-vitro and in-vivo assays, the D29-encoded integrase recombines the D29 attP more efficiently than the L5 attP, and vice versa, suggesting that each integration system has evolved a degree of specificity of attP recognition. We also present the sequences of the putative attP site and integrase protein of the cryptic prophage-like element phiRv2, and compare them to those of mycobacteriophages L5 and D29.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
39
|
Freitas-Vieira A, Anes E, Moniz-Pereira J. The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3397-3406. [PMID: 9884232 DOI: 10.1099/00221287-144-12-3397] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic determinants of the temperate mycobacteriophage Ms6 required for chromosomal integration were identified. DNA sequence analysis of an attP-containing fragment revealed an ORF encoding a protein of 372 amino acid residues with a C-terminus similar to other conserved C-terminal regions typical of the phage integrase family. Comparison of the sequences of attP, attB and bacteria-prophage junctions attL and attR showed a 26 bp common core sequence, where recombination takes place, near the 5' end of the integrase gene. Nucleotide sequence analysis of the attB chromosomal region showed that the core site overlaps the 3' end of the tRNA(Ala) gene. An integration-proficient plasmid vector was constructed and efficiently inserted at the tRNA(Ala) gene of Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Ra. It was demonstrated that Ms6 and D29 integrative systems can be used in conjunction for inserting genes at multiple loci. The site-specific integration system of mycobacteriophage Ms6 is a new tool for mycobacterial genetic analysis and is poorly related to those of the L5 bacteriophage family.
Collapse
|
40
|
Peña CE, Kahlenberg JM, Hatfull GF. The role of supercoiling in mycobacteriophage L5 integrative recombination. Nucleic Acids Res 1998; 26:4012-8. [PMID: 9705513 PMCID: PMC147811 DOI: 10.1093/nar/26.17.4012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome of temperate mycobacteriophage L5 integrates into the chromosomes of its hosts, including Mycobacterium smegmatis , Mycobacterium tuberculosis and bacille Calmette-Guérin. This integrase-mediated site-specific recombination reaction occurs between the phage attP site and the mycobacterial attB site and requires the mycobacterial integration host factor. Here we examine the role of supercoiling in this reaction and show that integration is stimulated by DNA supercoiling but that supercoiling of either the attP or the attB substrate enhances recombination. Supercoiling thus facilitates a post-synaptic recombination event. We also show that, while supercoiling is not required for the production of a recombinagenic intasome, a mutant attP DNA deficient in binding of the host factor acquires a dependence on supercoiling for intasome formation and recombination.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
41
|
Mahenthiralingam E, Marklund BI, Brooks LA, Smith DA, Bancroft GJ, Stokes RW. Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals No essential role for the protein in the growth and virulence of Mycobacterium intracellulare. Infect Immun 1998; 66:3626-34. [PMID: 9673242 PMCID: PMC108395 DOI: 10.1128/iai.66.8.3626-3634.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/1997] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
The mycobacterial 19-kilodalton antigen (19Ag) is a highly expressed, surface-associated glycolipoprotein which is immunodominant in infected patients and has little homology with other known proteins. To investigate the pathogenic significance of the 19Ag, site-directed mutagenesis of the Mycobacterium intracellulare 19Ag gene was carried out by using a suicide vector-based strategy. Allelic replacement of the 19Ag gene of a mouse-avirulent M. intracellulare strain, 1403, was achieved by double-crossover homologous recombination with a gentamicin resistance gene-mutated allele. Unfortunately, an isogenic 19Ag was not achievable in the mouse-virulent strain, D673. However, a 19Ag mutant was successfully constructed in M. intracellulare FM1, a chemically mutagenized derivative of strain D673. FM1 was more amenable to genetic manipulation and susceptible to site-directed mutagenesis of the 19Ag gene yet retained the virulent phenotype of the parental strain. No deleterious effects of 19Ag gene mutation were observed during in vitro growth of M. intracellulare. Virulence assessment of the isogenic 19Ag mutants in a mouse infection model demonstrated that the antigen plays no essential role in the growth of M. intracellulare in vivo. Site-directed mutagenesis of the 19Ag gene demonstrated that it plays no essential role in growth and pathogenicity of M. intracellulare; however, the exact nature of its biological function remains unknown.
Collapse
Affiliation(s)
- E Mahenthiralingam
- Division of Infectious and Immunological Diseases, B.C. Children's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Ribeiro G, Viveiros M, David HL, Costa JV. Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2701-2708. [PMID: 9274023 DOI: 10.1099/00221287-143-8-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mycobacteriophage D29 DNA fragment cloned in pRM64, a shuttle plasmid that transforms Mycobacterium smegmatis, was sequenced. The determined sequence was 2592 nucleotides long and had a mean G+C content of 63.7 mol%, similar to that of mycobacterial DNA. Four ORFs were identified: one with strong homology to dCMP deaminase genes; one homologous to mycobacteriophage L5 gene 36, whose function is unknown; one encoding a possible excisase; and one encoding an integrase. The intergenic region between the putative excisase gene and the integrase gene had a lower than average G+C content and showed the presence of the same attP core sequence as mycobacteriophage L5. Transformation experiments using subclones of pRM64 indicated that the integrase gene and all the intergenic region were essential for stable transformation. A subclone containing the integrase gene and the core attP sequence was able to transform but recombinants were highly unstable. Southern analysis of total DNA from cells transformed with pRM64 and its derivatives showed that all the plasmids were integrated at one specific site of the bacterial chromosome. A recombinant exhibiting a high level of resistance to the selective drug kanamycin had two plasmids integrated at different sites. These results demonstrated that the D29 sequences contained in pRM64 were integrative, indicating that the generally hold view of D29 as a virulent phage must be reviewed.
Collapse
Affiliation(s)
- Graça Ribeiro
- Laboratory of Molecular Virology, Gulbenkian Institute of Science, Apartado 14, P-2781 Oeiras Codex, Portugal
| | - Miguel Viveiros
- Department of Microbiology and Centre of Studies of Malaria and Other Tropical Diseases, Institute of Hygiene and Tropical Medicine, R. Junqueira 96, 1300 Lisboa, Portugal
| | - H L David
- Department of Microbiology and Centre of Studies of Malaria and Other Tropical Diseases, Institute of Hygiene and Tropical Medicine, R. Junqueira 96, 1300 Lisboa, Portugal
| | - João V Costa
- Laboratory of Molecular Virology, Gulbenkian Institute of Science, Apartado 14, P-2781 Oeiras Codex, Portugal
| |
Collapse
|
43
|
Peña CE, Lee MH, Pedulla ML, Hatfull GF. Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol 1997; 266:76-92. [PMID: 9054972 DOI: 10.1006/jmbi.1996.0774] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lysogenization of mycobacteriophage L5 involves integration of the phage genome into the Mycobacterium smegmatis chromosome. Integration occurs by a site-specific recombination event between a phage attachment site, attP, and a bacterial attachment site, attB, which is catalyzed by the phage-encoded integrase protein. DNase I footprinting reveals that L5 integrase binds to two types of sites within attP which span an unexpectedly large region of 413 bp: seven arm-type sites (P1 to P7) each of which correspond to a consensus sequence 5'-TGCaaCtcYy, and core-type sites at the points of strand exchange. Mutational analyses indicate that not all of the arm-type sites are required for integration, and that the P3 site and the rightmost pair of sites (P6 and P7) are dispensable for integration. We show that a 252 bp segment of attP DNA is sufficient for efficient integrative recombination and that int can be provided in trans for simple and efficient transformation of the mycobacteria.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
44
|
Pedulla ML, Lee MH, Lever DC, Hatfull GF. A novel host factor for integration of mycobacteriophage L5. Proc Natl Acad Sci U S A 1996; 93:15411-6. [PMID: 8986825 PMCID: PMC26418 DOI: 10.1073/pnas.93.26.15411] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1996] [Accepted: 10/24/1996] [Indexed: 02/03/2023] Open
Abstract
Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase-mIHF-attP intasome complexes.
Collapse
Affiliation(s)
- M L Pedulla
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|