1
|
Li Q, Zhang H, Zhang L, Chen S. Functional analysis of multiple nifB genes of Paenibacillus strains in synthesis of Mo-, Fe- and V-nitrogenases. Microb Cell Fact 2021; 20:139. [PMID: 34281551 PMCID: PMC8287671 DOI: 10.1186/s12934-021-01629-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. Conclusions The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01629-9.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, and College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, and College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Two-Stage Continuous Conversion of Carbon Monoxide to Ethylene by Whole Cells of Azotobacter vinelandii. Appl Environ Microbiol 2020; 86:AEM.00446-20. [PMID: 32198172 DOI: 10.1128/aem.00446-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Azotobacter vinelandii is an obligate aerobic diazotroph with a verified transient ability to reduce carbon monoxide to ethylene by its vanadium nitrogenase. In this study, we implemented an industrially relevant continuous two-stage stirred-tank system for in vivo biotransformation of a controlled supply of air enriched with 5% carbon monoxide to 302 μg ethylene g-1 glucose consumed. To attain this value, the process required overcoming critical oxygen limitations during cell proliferation while simultaneously avoiding the A. vinelandii respiratory protection mechanism that negatively impacts in vivo nitrogenase activity. Additionally, process conditions allowed the demonstration of carbon monoxide's solubility as a reaction-limiting factor and a competitor with dinitrogen for the vanadium nitrogenase active site, implying that excess intracellular carbon monoxide could lead to a cessation of cell proliferation and ethylene formation as shown genetically using a new strain of A. vinelandii deficient in carbon monoxide dehydrogenase.IMPORTANCE Ethylene is an essential commodity feedstock used for the generation of a variety of consumer products, but its generation demands energy-intensive processes and is dependent on nonrenewable substrates. This work describes a continuous biological method for investigating the nitrogenase-mediated carbon monoxide reductive coupling involved in ethylene production using whole cells of Azotobacter vinelandii If eventually adopted by industry, this technology has the potential to significantly reduce the total energy input required and the ethylene recovery costs, as well as decreasing greenhouse gas emissions associated with current production strategies.
Collapse
|
3
|
Demtröder L, Pfänder Y, Masepohl B. Rhodobacter capsulatus AnfA is essential for production of Fe-nitrogenase proteins but dispensable for cofactor biosynthesis and electron supply. Microbiologyopen 2020; 9:1234-1246. [PMID: 32207246 PMCID: PMC7294313 DOI: 10.1002/mbo3.1033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/07/2023] Open
Abstract
The photosynthetic α‐proteobacterium Rhodobacter capsulatus reduces and thereby fixes atmospheric dinitrogen (N2) by a molybdenum (Mo)‐nitrogenase and an iron‐only (Fe)‐nitrogenase. Differential expression of the structural genes of Mo‐nitrogenase (nifHDK) and Fe‐nitrogenase (anfHDGK) is strictly controlled and activated by NifA and AnfA, respectively. In contrast to NifA‐binding sites, AnfA‐binding sites are poorly defined. Here, we identified two highly similar AnfA‐binding sites in the R. capsulatus anfH promoter by studying the effects of promoter mutations on in vivo anfH expression and in vitro promoter binding by AnfA. Comparison of the experimentally determined R. capsulatus AnfA‐binding sites and presumed AnfA‐binding sites from other α‐proteobacteria revealed a consensus sequence of dyad symmetry, TAC–N6–GTA, suggesting that AnfA proteins bind their target promoters as dimers. Chromosomal replacement of the anfH promoter by the nifH promoter restored anfHDGK expression and Fe‐nitrogenase activity in an R. capsulatus strain lacking AnfA suggesting that AnfA is required for AnfHDGK production, but dispensable for biosynthesis of the iron‐only cofactor and electron delivery to Fe‐nitrogenase, pathways activated by NifA. These observations strengthen our model, in which the Fe‐nitrogenase system in R. capsulatus is largely integrated into the Mo‐nitrogenase system.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Demtröder L, Pfänder Y, Schäkermann S, Bandow JE, Masepohl B. NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. Microbiologyopen 2019; 8:e921. [PMID: 31441241 PMCID: PMC6925177 DOI: 10.1002/mbo3.921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
Rhodobacter capsulatus fixes atmospheric nitrogen (N2) by a molybdenum (Mo)‐nitrogenase and a Mo‐free iron (Fe)‐nitrogenase, whose production is induced or repressed by Mo, respectively. At low nanomolar Mo concentrations, both isoenzymes are synthesized and contribute to nitrogen fixation. Here we examined the regulatory interplay of the central transcriptional activators NifA and AnfA by proteome profiling. As expected from earlier studies, synthesis of the structural proteins of Mo‐nitrogenase (NifHDK) and Fe‐nitrogenase (AnfHDGK) required NifA and AnfA, respectively, both of which depend on the alternative sigma factor RpoN to activate expression of their target genes. Unexpectedly, NifA was found to be essential for the synthesis of Fe‐nitrogenase, electron supply to both nitrogenases, biosynthesis of their cofactors, and production of RpoN. Apparently, RpoN is the only NifA‐dependent factor required for target gene activation by AnfA, since plasmid‐borne rpoN restored anfH transcription in a NifA‐deficient strain. However, plasmid‐borne rpoN did not restore Fe‐nitrogenase activity in this strain. Taken together, NifA requirement for synthesis and activity of both nitrogenases suggests that Fe‐nitrogenase functions as a complementary nitrogenase rather than an alternative isoenzyme in R. capsulatus.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Poza-Carrión C, Jiménez-Vicente E, Navarro-Rodríguez M, Echavarri-Erasun C, Rubio LM. Kinetics of Nif gene expression in a nitrogen-fixing bacterium. J Bacteriol 2014; 196:595-603. [PMID: 24244007 DOI: 10.1128/jb.11942-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.
Collapse
Affiliation(s)
- César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Abstract
Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.
Collapse
|
7
|
Martínez-Noël G, Curatti L, Hernandez JA, Rubio LM. NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii. Mol Microbiol 2011; 79:1182-93. [PMID: 21231969 PMCID: PMC3104958 DOI: 10.1111/j.1365-2958.2011.07540.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle.
Collapse
Affiliation(s)
- Giselle Martínez-Noël
- Fundación IMDEA Energía, Centro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón 28223 Madrid, Spain
| | - Leonardo Curatti
- Centro de Investigaciones Biológicas, FIBA, Mar del Plata, Argentina and Centro de Estudios de Biodiversidad y Biotecnología de Mar del Plata, CONICET, Argentina
| | - Jose A. Hernandez
- Department of Biochemistry, AZCOM, Midwestern University, Glendale, AZ 85308, USA
| | - Luis M. Rubio
- Fundación IMDEA Energía, Centro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón 28223 Madrid, Spain
| |
Collapse
|
8
|
Dos Santos PC, Dean DR. Co-ordination and fine-tuning of nitrogen fixation in Azotobacter vinelandii. Mol Microbiol 2011; 79:1132-5. [DOI: 10.1111/j.1365-2958.2011.07541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Theodorou EC, Theodorou MC, Samali MN, Kyriakidis DA. Activation of the AtoSC two-component system in the absence of the AtoC N-terminal receiver domain in E. coli. Amino Acids 2010; 40:421-30. [DOI: 10.1007/s00726-010-0652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
10
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
11
|
Lei S, Pulakat L, Gavini N. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium. Biochem Biophys Res Commun 1999; 264:186-90. [PMID: 10527862 DOI: 10.1006/bbrc.1999.1507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azotobacter is a diazotrophic bacterium that harbors three genetically distinct nitrogenases referred to as nif, vnf, and anf systems. The nifM is an accessory gene located in the nif gene cluster and is transcriptionally regulated by the NifA. However, Azotobacter mutants that lack NifA are known to synthesize functional NifM and this accessory protein is known to be needed for the activity of nitrogenase-2 and nitrogenase-3. To determine how the transcription of nifM is regulated when Azotobacter is grown under conditions in which nitrogenase-2 or nitrogenase-3 is expressed, we generated an Azotobacter vinelandii strain that carries a nifM:lacZ-kanamycin resistance gene cassette in its chromosome. In this strain the nifM open reading frame was disrupted by the presence of a lacZ-kanamycin resistance gene cassette so that it could not produce active NifM. Moreover, the lacZ gene was placed under the transcriptional control elements of the nifM gene so that the lacZ expression could be used as a marker to determine the extent of expression of the nifM gene under different growth conditions. Our results show that this strain was unable to grow in Burk's nitrogen-free medium supplemented with either molybdenum or vanadium or lacking both metals suggesting that in the absence of functional NifM none of the nitrogenases were active. It was also found that the nifM expression was differentially regulated when the A. vinelandii cells were grown under conditions that activate nitrogenase-2 and nitrogenase-3, as determined by liquid beta-galactosidase activity measurements. These results suggest that the transcriptional activators, VnfA and AnfA, may regulate the nifM expression.
Collapse
Affiliation(s)
- S Lei
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA
| | | | | |
Collapse
|
12
|
Premakumar R, Pau RN, Mitchenall LA, Easo M, Bishop PE. Regulation of the transcriptional activators AnfA and VnfA by metals and ammonium in Azotobacter vinelandii. FEMS Microbiol Lett 1998; 164:63-8. [PMID: 9675852 DOI: 10.1111/j.1574-6968.1998.tb13068.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Transcription of the genes encoding molybdenum (Mo)-independent nitrogenases 2 and 3 of Azotobacter vinelandii requires the activators VnfA and AnfA, respectively. The effect of NH4+, Mo, or V (vanadium) was tested on the expression of vnfA-lacZ and anfA-lacZ transcriptional fusions. Mo repressed expression of both fusions whereas NH4+ and V repressed the anfA-lacZ fusion, but not the vnfA-lacZ fusion. Thus the repressive effect on transcription of the anfHDGKOR operon by NH4+, Mo, or V is mediated through their effect on transcription of anfA and the repressive effect of Mo on the vnfHFd and vnfDGK operons is mediated through Mo repression of vnfA transcription. Mo-dependent repression of anfA transcription is influenced but not entirely mediated by the Mo-responsive regulator ModE.
Collapse
Affiliation(s)
- R Premakumar
- U.S. Department of Agriculture, and Department of Microbiology, North Carolina State University, Raleigh 27695-7615, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Type IV pili are required for social gliding motility in Myxococcus xanthus. In this work, the expression of pilin (the pilA gene product) during vegetative growth and fruiting-body development was examined. A polyclonal antibody against the pilA gene product (prepilin) was prepared, along with a pilA-lacZ fusion, and was used to assay expression of pilA in M. xanthus in different mutant backgrounds. pilA expression required the response regulator pilR but was negatively regulated by the putative sensor kinase pilS. pilA expression did not require pilB, pilC, or pilT. pilA was also autoregulated; a mutation which altered an invariant glutamate five residues from the presumed prepilin processing site eliminated this autoregulation, as did a deletion of the pilA gene. Primer extension and S1 nuclease analysis identified a sigma54 promoter upstream of pilA, consistent with the homology of pilR to the NtrC family of response regulators. Expression of pilA was found to be developmentally regulated; however, the timing of this expression pattern was not entirely dependent on pilS or pilR. Finally, pilA expression was induced by high nutrient concentrations, an effect that was also not dependent on pilS or pilR.
Collapse
Affiliation(s)
- S S Wu
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
14
|
Thiel T. Isolation and characterization of the VnfEN genes of the cyanobacterium Anabaena variabilis. J Bacteriol 1996; 178:4493-9. [PMID: 8755876 PMCID: PMC178215 DOI: 10.1128/jb.178.15.4493-4499.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The filamentous cyanobacterium Anabaena variabilis fixes nitrogen in the presence of vanadium (V) and in the absence of molybdenum (Mo), using a V-dependent nitrogenase (V-nitrogenase) encoded by the vnfDGK genes. Downstream from these genes are two genes that are similar to the vnfEN genes of Azotobacter vinelandii. Like the vnfDGK genes, the vnfEN genes were transcribed in the absence of Mo, whether or not V was present. A mutant with an insertion in the vnfN gene lacked V-nitrogenase activity; thus, the vnfEN genes were essential for the V-nitrogenase system in A. variabilis. Growth and acetylene reduction assays with wild-type and mutant strains suggested that the V-nitrogenase reduced dinitrogen better than acetylene. The similarity of the vnfEN genes of A. variabilis and A. vinelandii was not strong. The vnfEN genes of A. variabilis showed greater similarity to the vnfDK genes just upstream than to the A. vinelandii vnfEN genes. Sequence comparisons provide support for the idea that if the vnf genes were transferred laterally among bacterial strains, the vnf cluster was not transferred intact. It appears likely that the structural genes were transferred before a duplication event led to the evolution of the vnfEN genes independently in the two strains. The divergence of the vnfEN genes from the vnfDK genes suggests that this duplication, and hence the transfer of vnf genes, was an ancient event.
Collapse
Affiliation(s)
- T Thiel
- Department of Biology, University of Missouri, St. Louis, 63131, USA
| |
Collapse
|