1
|
Nanda B, Bhowmick J, Varadarajan R, Sarma SP. Backbone assignment of CcdB_G100T toxin from E.coli in complex with the toxin binding C-terminal domain of its cognate antitoxin CcdA. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:285-292. [PMID: 39276296 DOI: 10.1007/s12104-024-10201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The CcdAB system expressed in the E.coli cells is a prototypical example of the bacterial toxin-antitoxin (TA) systems that ensure the survival of the bacterial population under adverse environmental conditions. The solution and crystal structures of CcdA, CcdB and of CcdB in complex with the toxin-binding C-terminal domain of CcdA have been reported. Our interest lies in the dynamics of CcdB-CcdA complex formation. Solution NMR studies have shown that CcdB_G100T, in presence of saturating concentrations of CcdA-c, a truncated C-terminal fragment of CcdA exists in equilibrium between two major populations. Sequence specific backbone resonance assignments of both equilibrium forms of the ~ 27 kDa complex, have been obtained from a suite of triple resonance NMR experiments acquired on 2H, 13C, 15N enriched samples of CcdB_G100T. Analysis of 1H, 13Cα, 13Cβ secondary chemical shifts, shows that both equilibrium forms of CcdB_G100T have five beta-strands and one alpha-helix as the major secondary structural elements in the tertiary structure. The results of these studies are presented below.
Collapse
Affiliation(s)
- Bahnikana Nanda
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Jayantika Bhowmick
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
2
|
Chen A, Dong Y, Jiang H, Wei M, Ren Y, Zhang J. Application of plasmid stabilization systems for heterologous protein expression in Escherichia coli. Mol Biol Rep 2024; 51:939. [PMID: 39196367 DOI: 10.1007/s11033-024-09881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Plasmids are the most commonly used vectors for heterologous protein expression in Escherichia coli. However, the plasmid copy number decreases with the segregational instability, which inevitably leads to a decrease in the yield of heterologous protein. METHODS AND RESULTS In this study, plasmid stabilization systems were used to enhance the expression level of heterologous proteins in E. coli. With the investigation of protein expression level, biomass and plasmid retention rate in different plasmid stabilization systems, the hok/sok system had the greatest potential on plasmid stabilization. In order to further investigate the molecular mechanism of hok/sok system, the structure of the binding region of hok mRNA and sok antisense RNA was modified based on the minimum free energy of mRNA, which resulted in the reduction of the binding efficiency of hok mRNA and sok asRNA, and then the toxicity of the Hok protein led to the decreased viability of the host cells. Finally, the hok/sok plasmid stabilization system was testified in 5 L fermenter, and the plasmid retention rate and protein expression level were significantly increased without the addition of antibiotics. CONCLUSIONS This study lays a solid foundation for a deeper understanding of the mechanism of the hok/sok plasmid stabilization system and improving the productivity of heterologous protein in E. coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Gordils-Valentin L, Ouyang H, Qian L, Hong J, Zhu X. Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Commun Biol 2024; 7:499. [PMID: 38664513 PMCID: PMC11045733 DOI: 10.1038/s42003-024-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Lois Gordils-Valentin
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US
| | - Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, 77843, TX, US
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US.
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US.
| |
Collapse
|
4
|
Girardin Y, Galle M, Vanden Abeele Y, De Greve H, Loris R. Evaluation of different strategies to produce Vibrio cholerae ParE2 toxin. Protein Expr Purif 2024; 215:106403. [PMID: 37977515 DOI: 10.1016/j.pep.2023.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Toxin-antitoxin (TA) systems are small operons that are omnipresent in bacteria and archaea with suggested roles in stabilization of mobile genetic elements, bacteriophage protection, stress response and possibly persister formation. A major bottleneck in the study of TA toxins is the production of sufficient amounts of well-folded, functional protein. Here we examine alternative approaches for obtaining the VcParE2 toxin from Vibrio cholerae. VcParE2 can be successfully produced via bacterial expression in presence of its cognate antitoxin VcParD2, followed by on-column unfolding and refolding. Alternatively, the toxin can be expressed in Spodoptera frugiperda (Sf9) insect cells. The latter requires disruption of the VcparE2 gene via introduction of an insect cell intron. Both methods provide protein with similar structural and functional characteristics.
Collapse
Affiliation(s)
- Yana Girardin
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Margot Galle
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yaël Vanden Abeele
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henri De Greve
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Remy Loris
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
5
|
Singh A, Lankapalli AK, Mendem SK, Semmler T, Ahmed N. Unraveling the evolutionary dynamics of toxin-antitoxin systems in diverse genetic lineages of Escherichia coli including the high-risk clonal complexes. mBio 2024; 15:e0302323. [PMID: 38117088 PMCID: PMC10790755 DOI: 10.1128/mbio.03023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Large-scale genomic studies of E. coli provide an invaluable opportunity to understand how genomic fine-tuning contributes to the transition of bacterial lifestyle from being commensals to mutualists or pathogens. Within this context, through machine learning-based studies, it appears that TA systems play an important role in the classification of high-risk clonal lineages and could be attributed to their epidemiological success. Due to these profound indications and assumptions, we attempted to provide unique insights into the ordered world of TA systems at the population level by investigating the diversity and evolutionary patterns of TA genes across 19 different STs of E. coli. Further in-depth analysis of ST-specific TA structures and associated genetic coordinates holds the potential to elucidate the functional implications of TA systems in bacterial cell survival and persistence, by and large.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | - Aditya Kumar Lankapalli
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Suresh Kumar Mendem
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
6
|
Garcia-Rodriguez G, Girardin Y, Kumar Singh R, Volkov AN, Van Dyck J, Muruganandam G, Sobott F, Charlier D, Loris R. Toxin:antitoxin ratio sensing autoregulation of the Vibrio cholerae parDE2 module. SCIENCE ADVANCES 2024; 10:eadj2403. [PMID: 38181072 PMCID: PMC10776004 DOI: 10.1126/sciadv.adj2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is regulated in a toxin:antitoxin ratio-dependent manner using a molecular mechanism distinct from other type II TA systems. The repressor of the operon is identified as an assembly with a 6:2 stoichiometry with three interacting ParD2 dimers bridged by two ParE2 monomers. This assembly docks to a three-site operator containing 5'- GGTA-3' motifs. Saturation of this TA complex with ParE2 toxin results in disruption of the interface between ParD2 dimers and the formation of a TA complex of 2:2 stoichiometry. The latter is operator binding-incompetent as it is incompatible with the required spacing of the ParD2 dimers on the operator.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
7
|
Garcia-Rodriguez G, Girardin Y, Volkov AN, Singh RK, Muruganandam G, Van Dyck J, Sobott F, Versées W, Charlier D, Loris R. Entropic pressure controls the oligomerization of the Vibrio cholerae ParD2 antitoxin. Acta Crystallogr D Struct Biol 2021; 77:904-920. [PMID: 34196617 PMCID: PMC8251345 DOI: 10.1107/s2059798321004873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
ParD2 is the antitoxin component of the parDE2 toxin-antitoxin module from Vibrio cholerae and consists of an ordered DNA-binding domain followed by an intrinsically disordered ParE-neutralizing domain. In the absence of the C-terminal intrinsically disordered protein (IDP) domain, V. cholerae ParD2 (VcParD2) crystallizes as a doughnut-shaped hexadecamer formed by the association of eight dimers. This assembly is stabilized via hydrogen bonds and salt bridges rather than by hydrophobic contacts. In solution, oligomerization of the full-length protein is restricted to a stable, open decamer or dodecamer, which is likely to be a consequence of entropic pressure from the IDP tails. The relative positioning of successive VcParD2 dimers mimics the arrangement of Streptococcus agalactiae CopG dimers on their operator and allows an extended operator to wrap around the VcParD2 oligomer.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Frank Sobott
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Abstract
Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. The diversity of their proposed roles, ranging from genomic stabilization and abortive phage infection to stress modulation and antibiotic persistence, in conjunction with the poor understanding of TA system regulation, resulted in the generation of simplistic models, often refuted by contradictory results. This review provides an epistemological and critical retrospective on TA modules and highlights fundamental questions concerning their roles and regulations that still remain unanswered.
Collapse
|
9
|
Reassessing the Role of the Type II MqsRA Toxin-Antitoxin System in Stress Response and Biofilm Formation: mqsA Is Transcriptionally Uncoupled from mqsR. mBio 2019; 10:mBio.02678-19. [PMID: 31848281 PMCID: PMC6918082 DOI: 10.1128/mbio.02678-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are broadly distributed modules whose biological roles remain mostly unknown. The mqsRA system is a noncanonical TA system in which the toxin and antitoxins genes are organized in operon but with the particularity that the toxin gene precedes that of the antitoxin. This system was shown to regulate global processes such as resistance to bile salts, motility, and biofilm formation. In addition, the MqsA antitoxin was shown to be a master regulator that represses the transcription of the csgD, cspD, and rpoS global regulator genes, thereby displaying a pleiotropic regulatory role. Here, we identified two promoters located in the toxin sequence driving the constitutive expression of mqsA, allowing thereby excess production of the MqsA antitoxin compared to the MqsR toxin. Our results show that both antitoxin-specific and operon promoters are not regulated by stresses such as amino acid starvation, oxidative shock, or bile salts. Moreover, we show that the MqsA antitoxin is not a global regulator as suggested, since the expression of csgD, cspD and rpoS is similar in wild-type and ΔmqsRA mutant strains. Moreover, these two strains behave similarly in terms of biofilm formation and sensitivity to oxidative stress or bile salts.IMPORTANCE There is growing controversy regarding the role of chromosomal toxin-antitoxin systems in bacterial physiology. mqsRA is a peculiar toxin-antitoxin system, as the gene encoding the toxin precedes that of the antitoxin. This system was previously shown to play a role in stress response and biofilm formation. In this work, we identified two promoters specifically driving the constitutive expression of the antitoxin, thereby decoupling the expression of antitoxin from the toxin. We also showed that mqsRA contributes neither to the regulation of biofilm formation nor to the sensitivity to oxidative stress and bile salts. Finally, we were unable to confirm that the MqsA antitoxin is a global regulator. Altogether, our data are ruling out the involvement of the mqsRA system in Escherichia coli regulatory networks.
Collapse
|
10
|
Tipping MJ, Gibbs KA. Peer pressure from a Proteus mirabilis self-recognition system controls participation in cooperative swarm motility. PLoS Pathog 2019; 15:e1007885. [PMID: 31323074 PMCID: PMC6682164 DOI: 10.1371/journal.ppat.1007885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/05/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Colonies of the opportunistic pathogen Proteus mirabilis can distinguish self from non-self: in swarming colonies of two different strains, one strain excludes the other from the expanding colony edge. Predominant models characterize bacterial kin discrimination as immediate antagonism towards non-kin cells, typically through delivery of toxin effector molecules from one cell into its neighbor. Upon effector delivery, receiving cells must either neutralize it by presenting a cognate anti-toxin as would a clonal sibling, or suffer cell death or irreversible growth inhibition as would a non-kin cell. Here we expand this paradigm to explain the non-lethal Ids self-recognition system, which stops access to a social behavior in P. mirabilis by selectively and transiently inducing non-self cells into a growth-arrested lifestyle incompatible with cooperative swarming. This state is characterized by reduced expression of genes associated with protein synthesis, virulence, and motility, and also causes non-self cells to tolerate previously lethal concentrations of antibiotics. We show that temporary activation of the stringent response is necessary for entry into this state, ultimately resulting in the iterative exclusion of non-self cells as a swarm colony migrates outwards. These data clarify the intricate connection between non-lethal recognition and the lifecycle of P. mirabilis swarm colonies. A resident of animal intestines, Proteus mirabilis is a major cause of catheter-associated urinary tract infections and can cause recurrent, persistent infections. Swarming, which is a collective behavior that promotes centimeter-scale population migration, is implicated in colonization of bladders and kidneys. A regulatory factor of swarming is kin recognition, which involves the transfer of a self-identity protein from one cell into a physically adjacent neighboring cell. However, how kin recognition regulates swarming was previously unclear. We have now shown a mechanism linking kin recognition, swarm migration, and antibiotics tolerance: cells induce a transient antibiotics-tolerant, persister-like state in adjacent non-identical cells which in turn prevents non-identical cells from continuing to participate in collective swarming. These affected non-identical cells continue to exhibit large-scale gene expression suggesting an active shift into a different expression state. These data provide two key insights for the field. First, kin recognition can be a regulatory mechanism that acts with spatial and temporal precision. Second, induction into an antibiotics-tolerant state, instead of occurring stochastically, can be physically and spatially regulated by neighboring cells. These insights highlight the importance of further developing four-dimensional (time and X-, Y-, Z-axes) model systems for interrogating cell-cell signaling and control in microbial populations.
Collapse
Affiliation(s)
- Murray J. Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Winter AJ, Williams C, Isupov MN, Crocker H, Gromova M, Marsh P, Wilkinson OJ, Dillingham MS, Harmer NJ, Titball RW, Crump MP. The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA. J Biol Chem 2018; 293:19429-19440. [PMID: 30337369 DOI: 10.1074/jbc.ra118.005173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.
Collapse
Affiliation(s)
- Ashley J Winter
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Christopher Williams
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michail N Isupov
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Hannah Crocker
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mariya Gromova
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Philip Marsh
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Oliver J Wilkinson
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Mark S Dillingham
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Nicholas J Harmer
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Matthew P Crump
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom,
| |
Collapse
|
12
|
ClpAP protease is a universal factor that activates the parDE toxin-antitoxin system from a broad host range RK2 plasmid. Sci Rep 2018; 8:15287. [PMID: 30327496 PMCID: PMC6191456 DOI: 10.1038/s41598-018-33726-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The activity of type II toxin-antitoxin systems (TA), which are responsible for many important features of bacterial cells, is based on the differences between toxin and antitoxin stabilities. The antitoxin lability results from bacterial protease activity. Here, we investigated how particular Escherichia coli cytosolic proteases, namely, Lon, ClpAP, ClpXP, and ClpYQ, affect the stability of both the toxin and antitoxin components of the parDE system from the broad host range plasmid RK2. The results of our in vivo and in vitro experiments show that the ParD antitoxin is degraded by the ClpAP protease, and dsDNA stimulates this process. The ParE toxin is not degraded by any of these proteases and can therefore cause growth inhibition of plasmid-free cells after an unequal plasmid distribution during cell division. We also demonstrate that the ParE toxin interaction with ParD prevents antitoxin proteolysis by ClpAP; however, this interaction does not prevent the ClpAP interaction with ParD. We show that ClpAP protease homologs affect plasmid stability in other bacterial species, indicating that ClpAP is a universal activator of the parDE system and that ParD is a universal substrate for ClpAP.
Collapse
|
13
|
Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J. A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue. Synth Syst Biotechnol 2018; 3:196-203. [PMID: 30345405 PMCID: PMC6190513 DOI: 10.1016/j.synbio.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Due to the abuse of antibiotics, antibiotic residues can be detected in both natural environment and various industrial products, posing threat to the environment and human health. Here we describe the design and implementation of an engineered Escherichia coli capable of degrading tetracycline (Tc)-one of the commonly used antibiotics once on humans and now on poultry, cattle and fisheries. A Tc-degrading enzyme, TetX, from the obligate anaerobe Bacteroides fragilis was cloned and recombinantly expressed in E. coli and fully characterized, including its K m and k cat value. We quantitatively evaluated its activity both in vitro and in vivo by UV-Vis spectrometer and LC-MS. Moreover, we used a tetracycline inducible amplification circuit including T7 RNA polymerase and its specific promoter PT7 to enhance the expression level of TetX, and studied the dose-response of TetX under different inducer concentrations. Since the deployment of genetically modified organisms (GMOs) outside laboratory brings about safety concerns, it is necessary to explore the possibility of integrating a kill-switch. Toxin-Antitoxin (TA) systems were used to construct a mutually dependent host-plasmid platform and biocontainment systems in various academic and industrious situations. We selected nine TA systems from various bacteria strains and measured the toxicity of toxins (T) and the detoxifying activity of cognate antitoxins (A) to validate their potential to be used to build a kill-switch. These results prove the possibility of using engineered microorganisms to tackle antibiotic residues in environment efficiently and safely.
Collapse
Affiliation(s)
- Zepeng Mu
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Zhuoning Zou
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Ye Yang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Wenbo Wang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yue Xu
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Jianyi Huang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Ruiling Cai
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Ye Liu
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yajin Mo
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Boyi Wang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yiqun Dang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yongming Li
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yushan Liu
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Yueren Jiang
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Qingyang Tan
- University of Chinese Academy of Sciences Team for iGEM 2016, Beijing, 100049, China
| | - Xiaohong Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Li
- National Laboratory of Biomacromolecules, CAS Center for Biomacromolecules, Beijing, 100101, China
| | - Sha Wei
- National Laboratory of Biomacromolecules, CAS Center for Biomacromolecules, Beijing, 100101, China
| | - Chunbo Lou
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|
15
|
Kang SM, Kim DH, Lee KY, Park SJ, Yoon HJ, Lee SJ, Im H, Lee BJ. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45:8564-8580. [PMID: 28575388 PMCID: PMC5737657 DOI: 10.1093/nar/gkx489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are essential for bacterial persistence under stressful conditions. In particular, Mycobacterium tuberculosis express VapBC TA genes that encode the stable VapC toxin and the labile VapB antitoxin. Under normal conditions, these proteins interact to form a non-toxic TA complex, but the toxin is activated by release from the antitoxin in response to unfavorable conditions. Here, we present the crystal structure of the M. tuberculosis VapBC26 complex and show that the VapC26 toxin contains a pilus retraction protein (PilT) N-terminal (PIN) domain that is essential for ribonuclease activity and that, the VapB26 antitoxin folds into a ribbon-helix-helix DNA-binding motif at the N-terminus. The active site of VapC26 is sterically blocked by the flexible C-terminal region of VapB26. The C-terminal region of free VapB26 adopts an unfolded conformation but forms a helix upon binding to VapC26. The results of RNase activity assays show that Mg2+ and Mn2+ are essential for the ribonuclease activity of VapC26. As shown in the nuclear magnetic resonance spectra, several residues of VapB26 participate in the specific binding to the promoter region of the VapBC26 operon. In addition, toxin-mimicking peptides were designed that inhibit TA complex formation and thereby increase toxin activity, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Young Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hookang Im
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
16
|
Hall AMJ, Gollan B, Helaine S. Toxin–antitoxin systems: reversible toxicity. Curr Opin Microbiol 2017; 36:102-110. [DOI: 10.1016/j.mib.2017.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|
17
|
Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The Chromosomal parDE2 Toxin-Antitoxin System of Mycobacterium tuberculosis H37Rv: Genetic and Functional Characterization. Front Microbiol 2016; 7:886. [PMID: 27379032 PMCID: PMC4906023 DOI: 10.3389/fmicb.2016.00886] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis H37Rv escapes host-generated stresses by entering a dormant persistent state. Activation of toxin-antitoxin modules is one of the mechanisms known to trigger such a state with low metabolic activity. M. tuberculosis harbors a large number of TA systems mostly located within discernible genomic islands. We have investigated the parDE2 operon of M. tuberculosis H37Rv encoding MParE2 toxin and MParD2 antitoxin proteins. The parDE2 locus was transcriptionally active from growth phase till late stationary phase in M. tuberculosis. A functional promoter located upstream of parD2 GTG start-site was identified by 5'-RACE and lacZ reporter assay. The MParD2 protein transcriptionally regulated the P parDE2 promoter by interacting through Arg16 and Ser15 residues located in the N-terminus. In Escherichia coli, ectopic expression of MParE2 inhibited growth in early stages, with a drastic reduction in colony forming units. Live-dead analysis revealed that the reduction was not due to cell death alone but due to formation of viable but non-culturable cells (VBNCs) also. The toxic activity of the protein, identified in the C-terminal residues Glu98 and Arg102, was neutralized by the antitoxin MParD2, both in vivo and in vitro. MParE2 inhibited mycobacterial DNA gyrase and interacted with the GyrB subunit without affecting its ATPase activity. Introduction of parE2 gene in the heterologous M. smegmatis host prevented growth and colony formation by the transformed cells. An M. smegmatis strain containing the parDE2 operon also switched to a non-culturable phenotype in response to oxidative stress. Loss in colony-forming ability of a major part of the MParE2 expressing cells suggests its potential role in dormancy, a cellular strategy for adaptation to environmental stresses. Our study has laid the foundation for future investigations to explore the physiological significance of parDE2 operon in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Biotechnology, TERI University, NewDelhi, India; Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi, India
| | - Nishtha Nayyar
- Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences Bangalore, India
| | - Meenakshi Chawla
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | | | - Rakesh Bhatnagar
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Nirupama Banerjee
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
18
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
19
|
Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 2016; 12:208-14. [DOI: 10.1038/nchembio.2044] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
|
20
|
Abstract
Toxin-antitoxin (TA) systems are small genetic modules formed by a stable toxin and an unstable antitoxin that are widely present in plasmids and in chromosomes of Bacteria and Archaea. Toxins can interfere with cell growth or viability, targeting a variety of key processes. Antitoxin inhibits expression of the toxin, interacts with it, and neutralizes its effect. In a plasmid context, toxins are kept silent by the continuous synthesis of the unstable antitoxins; in plasmid-free cells (segregants), toxins can be activated owing to the faster decay of the antitoxin, and this results in the elimination of these cells from the population (postsegregational killing [PSK]) and in an increase of plasmid-containing cells in a growing culture. Chromosomal TA systems can also be activated in particular circumstances, and the interference with cell growth and viability that ensues contributes in different ways to the physiology of the cell. In this article, we review the conditional activation of TAs in selected plasmidic and chromosomal TA pairs and the implications of this activation. On the whole, the analysis underscores TA interactions involved in PSK and points to the effective contribution of TA systems to the physiology of the cell.
Collapse
|
21
|
Ramisetty BCM, Santhosh RS. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli. FEMS Microbiol Lett 2015; 363:fnv238. [PMID: 26667220 DOI: 10.1093/femsle/fnv238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 01/08/2023] Open
Abstract
Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance.
Collapse
|
22
|
Sterckx YGJ, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. An efficient method for the purification of proteins from four distinct toxin–antitoxin modules. Protein Expr Purif 2015; 108:30-40. [DOI: 10.1016/j.pep.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/27/2014] [Accepted: 01/04/2015] [Indexed: 11/24/2022]
|
23
|
Liang XY, Liang ZC, Zhang Z, Zhou JJ, Liu SY, Tian SL. Construction of a directional T vector for cloning PCR products and expression in Escherichia coli. Plasmid 2015; 79:15-21. [PMID: 25681561 DOI: 10.1016/j.plasmid.2015.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 12/01/2022]
Abstract
In order to clone PCR products and express them effectively in Escherichia coli, a directional cloning system was constructed by generating a T vector based on pQE-30Xa. The vector was prepared by inserting an XcmI cassette containing an endonuclease XcmI site, a kanamycin selective marker, a multiple-cloning-site (MCS) region and an opposite endonuclease XcmI site into the vector pQE-30Xa. The T vector pQE-T with single overhanging dT residues at both 3' ends was obtained by digesting with the restriction enzyme XcmI. For directional cloning, a BamHI site was introduced to the ends of the PCR products. A BamHI site was also located on the multiple cloning site of pQE-T. The PCR products were ligated with pQE-T. The directionally inserted recombinants were distinguished by using BamHI to digest the recombinants because there are two BamHI sites located on the both sides of PCR fragment. In order to identify the T-vector functions, the 14-3-3-ZsGreen and hRBP genes were amplified and a BamHI site was added to the ends of the genes to confirm this vector by ligation with pQE-T. Results showed that the 14-3-3-ZsGreen and hRBP were cloned to the vector pQE-T directly and corresponding proteins were successfully produced. It was here demonstrated that this directional vector is capable of gene cloning and is used to manipulate gene expression very easily. The methodology proposed here involves easy incorporation of the construct into other vectors in various hosts.
Collapse
Affiliation(s)
- Xiu-Yi Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhi-Cheng Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhi Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Jiao-Jiao Zhou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Shi-Yu Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Sheng-Li Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Ruangprasert A, Maehigashi T, Miles SJ, Giridharan N, Liu JX, Dunham CM. Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J Biol Chem 2014; 289:20559-69. [PMID: 24898247 PMCID: PMC4110269 DOI: 10.1074/jbc.m114.573006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
Bacteria encounter environmental stresses that regulate a gene expression program required for adaptation and survival. Here, we report the 1.8-Å crystal structure of the Escherichia coli toxin-antitoxin complex YafQ-(DinJ)2-YafQ, a key component of the stress response. The antitoxin DinJ dimer adopts a ribbon-helix-helix motif required for transcriptional autorepression, and toxin YafQ contains a microbial RNase fold whose proposed active site is concealed by DinJ binding. Contrary to previous reports, our studies indicate that equivalent levels of transcriptional repression occur by direct interaction of either YafQ-(DinJ)2-YafQ or a DinJ dimer at a single inverted repeat of its recognition sequence that overlaps with the -10 promoter region. Surprisingly, multiple YafQ-(DinJ)2-YafQ complexes binding to the operator region do not appear to amplify the extent of repression. Our results suggest an alternative model for transcriptional autorepression that may be novel to DinJ-YafQ.
Collapse
Affiliation(s)
- Ajchareeya Ruangprasert
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatsuya Maehigashi
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J Miles
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Nisha Giridharan
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Julie X Liu
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
25
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
26
|
Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yan X, Gurtler JB, Fratamico PM, Hu J, Juneja VK. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell Biosci 2012. [PMID: 23186337 PMCID: PMC3519753 DOI: 10.1186/2045-3701-2-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND Toxin-antitoxin (TA) systems are commonly found in bacteria and Archaea, and it is the most common mechanism involved in bacterial programmed cell death or apoptosis. Recently, MazF, the toxin component of the toxin-antitoxin module, has been categorized as an endoribonuclease, or it may have a function similar to that of a RNA interference enzyme. RESULTS In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserved motifs in limited subsets of foodborne pathogens and probiotic strains and further provide a molecular basis for the development of engineered/synthetic probiotic strains for the mitigation of foodborne illnesses. Our findings also show that some probiotic strains, as fit as many bacterial foodborne pathogens, can be genetically categorized into three major groups based on phylogenetic analysis of MazF. In each group, potential functional motifs are conserved in phylogenetically distant species, including foodborne pathogens and probiotic strains. CONCLUSION These data provide important knowledge for the identification and computational prediction of functional motifs related to programmed cell death. Potential implications of these findings include the use of engineered probiotic interventions in food or use of a natural probiotic cocktail with specificity for controlling targeted foodborne pathogens.
Collapse
Affiliation(s)
- Xianghe Yan
- Eastern Regional Research Center, Agricultural Research Service, U,S, Department of Agriculture, 600 E, Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | | | | | | | | |
Collapse
|
28
|
Powers LG, Mills HJ, Palumbo AV, Zhang C, Delaney K, Sobecky PA. Introduction of a plasmid-encoded phoA gene for constitutive overproduction of alkaline phosphatase in three subsurface Pseudomonas isolates. FEMS Microbiol Ecol 2012; 41:115-23. [PMID: 19709245 DOI: 10.1111/j.1574-6941.2002.tb00972.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract Three bacterial isolates, Pseudomonas fluorescens F1, Pseudomonas rhodesiae R1 and Pseudomonas veronii V1 were genetically modified by introduction of a plasmid, pJH123, with a phoA hybrid gene that directed constitutive overproduction of the enzyme alkaline phosphatase. The presence of the plasmid in the bacterial hosts elevated extracytoplasmic alkaline phosphatase production from 100- to 820-fold. The growth and survival of the plasmid-bearing hosts in sterilized soil slurries was comparable to parental control strains. In the absence of antibiotic selection, pJH123 was maintained in two of the three hosts (P. fluorescens F1 and P. veronii V1) during incubation in minimal medium. The effects of the genetically enhanced pseudomonads on the liberation of inorganic phosphate (PO(4) (3-)) were determined in sterilized soil slurries following the addition of an organophosphorus compound, glycerol-3-phosphate. A significant accumulation of PO(4) (3-) was measured in soil slurries amended with 10 mM glycerol-3-phosphate and any of the three phosphatase-enhanced pseudomonad isolates. In contrast, soil slurries containing unmodified parental strains did not exhibit significant PO(4) (3-) accumulation. Two of the three enhanced phosphate-liberating strains released sufficient PO(4) (3-) that cell-free supernatants from sterilized soil slurry incubations removed significant amounts of uranium (as much as 69%) from solution.
Collapse
Affiliation(s)
- Leigh G Powers
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
29
|
Barbosa LCB, Garrido SS, Garcia A, Delfino DB, Santos LDN, Marchetto R. Design and synthesis of peptides from bacterial ParE toxin as inhibitors of topoisomerases. Eur J Med Chem 2012; 54:591-6. [PMID: 22749642 DOI: 10.1016/j.ejmech.2012.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/16/2022]
Abstract
Toxin-antitoxin (TA) proteic systems encode a toxin and an antitoxin that regulate the growth and death of bacterial cells under various stress conditions. The ParE protein is a toxin that inhibits DNA gyrase activity and thereby blocks DNA replication. Based on the Escherichia coli ParE structure, a series of linear peptides were designed and synthesized by solid-phase methodology. The ability of the peptides to inhibit the activity of bacterial topoisomerases was investigated. Four peptides (ParELC3, ParELC8, ParELC10 and ParELC12), showed complete inhibition of DNA gyrase supercoiling activity with an IC(100) between 20 and 40 μmol L(-1). In contrast to wild-type ParE, the peptide analogues were able to inhibit the DNA relaxation of topoisomerase IV, another type IIA bacterial topoisomerase, with lower IC(100) values. Interestingly only ParELC12 displayed inhibition of the relaxation activity of human topoisomerase II. Our findings reveal new inhibitors of bacterial topoisomerases and are a good starting point for the development of a new class of antibacterial agents that targets the DNA topoisomerases.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- UNESP - Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Caixa Postal 355, 14800-900 Araraquara, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Maté MJ, Vincentelli R, Foos N, Raoult D, Cambillau C, Ortiz-Lombardía M. Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Res 2011; 40:3245-58. [PMID: 22140099 PMCID: PMC3326315 DOI: 10.1093/nar/gkr1167] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription.
Collapse
Affiliation(s)
- María J Maté
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
31
|
Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 2011; 92:479-97. [PMID: 21904817 PMCID: PMC3189412 DOI: 10.1007/s00253-011-3557-z] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022]
Abstract
DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme.
Collapse
Affiliation(s)
- Frédéric Collin
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|
32
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
33
|
The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II. J Bacteriol 2010; 193:611-9. [PMID: 21115657 DOI: 10.1128/jb.01185-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Three homologues of the plasmid RK2 ParDE toxin-antitoxin system are present in the Vibrio cholerae genome within the superintegron on chromosome II. Here we found that these three loci-two of which have identical open reading frames and regulatory sequences-encode functional toxin-antitoxin systems. The ParE toxins inhibit bacterial division and reduce viability, presumably due to their capacity to damage DNA. The in vivo effects of ParE1/3 mimic those of ParE2, which we have previously demonstrated to be a DNA gyrase inhibitor in vitro, suggesting that ParE1/3 is likewise a gyrase inhibitor, despite its relatively low degree of sequence identity. ParE-mediated DNA damage activates the V. cholerae SOS response, which in turn likely accounts for ParE's inhibition of cell division. Each toxin's effects can be prevented by the expression of its cognate ParD antitoxin, which acts in a toxin-specific fashion both to block toxicity and to repress the expression of its parDE operon. Derepression of ParE activity in ΔparAB2 mutant V. cholerae cells that have lost chromosome II contributes to the prominent DNA degradation that accompanies the death of these cells. Overall, our findings suggest that the ParE toxins lead to the postsegregational killing of cells missing chromosome II in a manner that closely mimics postsegregational killing mediated by plasmid-encoded homologs. Thus, the parDE loci aid in the maintenance of the integrity of the V. cholerae superintegron and in ensuring the inheritance of chromosome II.
Collapse
|
34
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
35
|
Barbosa LCB, Garrido SS, Garcia A, Delfino DB, Marchetto R. Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation 2010; 4:438-40. [PMID: 20975905 PMCID: PMC2951705 DOI: 10.6026/97320630004438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/09/2010] [Indexed: 11/26/2022] Open
Abstract
Toxin-antitoxin (TA) systems contribute to plasmid stability by a mechanism that relies on the differential stabilities of the toxin and antitoxin proteins and leads to the killing of daughter bacteria that did not receive a plasmid copy at the cell division. ParE is the toxic component of a TA system that constitutes along with RelE an important class of bacterial toxin called RelE/ParE superfamily. For ParE toxin, no crystallographic structure is available so far and rare in vitro studies demonstrated that the target of toxin activity is E. coli DNA gyrase. Here, a 3D Model for E. coli ParE toxin by molecular homology modeling was built using MODELLER, a program for comparative modeling. The Model was energy minimized by CHARMM and validated using PROCHECK and VERIFY3D programs. Resulting Ramachandran plot analysis it was found that the portion residues failing into the most favored and allowed regions was 96.8%. Structural similarity search employing DALI server showed as the best matches RelE and YoeB families. The Model also showed similarities with other microbial ribonucleases but in a small score. A possible homologous deep cleft active site was identified in the Model using CASTp program. Additional studies to investigate the nuclease activity in members of ParE family as well as to confirm the inhibitory replication activity are needed. The predicted Model allows initial inferences about the unexplored 3D structure of the ParE toxin and may be further used in rational design of molecules for structure-function studies.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- Institute of Chemistry, UNESP ‐ Univ Estadual Paulista, Department of Biochemistry and Technological Chemistry, Araraquara, São Paulo, Brazil
| | - Saulo Santesso Garrido
- Institute of Chemistry, UNESP ‐ Univ Estadual Paulista, Department of Biochemistry and Technological Chemistry, Araraquara, São Paulo, Brazil
| | - Anderson Garcia
- Institute of Chemistry, UNESP ‐ Univ Estadual Paulista, Department of Biochemistry and Technological Chemistry, Araraquara, São Paulo, Brazil
| | - Davi Barbosa Delfino
- Institute of Chemistry, UNESP ‐ Univ Estadual Paulista, Department of Biochemistry and Technological Chemistry, Araraquara, São Paulo, Brazil
| | - Reinaldo Marchetto
- Institute of Chemistry, UNESP ‐ Univ Estadual Paulista, Department of Biochemistry and Technological Chemistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
36
|
Dalton KM, Crosson S. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Biochemistry 2010; 49:2205-15. [PMID: 20143871 DOI: 10.1021/bi902133s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 A resolution. This TA system forms an alpha(2)beta(2) heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.
Collapse
Affiliation(s)
- Kevin M Dalton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
37
|
Overgaard M, Borch J, Gerdes K. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 2009; 394:183-96. [PMID: 19747491 PMCID: PMC2812701 DOI: 10.1016/j.jmb.2009.09.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
RelB, the ribbon–helix–helix (RHH) repressor encoded by the relBE toxin–antitoxin locus of Escherichia coli, interacts with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced by RelE; that is, RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate, and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional control of the relBE model operon. Using an in vivo screen for relB mutants, we identified multiple nucleotide changes that map to important amino acid positions within the DNA-binding domain formed by the N-terminal RHH motif of RelB. Analysis of DNA binding of a subset of these mutant RHH proteins by gel-shift assays, transcriptional fusion assays and a structure model of RelB–DNA revealed amino acid residues making crucial DNA–backbone contacts within the operator (relO) DNA. Mutational and footprinting analyses of relO showed that RelB dimers bind on the same face of the DNA helix and that the RHH motif recognizes four 6-bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between RelB and RelE confirmed that the proteins form a high-affinity complex with a 2:1 stoichiometry. Lon degraded RelB in vitro and degradation was inhibited by RelE, consistent with the proposal that RelE protects RelB from proteolysis by Lon in vivo.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
38
|
De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wyns L, De Greve H, Loris R. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 2009; 35:154-63. [PMID: 19647513 DOI: 10.1016/j.molcel.2009.05.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/14/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Toxin-antitoxin modules are small regulatory circuits that ensure survival of bacterial populations under challenging environmental conditions. The ccd toxin-antitoxin module on the F plasmid codes for the toxin CcdB and its antitoxin CcdA. CcdB poisons gyrase while CcdA actively dissociates CcdB:gyrase complexes in a process called rejuvenation. The CcdA:CcdB ratio modulates autorepression of the ccd operon. The mechanisms behind both rejuvenation and regulation of expression are poorly understood. We show that CcdA binds consecutively to two partially overlapping sites on CcdB, which differ in affinity by six orders of magnitude. The first, picomolar affinity interaction triggers a conformational change in CcdB that initiates the dissociation of CcdB:gyrase complexes by an allosteric segmental binding mechanism. The second, micromolar affinity binding event regulates expression of the ccd operon. Both functions of CcdA, rejuvenation and autoregulation, are mechanistically intertwined and depend crucially on the intrinsically disordered nature of the CcdA C-terminal domain.
Collapse
Affiliation(s)
- Natalie De Jonge
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshida H, Furuya N, Lin YJ, Güntert P, Komano T, Kainosho M. Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. J Mol Biol 2008; 384:690-701. [PMID: 18929573 DOI: 10.1016/j.jmb.2008.09.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/26/2022]
Abstract
Conjugation is a fundamental process for the rapid evolution of bacteria, enabling them, for example, to adapt to various environmental conditions or to acquire multi-drug resistance. NikA is one of the relaxosomal proteins that initiate the intercellular transfer of the R64 conjugative plasmid with the P-type origin of transfer, oriT. The three-dimensional structure of the N-terminal 51 residue fragment of NikA, NikA(1-51), which binds to the 17-bp repeat A sequence in R64 oriT, was determined by NMR to be a homodimer composed of two identical ribbon-helix-helix (RHH) domains, which are commonly found in transcriptional repressors. The structure determination of NikA(1-51) was achieved using automated NOE assignment with CYANA, without measuring filtered NOESY experiments to distinguish between the intra- and intermolecular NOEs, and without any a priori assumption on the tertiary or quaternary structure of the protein. Mutational experiments revealed that the DNA-binding region of the NikA(1-51) dimer is an anti-parallel beta-sheet composed of one beta-strand from each of the N-terminal ends of the two domains. Various biochemical experiments have indicated that the full length NikA(1-109) exists as a homotetramer formed through an alpha-helical domain at the C-terminus, and that the anti-parallel beta-sheets of both dimeric domains bind to two homologous 5 bp internal repeats within repeat A. As a tetramer, the full length NikA(1-109) showed higher affinity to repeat A and bent the oriT duplex more strongly than NikA(1-51) did. Many RHH proteins are involved in specific DNA recognition and in protein-protein interactions. The discovery of the RHH fold in NikA suggests that NikA binds to oriT and interacts with the relaxase, NikB, which is unable to bind to the nick region in oriT without NikA.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Overgaard M, Borch J, Jørgensen MG, Gerdes K. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol 2008; 69:841-57. [PMID: 18532983 DOI: 10.1111/j.1365-2958.2008.06313.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic toxin-antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralizes its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription by binding to one or more operators in the promoter region while the toxin functions as a co-repressor of transcription. Interestingly, the toxin can also stimulate TA operon transcription. Here we analyse mechanistic aspects of how RelE of Escherichia coli can function both as a co-repressor and as a derepressor of relBE transcription. When RelB was in excess to RelE, two trimeric RelB(2)*RelE complexes bound cooperatively to two adjacent operator sites in the relBE promoter region and repressed transcription. In contrast, RelE in excess stimulated relBE transcription and released the RelB(2)*RelE complex from operator DNA. A mutational analysis of the operator sites showed that RelE in excess counteracted cooperative binding of the RelB(2)*RelE complexes to the operator sites. Thus, RelE controls relBE transcription by conditional cooperativity.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
41
|
Sevin EW, Barloy-Hubler F. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 2008; 8:R155. [PMID: 17678530 PMCID: PMC2374986 DOI: 10.1186/gb-2007-8-8-r155] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/14/2007] [Accepted: 08/01/2007] [Indexed: 11/22/2022] Open
Abstract
RASTA-Bacteria is an automated method that allows quick and reliable identification of toxin/antitoxin loci in sequenced prokaryotic genomes, whether they are annotated Open Reading Frames or not. Toxin/antitoxin (TA) systems, viewed as essential regulators of growth arrest and programmed cell death, are widespread among prokaryotes, but remain sparsely annotated. We present RASTA-Bacteria, an automated method allowing quick and reliable identification of TA loci in sequenced prokaryotic genomes, whether they are annotated open reading frames or not. The tool successfully confirmed all reported TA systems, and spotted new putative loci upon screening of sequenced genomes. RASTA-Bacteria is publicly available at .
Collapse
Affiliation(s)
- Emeric W Sevin
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR 140, Av. du Prof. Léon Bernard, CS 34317, 35043 Rennes, France
| | - Frédérique Barloy-Hubler
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR 140, Av. du Prof. Léon Bernard, CS 34317, 35043 Rennes, France
- CNRS UMR6026 Interactions Cellulaires et Moléculaires, Groupe DUALS, Université de Rennes 1, IFR140, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| |
Collapse
|
42
|
Adamczyk M, Dolowy P, Jonczyk M, Thomas CM, Jagura-Burdzy G. The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. MICROBIOLOGY-SGM 2006; 152:1621-1637. [PMID: 16735726 DOI: 10.1099/mic.0.28495-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The kfrA gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1beta plasmid R751, evidence is presented that kfrA and its downstream genes upf54.8 and upf54.4 were organized in a tricistronic operon (renamed here kfrA kfrB kfrC), expressed from autoregulated kfrAp, that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either kfrA or kfrB in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrA(R751) formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751DeltaC2kfrA foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Central Institute of Labour Protection, National Research Institute, 00-701 Warsaw, Czerniakowska 16, Poland
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Patrycja Dolowy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Michal Jonczyk
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Grazyna Jagura-Burdzy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
43
|
Kim HG, Kim HS, Hwang HJ, Chung SK, Lee JM, Chung DK. Construction of a pTOC-T vector using GST-ParE toxin for direct cloning and selection of PCR products. Biotechnol Lett 2005; 26:1659-63. [PMID: 15604816 DOI: 10.1007/s10529-004-3518-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using linker insertion mutations, we determined the most stable region of the parE gene which encodes a toxic protein (ParE) that inhibits growth of Escherichia coli. The toxicity of ParE was sustained until a 144 bp linker was inserted into this region. We have developed a 3' T-overhang vector based on these characteristics of the GST-ParE toxin, and named pTOC-T. Because pTOC-T uses a post-segregational killing system, all transformants grown up on the plates can be considered as recombinants containing foreign DNA. pTOC-T not require X-Gal, IPTG or other substrates for selection. This T-vector using a positive selection system can be applied to various E. coli strains such as XL1-Blue, BL21, DH5alpha, JM109, and JM110.
Collapse
Affiliation(s)
- Han Geun Kim
- School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 832] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
45
|
Abstract
Transcription of the P1 plasmid addiction operon, a prototypical toxin-antitoxin system, is negatively autoregulated by the products of the operon. The Phd repressor-antitoxin protein binds to 8-bp palindromic Phd-binding sites in the promoter region and thereby represses transcription. The toxin, Doc, mediates cooperative interactions between adjacent Phd-binding sites and thereby enhances repression. Here, we describe a homologous operon from Salmonella enterica serovar Typhimurium which has the same pattern of regulation but an altered repressor-operator specificity. This difference in specificity maps to the seventh amino acid of the repressor and to the symmetric first and eighth positions of the corresponding palindromic repressor-binding sites. Thus, the repressor-operator interface has coevolved so as to retain the interaction while altering the specificity. Within an alignment of homologous repressors, the seventh amino acid of the repressor is highly variable, indicating that evolutionary changes in repressor specificity may be common in this protein family. We suggest that the robust properties of the negative feedback loop, the fuzzy recognition in the operator-repressor interface, and the duplication and divergence of the repressor-binding sites have facilitated the speciation of this repressor-operator interface. These three features may allow the repressor-operator system to percolate within a nearly neutral network of single-step mutations without the necessity of invoking simultaneous mutations, low-fitness intermediates, or other improbable or rate-limiting mechanisms.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35758, USA
| | | |
Collapse
|
46
|
Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:8066-73. [PMID: 15547279 PMCID: PMC529096 DOI: 10.1128/jb.186.23.8066-8073.2004] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.
Collapse
Affiliation(s)
- Jeremy S Webb
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
47
|
Stavrinides J, Guttman DS. Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. J Bacteriol 2004; 186:5101-15. [PMID: 15262947 PMCID: PMC451608 DOI: 10.1128/jb.186.15.5101-5115.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasmid complement of any gram-negative bacterium. The plasmid complement comprises two pPT23A-like replicons, pPMA4326A (46,697 bp) and pPMA4326B (40,110 bp); a pPS10-like replicon, pPMA4326C (8,244 bp); and two atypical, replicase-deficient replicons, pPMA4326D (4,833 bp) and pPMA4326E (4,217 bp). A complete type IV secretion system is found on pPMA4326A, while the type III secreted effector hopPmaA is present on pPMA4326B. The region around hopPmaA includes a shorter hopPmaA homolog, insertion sequence (IS) elements, and a three-element cassette composed of a resolvase, an integrase, and an exeA gene that is also present in several human pathogens. We have also identified a novel genetic element (E622) that is present on all but the smallest plasmid (pPMA4326E) that has features of an IS element but lacks an identifiable transposase. This element is associated with virulence-related genes found in a wide range of P. syringae strains. Comparative genomic analyses of these and other P. syringae plasmids suggest a role for recombination and integrative elements in driving plasmid evolution.
Collapse
Affiliation(s)
- John Stavrinides
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada.
| | | |
Collapse
|
48
|
Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HLT. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004; 72:2922-38. [PMID: 15102805 PMCID: PMC387873 DOI: 10.1128/iai.72.5.2922-2938.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a common cause of urinary tract infections (UTI) in individuals with functional or structural abnormalities or with long-term catheterization, forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are hemolysin, fimbriae, metalloproteases, and flagella. In this study we utilized the CBA mouse model of ascending UTI to evaluate the colonization of mutants of P. mirabilis HI4320 that were generated by signature-tagged mutagenesis. By performing primary screening of 2088 P. mirabilis transposon mutants, we identified 502 mutants that ranged from slightly attenuated to unrecoverable. Secondary screening of these mutants revealed that 114 transposon mutants were reproducibly attenuated. Cochallenge of 84 of these single mutants with the parent strain in the mouse model resulted in identification of 37 consistently out-competed P. mirabilis transposon mutants, 25 of which were out-competed >100-fold for colonization of the bladder and/or kidneys by the parent strain. We determined the sequence flanking the site of transposon insertion in 29 attenuated mutants and identified genes affecting motility, iron acquisition, transcriptional regulation, phosphate transport, urease activity, cell surface structure, and key metabolic pathways as requirements for P. mirabilis infection of the urinary tract. Two mutations localized to a approximately 42-kb plasmid present in the parent strain, suggesting that the plasmid is important for colonization. Isolation of disrupted genes encoding proteins with homologies to known bacterial virulence factors, especially the urease accessory protein UreF and the disulfide formation protein DsbA, showed that the CBA mouse model and mutant pools are a reliable source of attenuated mutants with mutations in virulence genes.
Collapse
Affiliation(s)
- Laurel S Burall
- Department of Microbiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang YX, Li J, Guo XK, Wu C, Bi B, Ren SX, Wu CF, Zhao GP. Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome. Cell Res 2004; 14:208-16. [PMID: 15225414 DOI: 10.1038/sj.cr.7290221] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Comparative genomic analysis of the coding sequences (CDSs) of Leptospira interrogans revealed a pair of closely linked genes homologous to the vapBC loci of many other bacteria with respect to both deduced amino acid sequences and operon organizations. Expression of single vapC gene in Escherichia coli resulted in inhibition of bacterial growth, whereas co-expression of vapBC restored the growth effectively. This phenotype is typical for three other characterized toxin-antitoxin systems of bacteria, i.e., mazEF, relBE and chpIK. The VapC proteins of bacteria and a thermophilic archeae, Solfolobus tokodaii, form a structurally distinguished group of toxin different from the other known toxins of bacteria. Phylogenetic analysis of both toxins and antitoxins of all categories indicated that although toxins were evolved from divergent sources and may or may not follow their speciation paths (as indicated by their 16s RNA sequences), co-evolution with their antitoxins was obvious.
Collapse
Affiliation(s)
- Yi Xuan Zhang
- Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim HG, Hwang HJ, Kim MS, Lee DY, Chung SK, Lee JM, Park JH, Chung DK. pTOC-KR: a positive selection cloning vector based on the ParE toxin. Biotechniques 2004; 36:60-2, 64. [PMID: 14740485 DOI: 10.2144/04361bm07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|