1
|
Stevenson B, Brissette CA. Erp and Rev Adhesins of the Lyme Disease Spirochete's Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect Immun 2023; 91:e0025022. [PMID: 36853019 PMCID: PMC10016077 DOI: 10.1128/iai.00250-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
2
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Casselli T, Crowley MA, Highland MA, Tourand Y, Bankhead T. A small intergenic region of lp17 is required for evasion of adaptive immunity and induction of pathology by the Lyme disease spirochete. Cell Microbiol 2019; 21:e13029. [PMID: 30945408 DOI: 10.1111/cmi.13029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/30/2019] [Indexed: 01/15/2023]
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, harbours a single linear chromosome and upwards of 23 linear and circular plasmids. Only a minority of these plasmids, including linear plasmid 17, are maintained with near-absolute fidelity during extended in vitro passage, and characterisation of any putative virulence determinants they encode has only recently begun. In this work, a mutant lacking a ~4.7 kb fragment of lp17 was studied. Colonisation of murine tissues by this lp17 mutant was significantly impaired, as was the ability to induce carditis and arthritis. The deficiency in tissue colonisation was alleviated in severe combined immunodeficient (SCID) mice, implicating a role for this plasmid region in adaptive immune evasion. Through genetic complementation, the mutant phenotype could be fully attributed to a 317 bp intergenic region that corresponds to the discontinued bbd07 ORF and upstream sequence. The intergenic region was found to be transcriptionally active, and mutant spirochetes lacking this region exhibited an overall difference in the antigenic profile during infection of an immunocompetent murine host. Overall, this study is the first to provide evidence for the involvement of lp17 in colonisation of joint and heart tissues, along with the associated pathologies caused by the Lyme disease spirochete.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Margaret A Highland
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA.,Animal Disease Research Unit, USDA Agricultural Research Service, Pullman, Washington, USA
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Brisson D, Zhou W, Jutras BL, Casjens S, Stevenson B. Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Appl Environ Microbiol 2013; 79:4115-28. [PMID: 23624478 PMCID: PMC3697573 DOI: 10.1128/aem.00817-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 12/19/2022] Open
Abstract
Lyme disease spirochetes possess complex genomes, consisting of a main chromosome and 20 or more smaller replicons. Among those small DNAs are the cp32 elements, a family of prophages that replicate as circular episomes. All complete cp32s contain an erp locus, which encodes surface-exposed proteins. Sequences were compared for all 193 erp alleles carried by 22 different strains of Lyme disease-causing spirochete to investigate their natural diversity and evolutionary histories. These included multiple isolates from a focus where Lyme disease is endemic in the northeastern United States and isolates from across North America and Europe. Bacteria were derived from diseased humans and from vector ticks and included members of 5 different Borrelia genospecies. All erp operon 5'-noncoding regions were found to be highly conserved, as were the initial 70 to 80 bp of all erp open reading frames, traits indicative of a common evolutionary origin. However, the majority of the protein-coding regions are highly diverse, due to numerous intra- and intergenic recombination events. Most erp alleles are chimeras derived from sequences of closely related and distantly related erp sequences and from unknown origins. Since known functions of Erp surface proteins involve interactions with various host tissue components, this diversity may reflect both their multiple functions and the abilities of Lyme disease-causing spirochetes to successfully infect a wide variety of vertebrate host species.
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandon L. Jutras
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sherwood Casjens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah Medical School, Salt Lake City, Utah, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Abstract
The spirochetes in the Borrelia burgdorferi sensu lato genospecies group cycle in nature between tick vectors and vertebrate hosts. The current assemblage of B. burgdorferi sensu lato, of which three species cause Lyme disease in humans, originated from a rapid species radiation that occurred near the origin of the clade. All of these species share a unique genome structure that is highly segmented and predominantly composed of linear replicons. One of the circular plasmids is a prophage that exists as several isoforms in each cell and can be transduced to other cells, likely contributing to an otherwise relatively anemic level of horizontal gene transfer, which nevertheless appears to be adequate to permit strong natural selection and adaptation in populations of B. burgdorferi. Although the molecular genetic toolbox is meager, several antibiotic-resistant mutants have been isolated, and the resistance alleles, as well as some exogenous genes, have been fashioned into markers to dissect gene function. Genetic studies have probed the role of the outer membrane lipoprotein OspC, which is maintained in nature by multiple niche polymorphisms and negative frequency-dependent selection. One of the most intriguing genetic systems in B. burgdorferi is vls recombination, which generates antigenic variation during infection of mammalian hosts.
Collapse
MESH Headings
- Alleles
- Animals
- Antigenic Variation
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Bacteriophages/genetics
- Bacteriophages/metabolism
- Bacteriophages/pathogenicity
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/immunology
- Borrelia burgdorferi/pathogenicity
- Borrelia burgdorferi/virology
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Electroporation
- Evolution, Molecular
- Genes, Bacterial
- Genetic Variation
- Humans
- Ixodes/microbiology
- Linkage Disequilibrium
- Lipoproteins/genetics
- Lipoproteins/immunology
- Lipoproteins/metabolism
- Lyme Disease/microbiology
- Plasmids/genetics
- Plasmids/metabolism
- Prophages/genetics
- Prophages/metabolism
- Recombination, Genetic
- Selection, Genetic
- Species Specificity
- Transduction, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dan Drecktrah
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812
| | - Christian H. Eggers
- Department of Biomedical Sciences, Quinnipiac University, Hamden, Connecticut 06518
| | - D. Scott Samuels
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, Montana 59812
| |
Collapse
|
6
|
Tilly K, Checroun C, Rosa PA. Requirements for Borrelia burgdorferi plasmid maintenance. Plasmid 2012; 68:1-12. [PMID: 22289894 PMCID: PMC3367046 DOI: 10.1016/j.plasmid.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi has multiple linear and circular plasmids that are faithfully replicated and partitioned as the bacterium grows and divides. The low copy number of these replicons implies that active partitioning contributes to plasmid stability. Analyzing the requirements for plasmid replication and partition in B. burgdorferi is complicated by the complexity of the genome and the possibility that products may act in trans. Consequently, we have studied the replication-partition region (bbb10-13) of the B. burgdorferi 26kb circular plasmid (cp26) in Escherichia coli, by fusion with a partition-defective miniF plasmid. Our analysis demonstrated that bbb10, bbb11, and bbb13 are required for stable miniF maintenance, whereas bbb12 is dispensable. To validate these results, we attempted to inactivate two of these genes in B. burgdorferi. bbb12 mutants were obtained at a typical frequency, suggesting that the bbb12 product is dispensable for cp26 maintenance as well. We could not directly measure cp26 stability in the bbb12 mutant, because cp26 carries essential genes, and bacteria that have lost cp26 are inviable. Conversely, we were unable to inactivate bbb10 on cp26 of B. burgdorferi. Our results suggest that bbb12 is dispensable for cp26 maintenance, whereas bbb10, bbb11, and bbb13 play crucial roles in that process.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
7
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infect Immun 2012; 80:1773-82. [PMID: 22354033 DOI: 10.1128/iai.05984-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, possesses a segmented genome comprised of a single linear chromosome and upwards of 23 linear and circular plasmids. Much of what is known about plasmid-borne genes comes from studying laboratory clones that have spontaneously lost one or more plasmids during in vitro passage. Some plasmids, including the linear plasmid lp17, are never or rarely reported to be lost during routine culture; therefore, little is known about the requirement of these conserved plasmids for infectivity. In this study, the effects of deleting regions of lp17 were examined both in vitro and in vivo. A mutant strain lacking the genes bbd16 to bbd25 showed no deficiency in the ability to establish infection or disseminate to the bloodstream of mice; however, colonization of peripheral tissues was delayed. Despite the ability to colonize ear, heart, and joint tissues, this mutant exhibited a defect in bladder tissue colonization for up to 56 days postinfection. This phenotype was not observed in immunodeficient mice, suggesting that bladder colonization by the mutant strain was inhibited by an adaptive immune-based mechanism. Moreover, the mutant displayed increased expression of outer surface protein C in vitro, which was correlated with the absence of the gene bbd18. To our knowledge, this is the first report involving genetic manipulation of lp17 in an infectious clone of B. burgdorferi and reveals for the first time the effects of lp17 gene deletion during murine infection by the Lyme disease spirochete.
Collapse
|
9
|
Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 2012; 80:1519-29. [PMID: 22290150 DOI: 10.1128/iai.06326-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.
Collapse
|
10
|
Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Infect Immun 2011; 79:3510-7. [PMID: 21708994 DOI: 10.1128/iai.05014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, exists in a complex enzootic cycle, transiting between its vector, Ixodes ticks, and a diverse range of vertebrate hosts. B. burgdorferi linear plasmid 38 (lp38) contains several genes that are differentially regulated in response to conditions mimicking the tick or mouse environments, suggesting that these plasmid-borne genes may encode proteins important for the B. burgdorferi infectious cycle. Some of these genes encode potential virulence factors, including hypothetical lipoproteins as well as a putative membrane transport system. To characterize the role of lp38 in the B. burgdorferi infectious cycle, we constructed a shuttle vector to selectively displace lp38 from the B. burgdorferi genome and analyzed the resulting clones to confirm the loss of lp38. We found that, in vitro, clones lacking lp38 were similar to isogenic wild-type bacteria, both in growth rate and in antigenic protein production. We analyzed these strains in an experimental mouse-tick infectious cycle, and our results demonstrate that clones lacking lp38 are fully infectious in a mouse, can efficiently colonize the tick vector, and are readily transmitted to a naive host.
Collapse
|
11
|
Krupka M, Raska M, Belakova J, Horynova M, Novotny R, Weigl E. Biological aspects of Lyme disease spirochetes: unique bacteria of the Borrelia burgdorferi species group. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:175-86. [PMID: 18345249 DOI: 10.5507/bp.2007.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi sensu lato is a group of at least twelve closely related species some of which are responsible for Lyme disease, the most frequent zoonosis in Europe and the USA. Many of the biological features of Borrelia are unique in prokaryotes and very interesting not only from the medical viewpoint but also from the view of molecular biology. METHODS Relevant recent articles were searched using PubMed and Google search tools. RESULTS AND CONCLUSION This is a review of the biological, genetic and physiological features of the spirochete species group, Borrelia burgdorferi sensu lato. In spite of a lot of recent articles focused on B. burgdorferi sensu lato, many features of Borrelia biology remain obscure. It is one of the main reasons for persisting problems with prevention, diagnosis and therapy of Lyme disease. The aim of the review is to summarize ongoing current knowledge into a lucid and comprehensible form.
Collapse
Affiliation(s)
- Michal Krupka
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
12
|
In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 2008; 190:7885-91. [PMID: 18849429 DOI: 10.1128/jb.00324-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
Collapse
|
13
|
Brissette CA, Cooley AE, Burns LH, Riley SP, Verma A, Woodman ME, Bykowski T, Stevenson B. Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection. Int J Med Microbiol 2008; 298 Suppl 1:257-67. [PMID: 18248770 DOI: 10.1016/j.ijmm.2007.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2007] [Indexed: 10/22/2022] Open
Abstract
Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have revealed that some Erp proteins can serve as bacterial adhesins, binding host proteins such as the complement regulator factor H and the extracellular matrix component laminin. These results suggest that Erp proteins play roles in multiple aspects of mammalian infection.
Collapse
Affiliation(s)
- Catherine A Brissette
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, MS 421 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jewett MW, Byram R, Bestor A, Tilly K, Lawrence K, Burtnick MN, Gherardini F, Rosa PA. Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol Microbiol 2007; 66:975-90. [PMID: 17919281 PMCID: PMC2229028 DOI: 10.1111/j.1365-2958.2007.05969.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of Borrelia burgdorferi is composed of one linear chromosome and approximately 20 linear and circular plasmids. Although some plasmids are required by B. burgdorferi in vivo, most plasmids are dispensable for growth in vitro. However, circular plasmid (cp) 26 is present in all natural isolates and has never been lost during in vitro growth. This plasmid carries ospC, which is critical for mammalian infection. We previously showed that cp26 encodes essential functions, including the telomere resolvase, ResT, and hence cannot be displaced. Here we identify two additional essential genes on cp26, bbb26 and bbb27, through a systematic attempt to inactivate each open reading frame (ORF). Furthermore, an incompatible plasmid carrying resT, bbb26 and bbb27 could displace cp26. Computational and experimental analyses suggested that both BBB26 and BBB27 are membrane-associated, periplasmic proteins. These data indicate that bbb26 and bbb27 encode essential but possibly redundant functions and that one or the other of these cp26 genes, in addition to resT, is required for bacterial viability. We conclude that the genetic linkage of critical physiological and virulence functions on cp26 is pertinent to its stable maintenance throughout the evolution of B. burgdorferi.
Collapse
Affiliation(s)
- Mollie W Jewett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 2007; 64:1358-74. [PMID: 17542926 PMCID: PMC1974800 DOI: 10.1111/j.1365-2958.2007.05746.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity.
Collapse
Affiliation(s)
- Mollie W Jewett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miller JC, Stevenson B. Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 2006; 296 Suppl 40:185-94. [PMID: 16530008 DOI: 10.1016/j.ijmm.2006.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans and other vertebrate hosts through the bites of ixodid ticks. B. burgdorferi Erp (OspE-F related lipoprotein) family members are encoded on members of the 32 kb circular plasmid-like prophage family (cp32s). Many Erp proteins serve as receptors for the complement inhibitory factor H molecules of numerous vertebrate hosts, providing one mechanism by which the bacteria potentially evade the innate immune system. Indirect immunofluorescence analyses (IFA) have demonstrated that Erp expression is temporally regulated throughout the mammal-tick infectious cycle, indicating that Erp proteins perform an important role (or even roles) during mammalian infection. However, it was not previously known whether Erp proteins are continually produced by B. burgdorferi throughout the course of mammalian infection. To address this issue, quantitative RT-PCR (q-RT-PCR) was utilized to assess erp transcription levels by bacteria within numerous different tissues of both mice and non-human primates (NHPs) chronically infected with B. burgdorferi. Q-RT-PCR results obtained using both animal models indicated that while the majority of erp genes were detectably transcribed during chronic infection, differences in expression levels were noted. These data strongly suggest that Erp proteins contribute to B. burgdorferi persistence within chronically infected host tissues, perhaps by protecting the bacteria from complement-mediated killing.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
17
|
Zhang H, Marconi RT. Demonstration of cotranscription and 1-methyl-3-nitroso-nitroguanidine induction of a 30-gene operon of Borrelia burgdorferi: evidence that the 32-kilobase circular plasmids are prophages. J Bacteriol 2005; 187:7985-95. [PMID: 16291672 PMCID: PMC1291276 DOI: 10.1128/jb.187.23.7985-7995.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 09/06/2005] [Indexed: 11/20/2022] Open
Abstract
The Borrelia genome is comprised of linear and circular elements, including a group of 32-kb circular plasmids (cp32s). Earlier analyses identified a bacteriophage, varphiBB-1, that may package cp32s, suggesting that these plasmids are prophages. cp32-8, cp32-9, and cp32-1 (plasmids L, N, and P, respectively) encode virulence factors such as the factor H binding, OspE proteins (BBL39, BBN38, and BBP38). Here the expression patterns of cp32-8 open reading frames (ORFs) in in vitro-cultivated 1-methyl-3-nitroso-nitroguanidine (MNNG)-treated and untreated spirochetes and during infection were assessed. ORFs BBL42 through BBL28, which encode several bacteriophage protein homologs, were found to be cotranscribed and expression was upregulated by MNNG. Immunoblotting revealed that MNNG-induced transcription led to increased protein production. The expression of several genes that reside outside of the BBL42-BBL28 operon was not affected by MNNG. Some of these genes, including OspE (BBL39), appear to represent morons. Real-time reverse transcription-PCR of spirochetes in mouse tissue revealed that although the phage operon was not induced during infection, transcription of BBL23 (previously designated BlyA), a putative holin, was upregulated. This observation indicates that some genes within the operon can be independently transcribed from internal promoters. Additional transcriptional analyses of the operon identified multiple transcriptional start sites and provided evidence for the expression of a homologous operon from other cp32s. The data support the hypothesis put forth by C. Eggers and D. S. Samuels (J. Bacteriol. 181:7308-7313, 1999) that the cp32s are prophages, a finding with broad implications for our understanding of Borrelia pathogenesis and Borrelia genome evolution.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Microbiology and Immunology, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
18
|
Miller JC, Narayan K, Stevenson B, Pachner AR. Expression of Borrelia burgdorferi erp genes during infection of non-human primates. Microb Pathog 2005; 39:27-33. [PMID: 15964737 DOI: 10.1016/j.micpath.2005.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/25/2022]
Abstract
All examined isolates of the Lyme disease spirochete contain multiple operons encoding Erp outer membrane lipoproteins. Many Erp proteins have been demonstrated to bind the host complement regulator factor H, and may thereby help protect the bacteria from complement-mediated killing during mammalian infection. Consistent with that hypothesis, all Erp proteins are produced by Borrelia burgdorferi during transmission between tick vectors and mammalian hosts. The present study examined whether erp genes are also expressed by B. burgdorferi following establishment of mammalian infection. To that end, quantitative RT-PCR was utilized to assess erp transcription levels within different tissues of infected non-human primates, a model that closely mimics human Lyme disease. The majority of erp genes were detectably transcribed after more than 3 months of mammalian infection. Intriguingly, differences in expression levels were noted among the various erp loci. No significant differences in erp expression were apparent between examined tissues, which included central and peripheral nervous system tissue, skeletal muscle, bladder, skin and heart tissues. These data strongly suggest that Erp proteins are expressed by B. burgdorferi throughout infection of their vertebrate hosts.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
19
|
Huang WM, Robertson M, Aron J, Casjens S. Telomere exchange between linear replicons of Borrelia burgdorferi. J Bacteriol 2004; 186:4134-41. [PMID: 15205414 PMCID: PMC421586 DOI: 10.1128/jb.186.13.4134-4141.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spirochetes in the genus Borrelia carry a linear chromosome and numerous linear plasmids that have covalently closed hairpin telomeres. The overall organization of the large chromosome of Borrelia burgdorferi appears to have been quite stable over recent evolutionary time; however, a large fraction of natural isolates carry differing lengths of DNA that extend the right end of the chromosome between about 7 and 20 kbp relative to the shortest chromosomes. We present evidence here that a rather recent nonhomologous recombination event in the B. burgdorferi strain Sh-2-82 lineage has replaced its right chromosomal telomere with a large portion of the linear plasmid lp21, which is present in the strain B31 lineage. At least two successive rounds of addition of linear plasmid genetic material to the chromosomal right end appear to have occurred at the Sh-2-82 right telomere, suggesting that this is an evolutionary mechanism by which plasmid genetic material can become part of the chromosome. The unusual nonhomologous nature of this rearrangement suggests that, barring horizontal transfer, it can be used as a unique genetic marker for this lineage of B. burgdorferi chromosomes.
Collapse
Affiliation(s)
- Wai Mun Huang
- Department of Pathology, University of Utah Medical School, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
20
|
Anderton JM, Tokarz R, Thill CD, Kuhlow CJ, Brooks CS, Akins DR, Katona LI, Benach JL. Whole-genome DNA array analysis of the response of Borrelia burgdorferi to a bactericidal monoclonal antibody. Infect Immun 2004; 72:2035-44. [PMID: 15039324 PMCID: PMC375205 DOI: 10.1128/iai.72.4.2035-2044.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification and characterization of genes that contribute to infection with Borrelia burgdorferi and, of those, genes that are targets of host responses is important for understanding the pathogenesis of Lyme disease. The complement-independent bactericidal monoclonal antibody (MAb) CB2 recognizes a carboxy-terminal, hydrophilic epitope of the outer surface protein B (OspB). CB2 kills B. burgdorferi by an unknown bactericidal mechanism. Upon binding of CB2 to OspB, differentially expressed gene products may be responsible for, or associated with, the death of the organism. A time course of the response of B. burgdorferi to CB2 was completed to analyze the differential gene expression in the bacteria over a period of visual morphological changes. Bacteria were treated with a sublethal concentration in which spirochetes were visibly distressed by the antibody but not lysed. Preliminary whole-genome DNA arrays at various time points within 1 h of incubation of B. burgdorferi with the antibody showed that most significant changes occurred at 25 min. Circular plasmid 32 (cp32)-encoded genes were active in this period of time, including the blyA homologs, phage holin system genes. DNA array data show that three blyA homologs were upregulated significantly, >/==" BORDER="0">2 standard deviations from the mean of the log ratios, and a P value of </=0.01. Quantitative real-time PCR analysis verified blyA and blyB upregulation over an 18- to 35-min time course. The hypothesis to test is whether the killing mechanism of CB2 is through uncontrolled expression of the blyA and blyB phage holin system.
Collapse
Affiliation(s)
- Julie M Anderton
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Babb K, McAlister JD, Miller JC, Stevenson B. Molecular characterization of Borrelia burgdorferi erp promoter/operator elements. J Bacteriol 2004; 186:2745-56. [PMID: 15090516 PMCID: PMC387816 DOI: 10.1128/jb.186.9.2745-2756.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/24/2004] [Indexed: 11/20/2022] Open
Abstract
Many Borrelia burgdorferi Erp outer surface proteins have been demonstrated to bind the host complement regulator factor H, which likely contributes to the ability of these organisms to evade the host innate immune system. B. burgdorferi controls Erp protein synthesis throughout the bacterial infectious cycle, producing the proteins during mammalian infections but repressing their synthesis during tick infections. Defining the mechanism by which B. burgdorferi regulates the expression of these virulence determinants will provide important insight into the biological and pathogenic properties of the Lyme disease spirochete. The present study demonstrates that two highly conserved DNA sequences located 5' of erp operons specifically bind bacterial proteins. Analyses with B. burgdorferi of transcriptional fusions between erp promoter/operator DNAs and the gene for green fluorescent protein indicated that the expression of these operons is regulated at the level of transcriptional initiation. These analyses also indicated significant differences in the promoter strengths of various erp operons, which likely accounts for reported variations in expression levels of different Erp proteins. Mutagenesis of promoter-gfp fusions demonstrated that at least one of the proteins which bind erp operator DNA functions as a repressor of transcription.
Collapse
Affiliation(s)
- Kelly Babb
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
22
|
Stevenson B, Miller JC. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol 2004; 57:309-24. [PMID: 14629041 DOI: 10.1007/s00239-003-2482-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All isolates of the spirochete Borrelia burgdorferi contain multiple, different plasmids of the cp32 family, each of which contains a locus encoding Erp surface proteins. Many of these proteins are known to bind host complement regulatory factor H, enabling the bacteria to avoid killing by the alternative complement pathway during vertebrate infection. In the present study, we characterized the erp loci and cp32 plasmids of strains N40, Sh-2-82, and 297 and compared them to the previously determined cp32 sequences of type strain B31. Bacteria of strain N40 contain 6 different cp32s, those of Sh-2-82 contain 10, and 297 bacteria contain 9 cp32s. Significant conservation between all strains was noted for the cp32 loci responsible for plasmid maintenance, indicating close relationships that appear to correspond with incompatibility groups. In contrast, considerable diversity was found between erp gene sequences, both within individual bacteria and between different strains. However, examples of identities among erp loci were found, with strains Sh-2-82, 297, and B31 each containing three identical loci that likely arose through intrabacterial genetic rearrangements. These studies also found the first evidence of large-scale genetic exchanges between Lyme disease spirochetes in nature, including the apparent transfer of an entire cp32 plasmid between two different bacteria.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Chandler Medical Center, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
23
|
Iyer R, Kalu O, Purser J, Norris S, Stevenson B, Schwartz I. Linear and circular plasmid content in Borrelia burgdorferi clinical isolates. Infect Immun 2003; 71:3699-706. [PMID: 12819050 PMCID: PMC161973 DOI: 10.1128/iai.71.7.3699-3706.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Borrelia burgdorferi, the etiologic agent of Lyme disease, is composed of a linear chromosome and more than 20 linear and circular plasmids. Typically, plasmid content analysis has been carried out by pulsed-field gel electrophoresis and confirmed by Southern hybridization. However, multiple plasmids of virtually identical sizes (e.g., lp28 and cp32) complicate the interpretation of such data. The present study was undertaken to investigate the complete plasmid complements of B. burgdorferi clinical isolates cultivated from patients from a single region where early Lyme disease is endemic. A total of 21 isolates obtained from the skin biopsy or blood samples of Lyme disease patients were examined for their complete plasmid complements by Southern hybridization and plasmid-specific PCR analysis. All clinical isolates harbored at least six of the nine previously characterized cp32s. Fourteen isolates harbored all B31-like linear plasmids, and seven isolates simultaneously lacked lp56, lp38, and some segments of lp28-1. The distinctive plasmid profile observed in these seven isolates was specific to organisms that had ribosomal spacer type 2 and pulsed-field gel type A, which implies a clonal origin for this genotype. The presence of nearly identical complements of multiple linear and circular plasmids in all of the human isolates suggests that these plasmids may be particularly necessary for infection, adaptation, and/or maintenance in the infected host.
Collapse
Affiliation(s)
- Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
24
|
Stewart PE, Chaconas G, Rosa P. Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J Bacteriol 2003; 185:3202-9. [PMID: 12730180 PMCID: PMC154063 DOI: 10.1128/jb.185.10.3202-3209.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease agent Borrelia burgdorferi maintains both linear and circular plasmids that appear to be essential for mammalian infection. Recent studies have characterized the circular plasmid regions that confer autonomous replication, but the genetic elements necessary for linear plasmid maintenance have not been experimentally identified. Two vectors derived from linear plasmids lp25 and lp28-1 were constructed and shown to replicate autonomously in B. burgdorferi. These vectors identify internal regions of linear plasmids necessary for autonomous replication in B. burgdorferi. Although derived from linear plasmids, the vectors are maintained in circular form in B. burgdorferi, indicating that plasmid maintenance functions are conserved, regardless of DNA form. Finally, derivatives of these vectors indicate that paralogous gene family 49 is apparently not required for either circular or linear plasmid replication.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | |
Collapse
|
25
|
Miller JC, Stevenson B. Immunological and genetic characterization of Borrelia burgdorferi BapA and EppA proteins. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1113-1125. [PMID: 12724373 DOI: 10.1099/mic.0.26120-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A large majority of examined Lyme disease spirochaete isolates were demonstrated to contain one or both of the paralogous genes bapA and eppA. Immunological analyses of serum samples collected from infected patients coupled with comparative sequence analyses indicated that bapA gene sequences are quite stable but the encoded proteins do not provoke a strong immune response in most individuals. Conversely, EppA proteins are much more antigenic but vary widely in sequence between different bacteria. Considerable evidence of insertion, deletion and other mutations within eppA genes was observed. A number of significant recombination events were also found to have occurred in regions flanking bapA genes, while the genes themselves rarely exhibited evidence of mutation, suggesting strong selective pressure to maintain BapA sequences within narrow limits. Data from these and other studies suggest important roles for BapA and EppA during the Borrelia burgdorferi infectious cycle.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
26
|
Stevenson B, El-Hage N, Hines MA, Miller JC, Babb K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun 2002; 70:491-7. [PMID: 11796574 PMCID: PMC127719 DOI: 10.1128/iai.70.2.491-497.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, is capable of infecting a wide variety of vertebrates. This broad host range implies that B. burgdorferi possesses the ability to contravene the immune defenses of many potential hosts. B. burgdorferi produces multiple different Erp proteins on its outer membrane during mammalian infection. It was reported previously that one Erp protein can bind human factor H (J. Hellwage, T. Meri, T. Heikkilä, A. Alitalo, J. Panelius, P. Lahdenne, I. J. T. Seppälä, and S. Meri, J. Biol. Chem. 276:8427-8435, 2001). In this paper we report that the ability to bind the complement inhibitor factor H is a general characteristic of Erp proteins. Furthermore, each Erp protein exhibits different relative affinities for the complement inhibitors of various potential animal hosts. The data suggest that the presence of multiple Erp proteins on the surface can allow a single B. burgdorferi bacterium to resist complement-mediated killing in any of the wide range of potential hosts that it might infect. Thus, Erp proteins likely contribute to the persistence of B. burgdorferi in nature and to the ability of this bacterium to cause Lyme disease in humans and other animals.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | |
Collapse
|
27
|
Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS. Transduction by phiBB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol 2001; 183:4771-8. [PMID: 11466280 PMCID: PMC99531 DOI: 10.1128/jb.183.16.4771-4778.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 05/16/2001] [Indexed: 11/20/2022] Open
Abstract
We previously described a bacteriophage of the Lyme disease agent Borrelia burgdorferi designated phiBB-1. This phage packages the host complement of the 32-kb circular plasmids (cp32s), a group of homologous molecules found throughout the genus Borrelia. To demonstrate the ability of phiBB-1 to package and transduce DNA, a kanamycin resistance cassette was inserted into a cloned fragment of phage DNA, and the resulting construct was transformed into B. burgdorferi CA-11.2A cells. The kan cassette recombined into a resident cp32 and was stably maintained. The cp32 containing the kan cassette was packaged by phiBB-1 released from this B. burgdorferi strain. phiBB-1 has been used to transduce this antibiotic resistance marker into naive CA-11.2A cells, as well as two other strains of B. burgdorferi. This is the first direct evidence of a mechanism for lateral gene transfer in B. burgdorferi.
Collapse
Affiliation(s)
- C H Eggers
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD, Akins DR. Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect Immun 2001; 69:3618-27. [PMID: 11349022 PMCID: PMC98350 DOI: 10.1128/iai.69.6.3618-3627.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies we have characterized the cp32/18 loci in Borrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37 degrees C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the -10 and -35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as B. burgdorferi is transmitted from its tick vector to the mammalian host. These findings underscore the potential relevance of these molecules to the pathogenic events of early Lyme disease.
Collapse
Affiliation(s)
- P S Hefty
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | | | | | |
Collapse
|
29
|
McDowell JV, Sung SY, Labandeira-Rey M, Skare JT, Marconi RT. Analysis of mechanisms associated with loss of infectivity of clonal populations of Borrelia burgdorferi B31MI. Infect Immun 2001; 69:3670-7. [PMID: 11349029 PMCID: PMC98365 DOI: 10.1128/iai.69.6.3670-3677.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have provided suggestive evidence that the loss of plasmids correlates with the loss of infectivity of the Lyme disease spirochetes. In this study we have further investigated this correlation. Clonal populations were obtained from the skin of a mouse infected for 3 months with a clonal population of Borrelia burgdorferi B31MI. The complete plasmid compositions of these populations were determined using a combination of PCR and Southern hybridization. The infectivities of clones differing in plasmid composition were tested using the C3H-HeJ murine model for Lyme disease. While several clones were found to be noninfectious, a correlation between the loss of a specific plasmid and loss of infectivity in the clones analyzed in this report was not observed. While it is clear from recent studies that the loss of some specific plasmids results in attenuated virulence, this study demonstrates that additional mechanisms also contribute to the loss of infectivity.
Collapse
Affiliation(s)
- J V McDowell
- Department of Microbiology and Immunology, School of Medicine, Medical College of Virginia at Virginia Commonwealth University, Richmond 23298-0678, USA
| | | | | | | | | |
Collapse
|
30
|
Miller JC, Bono JL, Babb K, El-Hage N, Casjens S, Stevenson B. A second allele of eppA in Borrelia burgdorferi strain B31 is located on the previously undetected circular plasmid cp9-2. J Bacteriol 2000; 182:6254-8. [PMID: 11029452 PMCID: PMC94766 DOI: 10.1128/jb.182.21.6254-6258.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although sequence analysis of Borrelia burgdorferi isolate B31 was recently declared "complete," we found that cultures of this strain can contain a novel 9-kb circular plasmid, cp9-2. The newly described plasmid contains both sequence similarities with and differences from the previously identified B31 plasmid cp9-1 (formerly cp9). cp9-1 and cp9-2 each encode a unique allele of EppA, a putative membrane protein synthesized by B. burgdorferi during mammalian infection.
Collapse
Affiliation(s)
- J C Miller
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
31
|
Stevenson B, Porcella SF, Oie KL, Fitzpatrick CA, Raffel SJ, Lubke L, Schrumpf ME, Schwan TG. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect Immun 2000; 68:3900-8. [PMID: 10858201 PMCID: PMC101665 DOI: 10.1128/iai.68.7.3900-3908.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia hermsii, an agent of tick-borne relapsing fever, was found to contain multiple circular plasmids approximately 30 kb in size. Sequencing of a DNA library constructed from circular plasmid fragments enabled assembly of a composite DNA sequence that is homologous to the cp32 plasmid family of the Lyme disease spirochete, B. burgdorferi. Analysis of another relapsing fever bacterium, B. parkeri, indicated that it contains linear homologs of the B. hermsii and B. burgdorferi cp32 plasmids. The B. hermsii cp32 plasmids encode homologs of the B. burgdorferi Mlp and Bdr antigenic proteins and BlyA/BlyB putative hemolysins, but homologs of B. burgdorferi erp genes were absent. Immunoblot analyses demonstrated that relapsing fever patients produced antibodies to Mlp proteins, indicating that those proteins are synthesized by the spirochetes during human infection. Conservation of cp32-encoded genes in different Borrelia species suggests that their protein products serve functions essential to both relapsing fever and Lyme disease spirochetes. Relapsing fever borreliae replicate to high levels in the blood of infected animals, permitting direct detection and possible functional studies of Mlp, Bdr, BlyA/BlyB, and other cp32-encoded proteins in vivo.
Collapse
Affiliation(s)
- B Stevenson
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller JC, El-Hage N, Babb K, Stevenson B. Borrelia burgdorferi B31 Erp proteins that are dominant immunoblot antigens of animals infected with isolate B31 are recognized by only a subset of human lyme disease patient sera. J Clin Microbiol 2000; 38:1569-74. [PMID: 10747145 PMCID: PMC86492 DOI: 10.1128/jcm.38.4.1569-1574.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera from animals infected with Borrelia burgdorferi isolates yield intense immunoblot signals from the B31 ErpA/I/N and ErpB/J/O proteins, which have apparent molecular masses of 19 and 60 kDa, respectively. Since B. burgdorferi proteins with those molecular masses are of immunodiagnostic importance, Lyme disease patient sera were used in studies of B31 lysates and recombinant B31 ErpA/I/N and ErpB/J/O proteins. Immunoblot analyses indicated that only a minority of the patients produced antibodies that recognized the tested B31 Erp proteins. Southern blot analyses of Lyme disease spirochetes cultured from 16 of the patients indicated that all these bacteria contain genes related to the B31 erpA/I/N and erpB/J/O genes, although signal strengths indicated only weak similarities in many cases, suggestive of genetic variability of erp genes among these bacteria. These data indicate that Erp proteins are generally not the 19- and 60-kDa antigens observed on serodiagnostic immunoblots.
Collapse
Affiliation(s)
- J C Miller
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
33
|
Caimano MJ, Yang X, Popova TG, Clawson ML, Akins DR, Norgard MV, Radolf JD. Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Infect Immun 2000; 68:1574-86. [PMID: 10678977 PMCID: PMC97318 DOI: 10.1128/iai.68.3.1574-1586.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 11/26/1999] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterized seven members of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Complete sequence analysis of a 21-kb plasmid (cp18-2) confirmed that the strain 297 plasmids are similar in overall content and organization to their B31 counterparts. Of the 31 open reading frames (ORFs) in cp18-2, only three showed sequence relatedness to proteins with known functions, and only one, a ParA/SopA ortholog, was related to nonborrelial polypeptides. Besides the lipoproteins, none of the ORFs appeared likely to encode a surface-exposed protein. Comparison with the B31 genomic sequence indicated that paralogs for most of the ORFs in cp18-2 can be identified on other genetic elements. cp18-2 was found to lack a 9- to 10-kb fragment present in the 32-kb homologs which, by extrapolation from the B31 cp32 sequences, contains at least 15 genes presumed to be unnecessary for plasmid maintenance. Sequence analysis of the lipoprotein-encoding variable loci provided evidence that recombinatorial processes within these regions may result in the acquisition of exogenous DNA. Pairwise analysis with random shuffling revealed that the multiple lipoproteins (Mlp; formerly designated 2.9 LPs) fall into two distinct homology groups which appear to have arisen by gene fusion events similar to those recently proposed to have generated the three OspE, OspF, and Elp lipoprotein families (D. R. Akins, M. J. Caimano, X. Yang, F. Cerna, M. V. Norgard, and J. D. Radolf, Infect. Immun. 67:1526-1532, 1999). Comparative analysis of the variable regions also indicated that recombination within the loci of each plasmid may occur independently. Last, comparison of variable loci revealed that the cp32/18 plasmid complements of the B31 and 297 isolates differ substantially, indicating that the two strains have been subject to divergent adaptive pressures. In addition to providing evidence for two different types of recombinatorial events involving cp32/18 plasmids, these findings underscore the need for genetic analysis of diverse borrelial isolates in order to elucidate the Lyme disease spirochete's complex parasitic strategies.
Collapse
Affiliation(s)
- M J Caimano
- Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The Lyme disease spirochete Borrelia burgdorferi expresses diverse subsurface yet antigenically cross-reactive Bdr protein paralogs from distinct circular- and linear-plasmid loci. We assessed the possible effects of in vitro and in vivo growth on bdr locus structure, searching for recombinational events leading to either deletions or insertions of central repeat units or novel amino- and carboxy-terminus combinations. Our data indicate that, apart from plasmid loss during in vitro cultivation, the bdr paralog loci of strain B31 are stable. This suggests that recombinatorial variation of bdr genes is not essential for persistent mammalian infection.
Collapse
Affiliation(s)
- W R Zückert
- Department of Microbiology, University of California Irvine College of Medicine, Irvine, California 92697, USA.
| | | |
Collapse
|
35
|
Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35:490-516. [PMID: 10672174 DOI: 10.1046/j.1365-2958.2000.01698.x] [Citation(s) in RCA: 609] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genome's 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non-functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes >/=300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.
Collapse
Affiliation(s)
- S Casjens
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Medical School, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 microg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(-1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi.
Collapse
Affiliation(s)
- C H Eggers
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
37
|
Yang X, Popova TG, Hagman KE, Wikel SK, Schoeler GB, Caimano MJ, Radolf JD, Norgard MV. Identification, characterization, and expression of three new members of the Borrelia burgdorferi Mlp (2.9) lipoprotein gene family. Infect Immun 1999; 67:6008-18. [PMID: 10531261 PMCID: PMC96987 DOI: 10.1128/iai.67.11.6008-6018.1999] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported on the existence of a family of lipoprotein genes, designated 2.9 lipoprotein genes, encoded in at least seven versions on the circular (supercoiled) cp32 and cp18 plasmids of Borrelia burgdorferi 297. A distinguishing feature of the 2.9 lipoproteins were highly similar signal sequences but variable mature polypeptides that segregated into two antigenic classes. Further screenings of B. burgdorferi 297 genomic libraries led to the identification of three additional 2.9 lipoprotein genes, renamed herein mlp, for multicopy lipoprotein genes. Computer analyses and immunoblotting revealed that Mlp-9 segregated with the antigenic class I lipoproteins, whereas Mlp-8 and Mlp-10 were members of class II. Northern blotting showed that all three of the mlp genes were expressed when B. burgdorferi was cultivated in vitro at 34 degrees C, although mlp-9 and mlp-10 transcripts were expressed at very low levels. Additional combined immunoblotting and comparative reverse transcription-PCR analyses performed on borreliae cultivated in vitro at 23, 34, or 37 degrees C indicated that although Mlp-8 was substantially more abundant than Mlp-9 or Mlp-10, all three of the mlp genes were upregulated during B. burgdorferi replication at 37 degrees C. Expression of the same three lipoproteins was further enhanced upon growth of the spirochetes within dialysis membrane chambers (DMCs) implanted intraperitoneally in rats (i.e., spirochetes in a mammalian host-adapted state), suggesting that temperature alone did not account for maximal upregulation of the mlp genes. That certain mlp genes are likely expressed during the growth of B. burgdorferi in mammalian tissues was supported by findings of antibodies against all three Mlp lipoproteins in mice after challenge with Ixodes scapularis nymphs harboring B. burgdorferi 297. The combined data suggest that as opposed to being differentially expressed in any reciprocal fashion (e.g., OspA/OspC), at least three mlp genes are simultaneously upregulated by temperature (37 degrees C) and some other mammalian host factor(s). The findings have importance not only for understanding alternative modes of differential antigen expression by B. burgdorferi but also for assessing whether one or more of the Mlp lipoproteins represent new candidate vaccinogens for Lyme disease.
Collapse
Affiliation(s)
- X Yang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zückert WR, Meyer J, Barbour AG. Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun 1999; 67:3257-66. [PMID: 10377099 PMCID: PMC116504 DOI: 10.1128/iai.67.7.3257-3266.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1999] [Accepted: 04/12/1999] [Indexed: 11/20/2022] Open
Abstract
Multiple circular and linear plasmids of Lyme disease and relapsing fever Borrelia spirochetes carry genes for members of the Bdr (Borrelia direct repeat) protein family. To define their common and divergent attributes, we first comprehensively compared the known homologs. Bdr proteins with predicted sizes ranging from 10.7 to 30. 6 kDa formed five homology groups, based on variable numbers of short direct repeats in a central domain and diverse N- and C-terminal domains. In a further characterization, Western blots were probed with rabbit antisera raised against either of two purified recombinant Bdr proteins from Borrelia burgdorferi B31. The results showed that antibodies cross-react and several Bdr paralogs 19.5 to 30.5 kDa in size are expressed by cultured strain B31 in a temperature-independent manner. In situ proteolysis, immunofluorescence, and growth inhibition assays indicated that Bdr proteins are not surface exposed. Distinct patterns of cross-reacting proteins of 17.5 to 33 kDa were also detected in other B. burgdorferi, Borrelia garinii, and Borrelia afzelii strains as well as in relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae. Last, we examined whether these proteins are antibody targets during Lyme disease. Analysis of 47 Lyme disease patient sera by immunoblotting and enzyme-linked immunosorbent assays showed that 24 (51%) and 20 (43%), respectively, had detectable antibodies to one or more of the Bdr proteins. Together, these data indicate that Bdr proteins constitute a family of cross-reactive Borrelia proteins which are expressed in the course of Lyme disease and in vitro.
Collapse
Affiliation(s)
- W R Zückert
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, California 92697, USA
| | | | | |
Collapse
|
39
|
El Hage N, Lieto LD, Stevenson B. Stability of erp loci during Borrelia burgdorferi infection: recombination is not required for chronic infection of immunocompetent mice. Infect Immun 1999; 67:3146-50. [PMID: 10338534 PMCID: PMC96635 DOI: 10.1128/iai.67.6.3146-3150.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi can persistently infect mammals despite their production of antibodies directed against bacterial proteins, including the Erp lipoproteins. We sequenced erp loci of bacteria reisolated from laboratory mice after 1 year of infection and found them to be identical to those of the inoculant bacteria. We conclude that recombination of erp genes is not essential for chronic mammalian infection.
Collapse
Affiliation(s)
- N El Hage
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky, 40536-0084, USA
| | | | | |
Collapse
|
40
|
Mayer MP, Bueno LC, Hansen EJ, DiRienzo JM. Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 1999; 67:1227-37. [PMID: 10024565 PMCID: PMC96451 DOI: 10.1128/iai.67.3.1227-1237.1999] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic locus for a cytolethal distending toxin (CDT) was identified in a polymorphic region of the chromosome of Actinobacillus actinomycetemcomitans, a predominant oral pathogen. The locus was comprised of three open reading frames (ORFs) that had significant amino acid sequence similarity and more than 90% sequence identity to the cdtABC genes of some pathogenic Escherichia coli strains and Haemophilus ducreyi, respectively. Sonic extracts from recombinant E. coli, containing the A. actinomycetemcomitans ORFs, caused the distension and killing of Chinese hamster ovary cells characteristic of a CDT. Monoclonal antibodies made reactive with the CdtA, CdtB, and CdtC proteins of H. ducreyi recognized the corresponding gene products from the recombinant strain. CDT-like activities were no longer expressed by the recombinant strain when an OmegaKan-2 interposon was inserted into the cdtA and cdtB genes. Expression of the CDT-like activities in A. actinomycetemcomitans was strain specific. Naturally occurring expression-negative strains had large deletions within the region of the cdt locus. The cdtABC genes were flanked by an ORF (virulence plasmid protein), a partial ORF (integrase), and DNA sequences (bacteriophage integration site) characteristic of virulence-associated regions. These results provide evidence for a functional CDT in a human oral pathogen.
Collapse
Affiliation(s)
- M P Mayer
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6002, USA
| | | | | | | |
Collapse
|
41
|
Akins DR, Caimano MJ, Yang X, Cerna F, Norgard MV, Radolf JD. Molecular and evolutionary analysis of Borrelia burgdorferi 297 circular plasmid-encoded lipoproteins with OspE- and OspF-like leader peptides. Infect Immun 1999; 67:1526-32. [PMID: 10024606 PMCID: PMC96492 DOI: 10.1128/iai.67.3.1526-1532.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously described two OspE and three OspF homologs in Borrelia burgdorferi 297 (D. R. Akins, S. F. Porcella, T. G. Popova, D. Shevchenko, S. I. Baker, M. Li, M. V. Norgard, and J. D. Radolf, Mol. Microbiol. 18:507-520, 1995; D. R. Akins, K. W. Bourell, M. J. Caimano, M. V. Norgard, and J. D. Radolf, J. Clin. Investig. 101:2240-2250, 1998). In this study, we characterized four additional lipoproteins with OspE/F-like leader peptides (Elps) and demonstrated that all are encoded on plasmids homologous to cp32 and cp18 from the B31 and N40 strains, respectively. Statistical analysis of sequence similarities using the binary comparison algorithm revealed that the nine lipoproteins from strain 297, as well as the OspE, OspF, and Erp proteins from the N40 and B31 strains, fall into three distinct families. Based upon the observation that these lipoproteins all contain highly conserved leader peptides, we now propose that the ancestors of each of the three families arose from gene fusion events which joined a common N terminus to unrelated proteins. Additionally, further sequence analysis of the strain 297 circular plasmids revealed that rearrangements appear to have played an important role in generating sequence diversity among the members of these three families and that recombinational events in the downstream flanking regions appear to have occurred independently of those within the lipoprotein-encoding genes. The association of hypervariable regions with genes which are differentially expressed and/or subject to immunological pressures suggests that the Lyme disease spirochete has exploited recombinatorial processes to foster its parasitic strategy and enhance its immunoevasiveness.
Collapse
Affiliation(s)
- D R Akins
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rosa P, Stevenson B, Tilly K. 7 Genetic Methods in Borrelia and Other Spirochaetes. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
43
|
Stevenson B, Casjens S, Rosa P. Evidence of past recombination events among the genes encoding the Erp antigens of Borrelia burgdorferi. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1869-1879. [PMID: 9695920 DOI: 10.1099/00221287-144-7-1869] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A single Borrelia burgdorferi bacterium may contain six or more different 32 kb circular plasmids (cp32s). Although these plasmids are homologous throughout much of their sequences, two loci have been identified at which they can vary significantly. The cp32 plasmids and their relatives each contain two adjacent genes, orfC and orf3, that vary in sequence between plasmids found within clones of individual bacteria. The orfC gene product is homologous to proteins involved in partitioning of bacterial plasmids, and the differences at this locus between plasmids may account for their compatibility. The orfC-orf3 loci are located approximately 5 kb from another variable locus called erp. The orfC-orf3 loci were used as physically linked markers to assess genetic rearrangements in the erp loci; this revealed examples of recombination involving both individual genes and entire erp loci. Recombination of the genes encoding the Erp antigens might contribute to the evasion of the mammalian immune response and could play roles in the establishment and persistence of B. burgdorferi infections in mammalian hosts.
Collapse
Affiliation(s)
- Brian Stevenson
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNIH, Hamilton, MT 59840USA
| | - Sherwood Casjens
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of UtahSalt Lake City, UT 84132USA
| | - Patricia Rosa
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNIH, Hamilton, MT 59840USA
| |
Collapse
|
44
|
Feng S, Hodzic E, Stevenson B, Barthold SW. Humoral immunity to Borrelia burgdorferi N40 decorin binding proteins during infection of laboratory mice. Infect Immun 1998; 66:2827-35. [PMID: 9596756 PMCID: PMC108278 DOI: 10.1128/iai.66.6.2827-2835.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1997] [Accepted: 03/06/1998] [Indexed: 02/07/2023] Open
Abstract
A Borrelia burgdorferi N40 genomic expression library was screened with serum from actively infected mice to identify gene products that elicit protective immunity. A clone that contained a putative bicistronic operon containing two genes that encoded 20- and 22-kDa lipoproteins was identified and sequenced. These genes showed homology with the genes encoding decorin binding proteins DbpB and DbpA, respectively, of B. burgdorferi 297 and B31. N40-dbpA DNA hybridized with B. burgdorferi N40 DNA on a single 48-kb linear plasmid. Homologous genes could be amplified under various degrees of stringency by PCR or hybridized by Southern blotting from B. burgdorferi sensu stricto N40 and B31, and from B. burgdorferi sensu lato PBi and 25015, but not PKo. Recombinant N40-DbpB and N40-DbpA were reactive with antibody in serum from infected mice, and serum was more reactive against N40-DbpA than against B. burgdorferi N40 recombinant P39, OspC, or OspA. Sera from mice infected with B. burgdorferi sensu lato strains PKo and PBi were weakly reactive against N40-DbpB and N40-DbpA, and sera from mice infected with 25015 were moderately reactive, compared to sera from mice infected with B. burgdorferi N40. Hyperimmunization of mice with N40-DbpA, but not N40-DbpB, induced protective immunity against syringe challenge with cultured B. burgdorferi N40. DbpA may therefore be one of the antigens responsible for eliciting protective antibody known to exist in serum from infected mice. DNA amplification and serology suggest that DbpB and DbpA are likely to have homologs throughout the B. burgdorferi sensu lato family, but they are likely to be heterogeneous.
Collapse
Affiliation(s)
- S Feng
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
45
|
Stevenson B, Bono JL, Schwan TG, Rosa P. Borrelia burgdorferi erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 1998; 66:2648-54. [PMID: 9596729 PMCID: PMC108251 DOI: 10.1128/iai.66.6.2648-2654.1998] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, can contain multiple genes encoding different members of the Erp lipoprotein family. Some arthropod-borne bacteria increase the synthesis of proteins required for transmission or mammalian infection when cultures are shifted from cool, ambient air temperature to a warmer, blood temperature. We found that all of the erp genes known to be encoded by infectious isolate B31 were differentially expressed in culture after a change in temperature, with greater amounts of message being produced by bacteria shifted from 23 to 35 degrees C than in those maintained at 23 degrees C. Mice infected with B31 by tick bite produced antibodies that recognized each of the Erp proteins within 4 weeks of infection, suggesting that the Erp proteins are produced by the bacteria during the early stages of mammalian infection and may play roles in transmission from ticks to mammals. Several of the B31 Erp proteins were also recognized by antibodies from patients with Lyme disease and may prove to be useful antigens for diagnostic testing or as components of a protective vaccine.
Collapse
Affiliation(s)
- B Stevenson
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
46
|
Akins DR, Bourell KW, Caimano MJ, Norgard MV, Radolf JD. A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 1998; 101:2240-50. [PMID: 9593780 PMCID: PMC508812 DOI: 10.1172/jci2325] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is now substantial evidence that Borrelia burgdorferi, the Lyme disease spirochete, undergoes major alterations in antigenic composition as it cycles between its arthropod and mammalian hosts. In this report, we cultivated B. burgdorferi 297 within dialysis membrane chambers implanted into the peritoneal cavities of rats to induce antigenic changes similar to those which occur during mammalian infection. Chamber-grown spirochetes, which remained fully virulent, did not express either outer surface protein A or Lp6.6, lipoproteins known to be downregulated after mammalian infection. However, they did, express p21, a well characterized outer surface protein E homologue, which is selectively expressed during infection. SDS-PAGE, two-dimensional gel electrophoresis, and immunoblot analysis revealed that chamber-grown borreliae also expressed uncharacterized proteins not expressed by in vitro-cultivated spirochetes; reactivity with sera from mice chronically infected with B. burgdorferi 297 confirmed that many of these novel proteins are selectively expressed during experimental murine infection. Finally, we used differential display RT-PCR to identify transcripts of other differentially expressed B. burgdorferi genes. One gene (2.9-7lpB) identified with this technique belongs to a family of genes located on homologous 32- and 18-kb circular plasmids. The lipoprotein encoded by 2.9-7lpB was shown to be selectively expressed by chamber-grown spirochetes and by spirochetes during experimental infection. Cultivation of B. burgdorferi in rat peritoneal implants represents a novel system for studying Lyme disease spirochetes in a mammalian host-adapted state.
Collapse
Affiliation(s)
- D R Akins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|