1
|
Bruno-Barcena JM, Azcarate-Peril MA. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome. J Funct Foods 2015; 12:92-108. [PMID: 25584074 PMCID: PMC4288025 DOI: 10.1016/j.jff.2014.10.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1-4) galacto-oligosaccharides [β (1-4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1-4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1-4) GOS generation for industrial production.
Collapse
Affiliation(s)
- Jose M. Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina
| | - M. Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, and Microbiome Core Facility, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
2
|
O'Connell KJ, O'Connell Motherway M, O'Callaghan J, Fitzgerald GF, Ross RP, Ventura M, Stanton C, van Sinderen D. Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2013; 79:6280-92. [PMID: 23913435 PMCID: PMC3811189 DOI: 10.1128/aem.01775-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate.
Collapse
Affiliation(s)
- Kerry Joan O'Connell
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Mary O'Connell Motherway
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John O'Callaghan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Gerald F. Fitzgerald
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Catherine Stanton
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Aga1, the first alpha-Galactosidase from the human bacteria Ruminococcus gnavus E1, efficiently transcribed in gut conditions. Res Microbiol 2011; 163:14-21. [PMID: 22036918 DOI: 10.1016/j.resmic.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/14/2011] [Indexed: 11/23/2022]
Abstract
Differential gene expression analysis was performed in monoxenic mice colonized with Ruminococcus gnavus strain E1, a major endogenous member of the gut microbiota. RNA arbitrarily primed-PCR fingerprinting assays allowed to specifically detect the in vivo expression of the aga1 gene, which was further confirmed by RT-PCR. The aga1 gene encoded a protein of 744 residues with calculated molecular mass of 85,207 Da. Aga1 exhibited significant similarity with previously characterized α-Galactosidases of the GH 36 family. Purified recombinant protein demonstrated high catalytic activity (104 ± 7 U mg(-1)) and efficient p-nitrophenyl-α-d-galactopyranoside hydrolysis [k(cat)/K(m) = 35.115 ± 8.82 s(-1) mM(-1) at 55 °C and k(cat)/K(m) = 17.48 ± 4.25 s(-1) mM(-1) at 37 °C].
Collapse
|
4
|
Fang W, St Leger RJ. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. PLANT PHYSIOLOGY 2010; 154:1549-57. [PMID: 20837701 PMCID: PMC2971628 DOI: 10.1104/pp.110.163014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The symbiotic associations between rhizospheric fungi and plants have enormous environmental impact. Fungi are crucial to plant health as antagonists of pathogens and herbivores and facilitate the uptake of soil nutrients. However, little is known about the plant products obtained by fungi in exchange or how they are transported through the symbiotic interface. Here, we demonstrate that sucrose and raffinose family oligosaccharides in root exudates are important for rhizosphere competence in the insect pathogen Metarhizium robertsii (formerly known as Metarhizium anisopliae). We identified mutants in the Metarhizium raffinose transporter (Mrt) gene of M. robertsii that grew poorly in root exudate and were greatly reduced in rhizosphere competence on grass roots. Studies on sugar uptake, including competition assays, revealed that MRT was a sucrose and galactoside transporter. Disrupting MRT resulted in greatly reduced or no growth on sucrose and galactosides but did not affect growth on monosaccharides or oligosaccharides composed entirely of glucose subunits. Consistent with this, expression of Mrt is exclusively up-regulated by galactosides and sucrose. Expressing a green fluorescent protein gene under the control of the Mrt promoter confirmed that MRT was expressed by germlings in the vicinity of grass roots but not in surrounding bulk soil. Disrupting Mrt did not reduce virulence to insects, demonstrating that Mrt is exclusively involved in M. robertsii's interactions with plants. To our knowledge, MRT is the first oligosaccharide transporter identified and characterized in a fungus and is unique to filamentous fungi, but homologous genes in Magnaporthe, Ustilago, Aspergillus, Fusarium, Epichloe, and Penicillium species indicate that oligosaccharide transport is of widespread significance.
Collapse
Affiliation(s)
- Weiguo Fang
- Department of Entomology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
5
|
Hugouvieux-Cotte-Pattat N, Charaoui-Boukerzaza S. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol 2009; 191:6960-7. [PMID: 19734309 PMCID: PMC2772473 DOI: 10.1128/jb.00594-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi (Dickeya dadantii) is a plant pathogenic bacterium that has a large capacity to degrade the plant cell wall polysaccharides. The present study reports the metabolic pathways used by E. chrysanthemi to assimilate the oligosaccharides sucrose and raffinose, which are particularly abundant plant sugars. E. chrysanthemi is able to use sucrose, raffinose, or melibiose as a sole carbon source for growth. The two gene clusters scrKYABR and rafRBA are necessary for their catabolism. The phenotypic analysis of scr and raf mutants revealed cross-links between the assimilation pathways of these oligosaccharides. Sucrose catabolism is mediated by the genes scrKYAB. While the raf cluster is sufficient to catabolize melibiose, it is incomplete for raffinose catabolism, which needs two additional steps that are provided by scrY and scrB. The scr and raf clusters are controlled by specific repressors, ScrR and RafR, respectively. Both clusters are controlled by the global activator of carbohydrate catabolism, the cyclic AMP receptor protein (CRP). E. chrysanthemi growth with lactose is possible only for mutants with a derepressed nonspecific lactose transport system, which was identified as RafB. RafR inactivation allows the bacteria to the assimilate the novel substrates lactose, lactulose, stachyose, and melibionic acid. The raf genes also are involved in the assimilation of alpha- and beta-methyl-D-galactosides. Mutations in the raf or scr genes did not significantly affect E. chrysanthemi virulence. This could be explained by the large variety of carbon sources available in the plant tissue macerated by E. chrysanthemi.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, Microbiologie Adaptation et Pathogénie UMR5240, batiment Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
6
|
Evidence for the transport of maltose by the sucrose permease, CscB, of Escherichia coli. J Membr Biol 2009; 228:79-88. [PMID: 19294451 DOI: 10.1007/s00232-009-9161-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to examine the sugar recognition and transport properties of the sucrose permease (CscB), a secondary active transporter from Escherichia coli. We tested the hypothesis that maltose transport is conferred by the wild-type CscB transporter. Cells of E. coli HS4006 harboring pSP72/cscB were red on maltose MacConkey agar indicator plates. We were able to measure "downhill" maltose transport and establish definitive kinetic behavior for maltose entry in such cells. Maltose was an effective competitor of sucrose transport in cells with CscB, suggesting that the respective maltose and sucrose binding sites and translocation pathways through the CscB channel overlap. Accumulation ("uphill" transport) of maltose by cells with CscB was profound, demonstrating active transport of maltose by CscB. Sequencing of cscB encoded on plasmid pSP72/cscB used in cells for transport studies indicate an unaltered primary CscB structure, ruling out the possibility that mutation conferred maltose transport by CscB. We conclude that maltose is a bona fide substrate for the sucrose permease of E. coli. Thus, future studies of sugar binding, transport, and permease structure should consider maltose, as well as sucrose.
Collapse
|
7
|
Tavoulari S, Frillingos S. Substrate Selectivity of the Melibiose Permease (MelY) from Enterobacter cloacae. J Mol Biol 2008; 376:681-93. [DOI: 10.1016/j.jmb.2007.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/01/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
8
|
Amino acids that confer transport of raffinose and maltose sugars in the raffinose permease (RafB) of Escherichia coli as implicated by spontaneous mutations at Val-35, Ser-138, Ser-139, Gly-389 and Ile-391. J Membr Biol 2007; 220:87-95. [PMID: 18008022 DOI: 10.1007/s00232-007-9077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
In order to identify amino acid residues in the Escherichia coli raffinose-H(+) permease (RafB) that play a role in sugar selection and transport, we first incubated E. coli HS4006 containing plasmid pRU600 (expresses inducible raffinose permease and alpha-galactosidase) on maltose MacConkey indicator plates overnight. Initially, all colonies were white, indicating no fermentation of maltose. Upon further incubation, 100 mutants appeared red. pRU600 DNA was prepared from 55 mutants. Five mutants transferred the phenotype for fermentation of maltose (red). Plasmid DNA from five maltose-positive phenotype transformants was prepared and sequenced, revealing three distinct types of mutations. Two mutants exhibited Val-35-->Ala (MT1); one mutant had Ile-391-->Ser (MT2); and two mutants had Ser-138-->Asp, Ser-139-->Leu and Gly-389-->Ala (MT3). Transport studies of [(3)H]-maltose showed that cells harboring MT1, MT2 and MT3 had greater uptake (P <or= 0.05) than cells harboring wild-type RafB. However, [(14)C]-raffinose uptake was reduced in all mutant cells (P <or= 0.05) with MT1, MT2 and MT3 mutants compared to cells harboring wild-type RafB. Kinetic analysis showed enhanced apparent K (m) values for maltose and reduced V (max)/ K (m) ratios for raffinose compared to wild-type values. The apparent K (i) value of maltose for RafB indicates a competitive relationship between maltose and raffinose. Maltose "uphill" accumulation was greater for mutants (P <or= 0.05) than for cells with wild-type RafB. Thus, we implicate residues in RafB that are responsible for raffinose transport and suggest that the substituted residues in RafB dictate structures that enhance transport of maltose.
Collapse
|
9
|
Shinnick SG, Perez SA, Varela MF. Altered substrate selection of the melibiose transporter (MelY) of Enterobacter cloacae involving point mutations in Leu-88, Leu-91, and Ala-182 that confer enhanced maltose transport. J Bacteriol 2003; 185:3672-7. [PMID: 12775706 PMCID: PMC156228 DOI: 10.1128/jb.185.12.3672-3677.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated mutants of Escherichia coli HS4006 containing the melibiose-H(+) symporter (MelY) from Enterobacter cloacae that had enhanced fermentation on 1% maltose MacConkey plates. DNA sequencing revealed three site classes of mutations: L-88-P, L-91-P, and A-182-P. The mutants L-88-P and L-91-P had 3.6- and 5.1-fold greater maltose uptake than the wild type and enhanced apparent affinities for maltose. Energy-coupled transport was defective for melibiose accumulation, but detectable maltose accumulation for the mutants indicated that active transport is dependent upon the substrate transported through the carrier. We conclude that the residues Leu-88, Leu-91 (transmembrane segment 3 [TMS-3]), and Ala-182 (TMS-6) of MelY mediate sugar selection. These data represent the first MelY mutations that confer changes in sugar selection.
Collapse
Affiliation(s)
- Steven G Shinnick
- Department of Biology, Eastern New Mexico University, Portales, New Mexico 88130, USA
| | | | | |
Collapse
|
10
|
Silvestroni A, Connes C, Sesma F, De Giori GS, Piard JC. Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum. Appl Environ Microbiol 2002; 68:5464-71. [PMID: 12406739 PMCID: PMC129937 DOI: 10.1128/aem.68.11.5464-5471.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 08/29/2002] [Indexed: 11/20/2022] Open
Abstract
Alpha-galactosides are abundant sugars in legumes such as soy. Because of the lack of alpha-galactosidase (alpha-Gal) in the digestive tract, humans are unable to digest these sugars, which consequently induce flatulence. To develop the consumption of the otherwise highly nutritional soy products, the use of exogenous alpha-Gal is promising. In this framework, we characterized the melA gene for alpha-Gal in Lactobacillus plantarum. The melA gene encodes a cytoplasmic 84-kDa protein whose enzymatically active form occurs as oligomers. The melA gene was cloned and expressed in Escherichia coli, yielding an active alpha-Gal. We show that melA is transcribed from its own promoter, yielding a monocistronic mRNA, and that it is regulated at the transcriptional level, i.e., it is induced by melibiose but is not totally repressed by glucose. Posttranscriptional regulation by the carbon source could also occur. Upstream of melA, a putative galactoside transporter, designated RafP, was identified that shows high homology to LacS, the unique transporter for both alpha- and beta-galactosides in Streptococcus thermophilus. rafP is also expressed as a monocistronic mRNA. Downstream of melA, the lacL and lacM genes were identified that encode a heterodimeric beta-galactosidase. A putative galM gene identified in the same cluster suggests the presence of a galactose operon. These results indicate that the genes involved in galactoside catabolism are clustered in L. plantarum ATCC 8014. This first genetic characterization of melA and of its putative associated transporter, rafP, in a lactobacillus opens doors to various applications both in the manufacture of soy-derived products and in probiotic and nutraceutical issues.
Collapse
Affiliation(s)
- Aurelio Silvestroni
- Centro de Referencia para Lactobacillos (CERELA-CONICET), Chacabuco 145, 4000 Tucumán, Argentina. INRA-URLGA, Useful Bacterial Surface Proteins, 78352 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
11
|
Cordat E, Leblanc G, Mus-Veteau I. Evidence for a role of helix IV in connecting cation- and sugar-binding sites of Escherichia coli melibiose permease. Biochemistry 2000; 39:4493-9. [PMID: 10757998 DOI: 10.1021/bi991852i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the structural organization model of melibiose permease, we assessed the individual contributions of the N-terminal tryptophans to the transporter fluorescence variations induced by the binding of cations and beta-configured sugars, by replacement of the six N-terminal tryptophans by phenylalanines and the study of the signal changes. Only two mutations, W116F located in helix IV and W128F located in the cytoplasmic loop 4-5, impair permease activity. The intrinsic fluorescence spectroscopy analysis of the other mutants suggests that W54, located in helix II, W116, and W128 are mostly responsible for the cation-induced fluorescence variations. These tryptophans, W116 and W128, would also be responsible for the beta-galactoside-induced fluorescence changes observed in the N-terminal domain of the transporter. The implication of W116 and W128 in both the cation- and beta-galactoside-induced fluorescence variations led us to investigate in detail the effects of their mutations on the functional properties of the permease. The results obtained suggest that the domains harboring the two tryptophans, or the residues themselves, play a critical role in the mechanism of Na(+)/sugar symport. Taken together, the results presented in this paper and previous results are consistent with a fundamental role of helix IV in connecting cation- and sugar-binding sites of the melibiose permease.
Collapse
Affiliation(s)
- E Cordat
- Laboratoire des Membranes Cellulaires (Bat. Jean Maetz), Université de Nice/Sophia-Antipolis, CNRS (ERS 1253), LRC-CEA 16V, 06238 Villefranche Sur Mer Cedex 1, France
| | | | | |
Collapse
|