1
|
León MJ, Vera-Gargallo B, de la Haba RR, Sánchez-Porro C, Ventosa A. Integrating genomic evidence for an updated taxonomy of the bacterial genus Spiribacter. Sci Rep 2024; 14:30057. [PMID: 39627276 PMCID: PMC11615355 DOI: 10.1038/s41598-024-80127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The genus Spiribacter encompasses halophilic bacteria widely distributed in hypersaline environments worldwide. Despite their ecological significance, initially isolating Spiribacter species under laboratory settings was challenging due to the lack of knowledge of their growth and cultivation requirements. However, with improved understanding of their ecological niche and metabolic pathways, additional species of Spiribacter have been successfully isolated and identified from diverse locations around the globe. Enriched media with sodium pyruvate as carbon source facilitated the isolation of twelve new strains closely related to the genus Spiribacter from hypersaline environments in Spain. Genome sequencing and analysis of these new strains and previously described Spiribacter species provided insights into their genomic features and phylogenomic relationships, supporting the delineation of three distinct new species within this genus, designated as Spiribacter insolitus sp. nov., Spiribacter onubensis sp. nov., and Spiribacter pallidus sp. nov. In Spiribacter species, streamlined genomes enhance survival in hypersaline environments by reducing non-essential genes and optimizing resource utilization. Key genes involved in osmoprotectant mechanisms, including those for the metabolism of myo-inositol, hydroxyproline, and L-proline, were identified and numerous transporters were noted, ensuring efficient nutrient acquisition and osmotic balance. Notably, these new species, along with other Spiribacter strains, exhibit metabolic diversity in utilizing inorganic sulfur compounds, including thiosulfate and tetrathionate, for energy production and adaptation to hypersaline environments. The presence of thiosulfate dehydrogenase (TsdA) genes suggests their capability to oxidize thiosulfate to tetrathionate, potentially influencing both aerobic and anaerobic respiration. Furthermore, the prevalence of the sqr gene indicates a role for sulfide oxidation in Spiribacter metabolism, underlining their metabolic versatility in saline habitats. These adaptations allow Spiribacter to thrive in nutrient-limited, high-salinity habitats. Moreover, genome mining analysis and physiological disparities observed in the already described species Spiribacter halobius raise significant challenges to its classification within the genus Spiribacter.
Collapse
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain.
| |
Collapse
|
2
|
Trischler R, Rustler SM, Poehlein A, Daniel R, Breitenbach M, Helfrich EJN, Müller V. 3-Hydroxypropionate production from myo-inositol by the gut acetogen Blautia schinkii. Environ Microbiol 2024; 26:e16692. [PMID: 39206693 DOI: 10.1111/1462-2920.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Species of the genus Blautia are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen Blautia schinkii can grow on myo-inositol. We identified the pathway of myo-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, myo-inositol is oxidized to 2-keto-myo-inositol. This compound is then metabolized by a series of enzymes - a dehydratase, hydrolase, isomerase and kinase - to form 2-deoxy-5-keto-d-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden-Meyerhof-Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for myo-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Stefanie M Rustler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Anja Poehlein
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Rolf Daniel
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Milena Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Eric J N Helfrich
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Yoshida KI, Bott M. Microbial synthesis of health-promoting inositols. Curr Opin Biotechnol 2024; 87:103114. [PMID: 38520822 DOI: 10.1016/j.copbio.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
D-chiro-inositol and scyllo-inositol are known for their health-promoting properties and promising as ingredients for functional foods. Strains of Bacillus subtilis and Corynebacterium glutamicum were created by metabolic engineering capable of inexpensive production of these two rare inositols from myo-inositol, which is the most common inositol in nature. In addition, further modifications have enabled the synthesis of the two rare inositols from the much-cheaper carbon sources, glucose or sucrose.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, University of Kobe, Kobe, Japan.
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
5
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
6
|
Shi M, Qin T, Cheng Z, Zheng D, Pu Z, Yang Z, Lim KJ, Yang M, Wang Z. Exploring the Core Bacteria and Functional Traits in Pecan (Carya illinoinensis) Rhizosphere. Microbiol Spectr 2023; 11:e0011023. [PMID: 37310220 PMCID: PMC10433825 DOI: 10.1128/spectrum.00110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth. In this study, we used metagenomic sequencing to compare the selection capabilities of seedling pecan and seedling hickory at taxonomic and functional levels in bulk soil and the rhizosphere. We observed that pecan has a stronger capacity to enrich rhizosphere plant-beneficial microbe bacteria (e.g., Rhizobium, Novosphingobium, Variovorax, Sphingobium, and Sphingomonas) and their associated functional traits than hickory. We also noted that the ABC transporters (e.g., monosaccharide transporter) and bacterial secretion systems (e.g., type IV secretion system) are the core functional traits of pecan rhizosphere bacteria. Rhizobium and Novosphingobium are the main contributors to the core functional traits. These results suggest that monosaccharides may help Rhizobium to efficiently enrich this niche. Novosphingobium may use a type IV secretion system to interact with other bacteria and thereby influence the assembly of pecan rhizosphere microbiomes. Our data provide valuable information to guide core microbial isolation and expand our knowledge of the assembly mechanisms of plant rhizosphere microbes. IMPORTANCE The rhizosphere microbiome has been identified as a fundamental factor in maintaining plant health, helping plants to fight the deleterious effects of diseases and abiotic stresses. However, to date, studies on the nut tree microbiome have been scarce. Here, we observed a significant "rhizosphere effect" on the seedling pecan. We furthermore demonstrated the core rhizosphere microbiome and function in the seedling pecan. Moreover, we deduced possible factors that help the core bacteria, such as Rhizobium, to efficiently enrich the pecan rhizosphere and the importance of the type IV system for the assembly of pecan rhizosphere bacterial communities. Our findings provide information for understanding the mechanism of the rhizosphere microbial community enrichment process.
Collapse
Affiliation(s)
- Mengting Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhitao Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Dingwei Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhenyang Pu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
8
|
Weber M, Fuchs TM. Metabolism in the Niche: a Large-Scale Genome-Based Survey Reveals Inositol Utilization To Be Widespread among Soil, Commensal, and Pathogenic Bacteria. Microbiol Spectr 2022; 10:e0201322. [PMID: 35924911 PMCID: PMC9430895 DOI: 10.1128/spectrum.02013-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Phytate is the main phosphorus storage molecule of plants and is therefore present in large amounts in the environment and in the diet of humans and animals. Its dephosphorylated form, the polyol myo-inositol (MI), can be used by bacteria as a sole carbon and energy source. The biochemistry and regulation of MI degradation were deciphered in Bacillus subtilis and Salmonella enterica, but a systematic survey of this catabolic pathway has been missing until now. For a comprehensive overview of the distribution of MI utilization, we analyzed 193,757 bacterial genomes, representing a total of 24,812 species, for the presence, organization, and taxonomic prevalence of inositol catabolic gene clusters (IolCatGCs). The genetic capacity for MI degradation was detected in 7,384 (29.8%) of all species for which genome sequences were available. IolCatGC-positive species were particularly found among Actinobacteria and Proteobacteria and to a much lesser extent in Bacteroidetes. IolCatGCs are very diverse in terms of gene number and functions, whereas the order of core genes is highly conserved on the phylum level. We predict that 111 animal pathogens, more than 200 commensals, and 430 plant pathogens or rhizosphere bacteria utilize MI, underscoring that IolCatGCs provide a growth benefit within distinct ecological niches. IMPORTANCE This study reveals that the capacity to utilize inositol is unexpectedly widespread among soil, commensal, and pathogenic bacteria. We assume that this yet-neglected metabolism plays a pivotal role in the microbial turnover of phytate and inositols. The bioinformatic tool established here enables predicting to which extent and genetic variance a bacterial determinant is present in all genomes sequenced so far.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
9
|
Top J, Baan J, Bisschop A, Arredondo-Alonso S, van Schaik W, Willems RJL. Functional characterization of a gene cluster responsible for inositol catabolism associated with hospital-adapted isolates of Enterococcus faecium. MICROBIOLOGY-SGM 2021; 167. [PMID: 34491894 DOI: 10.1099/mic.0.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jery Baan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Ramp P, Lehnert A, Matamouros S, Wirtz A, Baumgart M, Bott M. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease. Metab Eng 2021; 67:173-185. [PMID: 34224896 DOI: 10.1016/j.ymben.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Lehnert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
11
|
Ichikawa S, Tsuge Y, Karita S. Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms 2021; 9:microorganisms9030593. [PMID: 33805707 PMCID: PMC8002186 DOI: 10.3390/microorganisms9030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
| | - Yoichiro Tsuge
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| |
Collapse
|
12
|
Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Cui G, Zhou Y, Li W, Gao Z, Huang J, Wang Y. A novel bacterial phylum that participates in carbon and osmolyte cycling in the Challenger Deep sediments. Environ Microbiol 2020; 23:3758-3772. [PMID: 33331063 DOI: 10.1111/1462-2920.15363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
Large amounts of detrital organic matter and osmolytes accumulate in the sediments of hadal trenches (>6000 m depth) due to the funnelling effect. It is still unknown whether there are novel active microbes that depend on specific carbon sources in extreme and isolated environments. In this study, we present a novel active bacterial phylum, Candidatus Tianyabacteria in the FCB superphylum, which was enriched in sediments collected from the Challenger Deep. Genome binning resulted in high-quality Ca. Tianyabacteria genomes representing two Ca. Tianyabacteria lineages (L1 and L2) in sediments 0-21 cm below the surface (cmbsf); L1 tends to be abundant in the upper layers (0-9 cmbsf), and L2 seems to be more prevalent in the deeper layers (12-21 cmbsf). Gene annotation and transcriptomics results indicate that the two lineages might import and catalyse amino acids and myo-inositol into central carbon metabolism for a heterotrophic lifestyle. Probably due to differences in environmental oxygen levels, the L2 genomes harbour gene clusters responsible for denitrification and fermentation, while the L1 genomes encode octahaem cytochrome c and multicopper oxidase using unknown substrates. The Ca. Tianyabacteria are thus novel heterotrophic organisms that participate in processes of carbon, nitrogen and organic osmolyte cycling in hadal sediments.
Collapse
Affiliation(s)
- Guojie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiaomei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
14
|
Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2020; 371:science.aba5257. [PMID: 33335020 DOI: 10.1126/science.aba5257] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.
Collapse
Affiliation(s)
- Anna Kuchina
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Leandra M Brettner
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Luana Paleologu
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Carignano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Kibler
- Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - R William DePaolo
- Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA. .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Yoshida KI, Shirae Y, Nishimura R, Fukui K, Ishikawa S. Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. MICROBIOLOGY-SGM 2020; 167. [PMID: 33320079 DOI: 10.1099/mic.0.001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus. When iolQ was inactivated in G. kaustophilus, not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5'-RGWAAGCGCTTSCY-3' (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Yusuke Shirae
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Ryo Nishimura
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| |
Collapse
|
16
|
Nagar S, Talwar C, Haider S, Puri A, Ponnusamy K, Gupta M, Sood U, Bajaj A, Lal R, Kumar R. Phylogenetic Relationships and Potential Functional Attributes of the Genus Parapedobacter: A Member of Family Sphingobacteriaceae. Front Microbiol 2020; 11:1725. [PMID: 33013721 PMCID: PMC7500135 DOI: 10.3389/fmicb.2020.01725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
The genus Parapedobacter was established to describe a novel genus within the family Sphingobacteriaceae and derives its name from Pedobacter, with which it is shown to be evolutionarily related. Despite this, Parapedobacter and Pedobacter do not share very high 16S rRNA gene sequence similarities. Therefore, we hypothesized whether these substantial differences at the 16S rRNA gene level depict the true phylogeny or that these genomes have actually diverged. Thus, we performed genomic analysis of the four available genomes of Parapedobacter to better understand their phylogenomic position within family Sphingobacteriaceae. Our results demonstrated that Parapedobacter is more closely related to species of Olivibacter, as opposed to the genus Pedobacter. Further, we identified a significant class of enzymes called pectinases with potential industrial applications within the genomes of Parapedobacter luteus DSM 22899T and Parapedobacter composti DSM 22900T. These enzymes, specifically pectinesterases and pectate lyases, are presumed to have largely different catalytic activities based on very low sequence similarities to already known enzymes and thus may be exploited for industrial applications. We also determined the complete Bacteroides aerotolerance (Bat) operon (batA, batB, batC, batD, batE, hypothetical protein, moxR, and pa3071) within the genome of Parapedobacter indicus RK1T. This expands the definition of genus Parapedobacter to containing members that are able to tolerate oxygen stress using encoded oxidative stress responsive systems. By conducting a signal propagation network analysis, we determined that BatD, BatE, and hypothetical proteins are the major controlling hubs that drive the expression of Bat operon. As a key metabolic difference, we also annotated the complete iol operon within the P. indicus RK1T genome for utilization of all three stereoisomers of inositol, namely myo-inositol, scyllo-inositol, and 1D-chiro-inositol, which are abundant sources of organic phosphate found in soils. The results suggest that the genus Parapedobacter holds promising applications owing to its environmentally relevant genomic adaptations, which may be exploited in the future.
Collapse
Affiliation(s)
- Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Akshita Puri
- Department of Zoology, University of Delhi, Delhi, India.,P.G.T.D, Zoology, R.T.M Nagpur University, Nagpur, India
| | | | - Madhuri Gupta
- Department of Zoology, University of Delhi, Delhi, India
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, India.,The Energy and Resources Institute, New Delhi, India
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, Delhi, India.,Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India.,The Energy and Resources Institute, New Delhi, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, Delhi, India.,P.G. Department of Zoology, Magadh University, Bodh Gaya, India
| |
Collapse
|
17
|
Vílchez JI, Yang Y, He D, Zi H, Peng L, Lv S, Kaushal R, Wang W, Huang W, Liu R, Lang Z, Miki D, Tang K, Paré PW, Song CP, Zhu JK, Zhang H. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. NATURE PLANTS 2020; 6:983-995. [PMID: 32661278 DOI: 10.1038/s41477-020-0707-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Root-associated soil bacteria can strongly influence plant fitness. DNA methylation is an epigenetic mark important to many fundamental biological processes; however, its roles in plant interactions with beneficial microbes remain elusive. Here, we report that active DNA demethylation in Arabidopsis controls root secretion of myo-inositol and consequently plant growth promotion triggered by Bacillus megaterium strain YC4. Root-secreted myo-inositol is critical for YC4 colonization and preferentially attracts B. megaterium among the examined bacteria species. Active DNA demethylation antagonizes RNA-directed DNA methylation in controlling myo-inositol homeostasis. Importantly, we demonstrate that active DNA demethylation controls myo-inositol-mediated mutualism between YC4 and Solanum lycopersicum, thus suggesting a conserved nature of this epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Juan I Vílchez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Danxia He
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Suhui Lv
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Richa Kaushal
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | | | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China.
| |
Collapse
|
18
|
Turner SE, Pang YY, O'Malley MR, Weisberg AJ, Fraser VN, Yan Q, Chang JH, Anderson JC. A DeoR-Type Transcription Regulator Is Required for Sugar-Induced Expression of Type III Secretion-Encoding Genes in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:509-518. [PMID: 31829102 DOI: 10.1094/mpmi-10-19-0290-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.
Collapse
Affiliation(s)
- Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Honors College, Oregon State University
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Megan R O'Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Valerie N Fraser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Molecular and Cellular Biology Program, Oregon State University
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Center for Genome Research and Biocomputing, Oregon State University
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
19
|
Illikoud N, Gohier R, Werner D, Barrachina C, Roche D, Jaffrès E, Zagorec M. Transcriptome and Volatilome Analysis During Growth of Brochothrix thermosphacta in Food: Role of Food Substrate and Strain Specificity for the Expression of Spoilage Functions. Front Microbiol 2019; 10:2527. [PMID: 31781057 PMCID: PMC6856214 DOI: 10.3389/fmicb.2019.02527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Brochothrix thermosphacta is one of the main spoilers in food, responsible for meat and seafood spoilage through the production of malodorous volatile organic compounds. The molecules produced by this bacterium depend on the substrate (meat or seafood) and the storage conditions such as gas mixtures used in the packaging. It seems also that the spoilage potential is strain dependent as production of diacetyl and acetoin, two molecules responsible for seafood spoilage, varies with strains. Therefore, this suggests the involvement of different metabolic functions depending on both food substrate and strain capacities. In this study, we selected two strains with different abilities to produce diacetyl and acetoin and compared their behavior after grown in beef or cooked peeled shrimp juices. We determined the genes upregulated by both strains depending on the growth substrate and those that were specifically upregulated in only one strain. The genes upregulated by both strains in meat or in shrimp juice revealed the importance of the substrate for inducing specific metabolic pathways. The examination of genes that were specifically upregulated in only one of the two strains revealed strain features associated to specific substrates and also strain-specific regulations of metabolic pathways putatively leading to different levels of spoilage molecule production. This shows that the spoilage potential of B. thermosphacta depends on nutrients provided by food substrate and on metabolic activity potential that each strain possesses.
Collapse
Affiliation(s)
| | | | | | - Célia Barrachina
- MGX, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - David Roche
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | | | | |
Collapse
|
20
|
Yuan C, Yang P, Wang J, Jiang L. Myo-inositol utilization by Citrobacter koseri promotes brain infection. Biochem Biophys Res Commun 2019; 517:427-432. [PMID: 31376937 DOI: 10.1016/j.bbrc.2019.07.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
Citrobacter species are opportunistic bacterial pathogens that are implicated in both nosocomial and community-acquired infections. Among the Citrobacter species, Citrobacter koseri is often isolated from clinical material, and it can cause meningitis and brain abscesses in neonates and immunocompromised individuals, thus posing a great threat to human health. However, the virulence determinants of C. koseri remain largely unknown. Myo-inositol is an abundant carbohydrate in the environment and in certain organs of the human body, especially the brain. The C. koseri genome harbors a cluster of genes, QCQ70420.1 to QCQ70429.1 (named the Ino-cluster in this study), which encode IolBCDE, MmsA, and an ATP-binding cassette transporter. The gene cluster may be involved in the utilization of myo-inositol. To investigate the functions of the Ino-cluster in C. koseri, we constructed a mutant strain by deleting the Ino-cluster and found that the mutant could not use myo-inositol as the sole carbon source, confirming that this cluster is responsible for myo-inositol utilization. Moreover, we investigated the function of the Ino-cluster and myo-inositol utilization in C. koseri pathogenicity. Deletion of the Ino-cluster significantly impaired C. koseri colonization of the brain of infected Sprague-Dawley (SD) rats and BALB/c mice, and this increased the survival rate of the infected animals, indicating that the Ino-cluster and the ability to use myo-inositol are essential for C. koseri pathogenicity. Taken together, our findings suggest that using the Ino-cluster products, C. koseri can exploit the abundant myo-inositol in the brain as a carbon source for growth, thus promoting colonization and virulence.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Pan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Junyue Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China.
| |
Collapse
|
21
|
Kai-Cheen A, Lay-Harn G. Comparison of aqueous soluble proteins profile of Mycobacterium tuberculosis H37Rv and H37Ra and a Malaysian clinical isolate. Biotechnol Appl Biochem 2018; 65:876-882. [PMID: 30132993 DOI: 10.1002/bab.1687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/15/2018] [Indexed: 11/06/2022]
Abstract
Differentially expressed aqueous soluble proteins between Mycobacterium tuberculosis H37Ra and H37Rv were identified. The protein extracts were separated by two-dimensional gel electrophoresis followed by tandem mass spectrometric analysis. Twelve proteins were detected to be differentially expressed significantly between virulent strain H37Rv and attenuated strain H37Ra. The differentially expression of these proteins was validated by a recently isolated clinical virulent strains of M. tuberculosis, TB138. Out of the 12 proteins identified, which consisted of ten upregulated and two downregulated proteins, nine were belonged to intermediate metabolism and respiration protein group, two were in lipid metabolism, and one protein was involved in information pathways and virulence. Among these proteins, two of the upregulated proteins, namely, mmsA and pntAa, showed a consistent expression pattern in both virulent mycobacterium strains. These proteins can serve as potential biomarkers for the intervention treatment of TB.
Collapse
Affiliation(s)
- Ang Kai-Cheen
- School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Gam Lay-Harn
- School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
22
|
Kang DM, Michon C, Morinaga T, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD +-dependent scyllo-inositol dehydrogenase. BMC Microbiol 2017; 17:154. [PMID: 28693424 PMCID: PMC5504672 DOI: 10.1186/s12866-017-1065-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/01/2017] [Indexed: 11/23/2022] Open
Abstract
Background Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD+-dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. Results Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. Conclusions IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.
Collapse
Affiliation(s)
- Dong-Min Kang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Present address: Department of Plant Medicine and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Christophe Michon
- Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tetsuro Morinaga
- Gene testing Business Department, LS Business Division, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi, Kobe, 651-2271, Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657, Kobe, -8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657, Kobe, -8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ken-Ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657, Kobe, -8501, Japan. .,Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
23
|
Global Transcriptional Analysis of Virus-Host Interactions between Phage ϕ29 and Bacillus subtilis. J Virol 2016; 90:9293-304. [PMID: 27489274 DOI: 10.1128/jvi.01245-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genome-wide interactions of Bacillus subtilis and its lytic phage ϕ29 during the early stage of infection. Simultaneous high-resolution analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes. Phage ϕ29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including translation). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage ϕ29 messenger RNAs that adds an additional layer to the viral transcriptome complexity. IMPORTANCE The specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcriptional response of the Gram-positive model Bacillus subtilis to phage ϕ29 infection.
Collapse
|
24
|
Metabolism of myo-Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages. Appl Environ Microbiol 2016; 82:5000-14. [PMID: 27287324 DOI: 10.1128/aem.01018-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Legionella pneumophila is a natural parasite of environmental amoebae and the causative agent of a severe pneumonia termed Legionnaires' disease. The facultative intracellular pathogen employs a bipartite metabolism, where the amino acid serine serves as the major energy supply, while glycerol and glucose are mainly utilized for anabolic processes. The L. pneumophila genome harbors the cluster lpg1653 to lpg1649 putatively involved in the metabolism of the abundant carbohydrate myo-inositol (here termed inositol). To assess inositol metabolism by L. pneumophila, we constructed defined mutant strains lacking lpg1653 or lpg1652, which are predicted to encode the inositol transporter IolT or the inositol-2-dehydrogenase IolG, respectively. The mutant strains were not impaired for growth in complex or defined minimal media, and inositol did not promote extracellular growth. However, upon coinfection of Acanthamoeba castellanii, the mutants were outcompeted by the parental strain, indicating that the intracellular inositol metabolism confers a fitness advantage to the pathogen. Indeed, inositol added to L. pneumophila-infected amoebae or macrophages promoted intracellular growth of the parental strain, but not of the ΔiolT or ΔiolG mutant, and growth stimulation by inositol was restored by complementation of the mutant strains. The expression of the Piol promoter and bacterial uptake of inositol required the alternative sigma factor RpoS, a key virulence regulator of L. pneumophila Finally, the parental strain and ΔiolG mutant bacteria but not the ΔiolT mutant strain accumulated [U-(14)C6]inositol, indicating that IolT indeed functions as an inositol transporter. Taken together, intracellular L. pneumophila metabolizes inositol through the iol gene products, thus promoting the growth and virulence of the pathogen. IMPORTANCE The environmental bacterium Legionella pneumophila is the causative agent of a severe pneumonia termed Legionnaires' disease. The opportunistic pathogen replicates in protozoan and mammalian phagocytes in a unique vacuole. Amino acids are thought to represent the prime source of carbon and energy for L. pneumophila However, genome, transcriptome, and proteome studies indicate that the pathogen not only utilizes amino acids as carbon sources but possesses broader metabolic capacities. In this study, we analyzed the metabolism of inositol by extra- and intracellularly growing L. pneumophila By using genetic, biochemical, and cell biological approaches, we found that L. pneumophila accumulates and metabolizes inositol through the iol gene products, thus promoting the intracellular growth, virulence, and fitness of the pathogen. Our study significantly contributes to an understanding of the intracellular niche of a human pathogen.
Collapse
|
25
|
Megson ZA, Pittenauer E, Duda KA, Engel R, Ortmayr K, Koellensperger G, Mach L, Allmaier G, Holst O, Messner P, Schäffer C. Inositol-phosphodihydroceramides in the periodontal pathogen Tannerella forsythia: Structural analysis and incorporation of exogenous myo-inositol. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1417-27. [PMID: 26277409 PMCID: PMC4587543 DOI: 10.1016/j.bbalip.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Unique phosphodihydroceramides containing phosphoethanolamine and glycerol have been previously described in Porphyromonas gingivalis. Importantly, they were shown to possess pro-inflammatory properties. Other common human bacteria were screened for the presence of these lipids, and they were found, amongst others, in the oral pathogen Tannerella forsythia. To date, no detailed study into the lipids of this organism has been performed. METHODS Lipids were extracted, separated and purified by HPTLC, and analyzed using GC-MS, ESI-MS and NMR. Of special interest was how T. forsythia acquires the metabolic precursors for the lipids studied here. This was assayed by radioactive and stable isotope incorporation using carbon-14 and deuterium labeled myo-inositol, added to the growth medium. RESULTS T. forsythia synthesizes two phosphodihydroceramides (Tf GL1, Tf GL2) which are constituted by phospho-myo-inositol linked to either a 17-, 18-, or 19-carbon sphinganine, N-linked to either a branched 17:0(3-OH) or a linear 16:0(3-OH) fatty acid which, in Tf GL2, is, in turn, ester-substituted with a branched 15:0 fatty acid. T. forsythia lacks the enzymatic machinery required for myo-inositol synthesis but was found to internalize inositol from the medium for the synthesis of both Tf GL1 and Tf GL2. CONCLUSION The study describes two novel glycolipids in T. forsythia which could be essential in this organism. Their synthesis could be reliant on an external source of myo-inositol. GENERAL SIGNIFICANCE The effects of these unique lipids on the immune system and their role in bacterial virulence could be relevant in the search for new drug targets.
Collapse
Affiliation(s)
- Zoë Anne Megson
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna, University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Katarzyna Anna Duda
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Regina Engel
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Karin Ortmayr
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria; Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna, University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Otto Holst
- Department of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
26
|
Tanaka K, Takanaka S, Yoshida KI. A second-generation Bacillus cell factory for rare inositol production. Bioengineered 2015; 5:331-4. [PMID: 25482235 DOI: 10.4161/bioe.29897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Some rare inositol stereoisomers are known to exert specific health-promoting effects, including scyllo-inositol (SI), which is a promising therapeutic agent for Alzheimer disease. We recently reported a Bacillus subtilis cell factory that performed the efficient production of SI from the cheapest and most abundant isomer myo-inositol (MI). In the cell factory all "useless" genes involved in MI and SI metabolism were deleted and overexpression of the key enzymes, IolG and IolW, was appended. It converted 10 g/L MI into the same amount of SI in 48 h of cultivation. In this addendum, we discuss further improvement in the cell factory and its possible applications.
Collapse
Affiliation(s)
- Kosei Tanaka
- a Organization of Advanced Science and Technology; Kobe University; Kobe, Japan
| | | | | |
Collapse
|
27
|
Regulation of myo-inositol catabolism by a GntR-type repressor SCO6974 in Streptomyces coelicolor. Appl Microbiol Biotechnol 2015; 99:3141-53. [PMID: 25575890 DOI: 10.1007/s00253-014-6368-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
Myo-inositol is important for Streptomyces growth and morphological differentiation. Genomic sequence analysis revealed a myo-inositol catabolic gene cluster in Streptomyces coelicolor. Disruption of the corresponding genes in this cluster abolished the bacterial growth on myo-inositol as a single carbon source. The transcriptions of these genes were remarkably enhanced by addition of myo-inositol in minimal medium. A putative regulatory gene SCO6974, encoding a GntR family protein, is situated in the cluster. Disruption of SCO6974 significantly enhanced the transcription of myo-inositol catabolic genes. SCO6974 was shown to interact with the promoter regions of myo-inositol catabolic genes using electrophoretic mobility shift assays. DNase I footprinting assays demonstrated that SCO6974 recognized a conserved palindromic sequence (A/T)TGT(A/C)N(G/T)(G/T)ACA(A/T). Base substitution of the conserved sequence completely abolished the binding of SCO6974 to the targets demonstrating that SCO6974 directly represses the transcriptions of myo-inositol catabolic genes. Furthermore, the disruption of SCO6974 was correlated with a reduced sporulation of S. coelicolor in mannitol soya flour medium and with the overproduction of actinorhodin and calcium-dependent antibiotic. The addition of myo-inositol suppressed the sporulation deficiency of the mutant, indicating that the effect could be related to a shortage in myo-inositol due to its enhanced catabolism in this strain. This enhanced myo-inositol catabolism likely yields dihydroxyacetone phosphate and acetyl-CoA that are indirect or direct precursors of the overproduced antibiotics.
Collapse
|
28
|
Loschonsky S, Wacker T, Waltzer S, Giovannini PP, McLeish MJ, Andrade SLA, Müller M. Extended Reaction Scope of Thiamine Diphosphate Dependent Cyclohexane-1,2-dione Hydrolase: From CC Bond Cleavage to CC Bond Ligation. Angew Chem Int Ed Engl 2014; 53:14402-6. [DOI: 10.1002/anie.201408287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 11/06/2022]
|
29
|
Loschonsky S, Wacker T, Waltzer S, Giovannini PP, McLeish MJ, Andrade SLA, Müller M. Extended Reaction Scope of Thiamine Diphosphate Dependent Cyclohexane-1,2-dione Hydrolase: From CC Bond Cleavage to CC Bond Ligation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Boyko KM, Gorbacheva MA, Rakitina TV, Korzhenevsky DA, Dorovatovsky PV, Lipkin AV, Popov VO. Identification of the ligand in the structure of the protein with unknown function STM4435 from Salmonella typhimurium. DOKL BIOCHEM BIOPHYS 2014; 457:121-4. [PMID: 25172330 DOI: 10.1134/s1607672914040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 01/09/2023]
Abstract
The unidentified ligand, which is present in the crystal of the protein with unknown function STM4435 from Salmonella typhimurium, was identified using a combination of high-resolution X-ray crystallography and accurate-mass time-of-flight mass spectrometry. The identified glycerol was present as a component of the solutions used for the isolation and crystallization of the protein and serves as the ligand mimicking the natural metabolite, presumably, 2-keto-myo-isonitol, which is indicative of the involvement of STM4435 in the myo-isonitol catabolism. The results of the present study show that this approach holds promise in complex studies aimed at determining, refining, or confirming the protein functions.
Collapse
Affiliation(s)
- K M Boyko
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia,
| | | | | | | | | | | | | |
Collapse
|
31
|
Tanaka K, Tajima S, Takenaka S, Yoshida KI. An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer's disease. Microb Cell Fact 2013; 12:124. [PMID: 24325193 PMCID: PMC3878828 DOI: 10.1186/1475-2859-12-124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
Background Bacillus subtilis 168 possesses an efficient pathway to metabolize some of the stereoisomers of inositol, including myo-inositol (MI) and scyllo-inositol (SI). Previously we reported a prototype of a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. However, it wasted half of initial 1.0% (w/v) MI, and the conversion was limited to produce only 0.4% (w/v) SI. To achieve a more efficient SI production, we attempted additional modifications. Results All “useless” genes involved in MI and SI metabolism were deleted. Although no elevation in SI production was observed in the deletion strain, it did result in no wastage of MI anymore. Thus additionally, overexpression of the key enzymes, IolG and IolW, was appended to demonstrate that simultaneous overexpression of them enabled complete conversion of all MI into SI. Conclusions The B. subtilis cell factory was improved to yield an SI production rate of 10 g/L/48 h at least. The improved conversion was achieved only in the presence of enriched nutrition in the form of 2% (w/v) Bacto soytone in the medium, which may be due to the increasing demand for regeneration of cofactors.
Collapse
Affiliation(s)
| | | | | | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan.
| |
Collapse
|
32
|
Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish. PLoS One 2013; 8:e80943. [PMID: 24278351 PMCID: PMC3835674 DOI: 10.1371/journal.pone.0080943] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/08/2013] [Indexed: 01/29/2023] Open
Abstract
To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A. hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands, metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A. hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11 sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted in the emergence of recent epidemic A. hydrophila strains.
Collapse
|
33
|
Zheng H, Bertwistle D, Sanders DAR, Palmer DRJ. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist. Biochemistry 2013; 52:5876-83. [PMID: 23952058 DOI: 10.1021/bi400821s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
myo-Inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis converts myo-inositol to scyllo-inosose and is strictly dependent on NAD for activity. We sought to alter the coenzyme specificity to generate an NADP-dependent enzyme in order to enhance our understanding of coenzyme selectivity and to create an enzyme capable of recycling NADP in biocatalytic processes. Examination of available structural information related to the GFO/MocA/IDH family of dehydrogenases and precedents for altering coenzyme selectivity allowed us to select residues for substitution, and nine single, double, and triple mutants were constructed. Mutagenesis experiments with B. subtilis IDH proved extremely successful; the double mutant D35S/V36R preferred NADP to NAD by a factor of 5. This mutant is an excellent catalyst with a second-order rate constant with respect to NADP of 370 000 s⁻¹ M⁻¹, and the triple mutant A12K/D35S/V36R had a value of 570 000 s⁻¹ M⁻¹, higher than that of the wild-type IDH with NAD. The high-resolution X-ray crystal structure of the double mutant A12K/D35S was solved in complex with NADP. Surprisingly, the binding of the coenzyme is altered such that although the nicotinamide ring maintains the required position for catalysis, the coenzyme has twisted by nearly 90°, so the adenine moiety no longer binds to a hydrophobic cleft in the Rossmann fold as in the wild-type enzyme. This change in binding conformation has not previously been observed in mutated dehydrogenases.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | | | | | |
Collapse
|
34
|
Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol 2013; 195:4283-96. [PMID: 23873914 DOI: 10.1128/jb.00265-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA affinity chromatography with the promoter region of the Corynebacterium glutamicum pck gene, encoding phosphoenolpyruvate carboxykinase, led to the isolation of four transcriptional regulators, i.e., RamA, GntR1, GntR2, and IolR. Determination of the phosphoenolpyruvate carboxykinase activity of the ΔramA, ΔgntR1 ΔgntR2, and ΔiolR deletion mutants indicated that RamA represses pck during growth on glucose about 2-fold, whereas GntR1, GntR2, and IolR activate pck expression about 2-fold irrespective of whether glucose or acetate served as the carbon source. The DNA binding sites of the four regulators in the pck promoter region were identified and their positions correlated with the predicted functions as repressor or activators. The iolR gene is located upstream and in a divergent orientation with respect to a iol gene cluster, encoding proteins involved in myo-inositol uptake and degradation. Comparative DNA microarray analysis of the ΔiolR mutant and the parental wild-type strain revealed strongly (>100-fold) elevated mRNA levels of the iol genes in the mutant, indicating that the primary function of IolR is the repression of the iol genes. IolR binding sites were identified in the promoter regions of iolC, iolT1, and iolR. IolR therefore is presumably subject to negative autoregulation. A consensus DNA binding motif (5'-KGWCHTRACA-3') which corresponds well to those of other GntR-type regulators of the HutC family was identified. Taken together, our results disclose a complex regulation of the pck gene in C. glutamicum and identify IolR as an efficient repressor of genes involved in myo-inositol catabolism of this organism.
Collapse
|
35
|
myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol 2013; 195:2379-88. [PMID: 23504019 DOI: 10.1128/jb.00116-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds D-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and D-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for D-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on D-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands.
Collapse
|
36
|
Rodionova IA, Leyn SA, Burkart MD, Boucher N, Noll KM, Osterman AL, Rodionov DA. Novel inositol catabolic pathway inThermotoga maritima. Environ Microbiol 2013; 15:2254-66. [DOI: 10.1111/1462-2920.12096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Semen A. Leyn
- A. A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow; 127994; Russia
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla; CA; 92093; USA
| | - Nathalie Boucher
- Department of Molecular and Cell Biology; University of Connecticut; Storrs; CT; 06269; USA
| | - Kenneth M. Noll
- Department of Molecular and Cell Biology; University of Connecticut; Storrs; CT; 06269; USA
| | | | | |
Collapse
|
37
|
Ibarra JA, Pérez-Rueda E, Carroll RK, Shaw LN. Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics 2013; 14:126. [PMID: 23442205 PMCID: PMC3616918 DOI: 10.1186/1471-2164-14-126] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/12/2013] [Indexed: 02/01/2023] Open
Abstract
Background Staphylococcus aureus is a widely distributed human pathogen capable of infecting almost every ecological niche of the host. As a result, it is responsible for causing many different diseases. S. aureus has a vast array of virulence determinants whose expression is modulated by an intricate regulatory network, where transcriptional factors (TFs) are the primary elements. In this work, using diverse sequence analysis, we evaluated the repertoire of TFs and sigma factors in the community-associated methicillin resistant S. aureus (CA-MRSA) strain USA300-FPR3757. Results A total of 135 TFs and sigma factors were identified and classified into 36 regulatory families. From these around 43% have been experimentally characterized to date, which demonstrates the significant work still at hand to unravel the regulatory network in place for this important pathogen. A comparison of the TF repertoire of S. aureus against 1209 sequenced bacterial genomes was carried out allowing us to identify a core set of orthologous TFs for the Staphylococacceae, and also allowing us to assign potential functions to previously uncharacterized TFs. Finally, the USA300 TFs were compared to those in eleven other S. aureus strains including: Newman, COL, JH1, JH9, MW2, Mu3, Mu50, N315, RF122, MRSA252 and MSSA476. We identify conserved TFs among these strains and suggest possible regulatory interactions. Conclusions The analysis presented herein highlights the complexity of regulatory networks in S. aureus strains, identifies key conserved TFs among the Staphylococacceae, and offers unique insights into several as yet uncharacterized TFs.
Collapse
Affiliation(s)
- Jose Antonio Ibarra
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA.
| | | | | | | |
Collapse
|
38
|
Yoshida T. Black Soybean Seed Coat Polyphenols and Pinitol (Next Generation of Biologically Active Substances in Soybean). J JPN SOC FOOD SCI 2013. [DOI: 10.3136/nskkk.60.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Bettaney KE, Sukumar P, Hussain R, Siligardi G, Henderson PJF, Patching SG. A systematic approach to the amplified expression, functional characterization and purification of inositol transporters from Bacillus subtilis. Mol Membr Biol 2012; 30:3-14. [PMID: 23078035 DOI: 10.3109/09687688.2012.729093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract A systematic approach was used for the cloning and amplified expression in Escherichia coli of the genes for each of three inositol transport proteins (IolF, IolT, YfiG) from Bacillus subtilis that are evolutionarily-related to human transporters. Inducible amplified expression of each was achieved to levels of ∼ 10-15% of total protein in E. coli inner membrane preparations. The functional integrity of each heterologously-expressed protein was demonstrated by measuring the kinetics of (3)H-myo-inositol transport into energized whole cells; this confirmed that IolT is the major inositol transporter, IolF is an inefficient transporter of this substrate and demonstrated that YfiG is an inositol transport protein for the first time. Competition for (3)H-myo-inositol transport by 17 unlabelled compounds revealed all three proteins to be highly specific in recognizing inositols over sugars. IolT was confirmed to be highly specific for both myo- and D-chiro-inositol and IolF was confirmed to prefer D-chiro-inositol over myo-inositol. YfiG selectively recognized myo-inositol, D-chiro-inositol and, uniquely, L-chiro-inositol. All three proteins were successfully solubilized and purified in milligram quantities from inner membrane preparations and their suitability for inclusion in crystallization trials was assessed by analysis of structural integrity and thermal stability using circular dichroism spectroscopy followed by examination for monodispersity using gel filtration chromatography.
Collapse
Affiliation(s)
- Kim E Bettaney
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | | | | | | | | | | |
Collapse
|
40
|
Yoshida KI, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H. Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology (Reading) 2012; 158:1942-1952. [DOI: 10.1099/mic.0.059980-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ken-ichi Yoshida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Azusa Sanbongi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ayano Murakami
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirokazu Suzuki
- Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hideto Takami
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
41
|
Bchini R, Dubourg-Gerecke H, Rahuel-Clermont S, Aubry A, Branlant G, Didierjean C, Talfournier F. Adenine binding mode is a key factor in triggering the early release of NADH in coenzyme A-dependent methylmalonate semialdehyde dehydrogenase. J Biol Chem 2012; 287:31095-103. [PMID: 22782904 DOI: 10.1074/jbc.m112.350272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Structural dynamics associated with cofactor binding have been shown to play key roles in the catalytic mechanism of hydrolytic NAD(P)-dependent aldehyde dehydrogenases (ALDH). By contrast, no information is available for their CoA-dependent counterparts. We present here the first crystal structure of a CoA-dependent ALDH. The structure of the methylmalonate semialdehyde dehydrogenase (MSDH) from Bacillus subtilis in binary complex with NAD(+) shows that, in contrast to what is observed for hydrolytic ALDHs, the nicotinamide ring is well defined in the electron density due to direct and H(2)O-mediated hydrogen bonds with the carboxamide. The structure also reveals that a conformational isomerization of the NMNH is possible in MSDH, as shown for hydrolytic ALDHs. Finally, the adenine ring is substantially more solvent-exposed, a result that could be explained by the presence of a Val residue at position 229 in helix α(F) that reduces the depth of the binding pocket and the absence of Gly-225 at the N-terminal end of helix α(F). Substitution of glycine for Val-229 and/or insertion of a glycine residue at position 225 resulted in a significant decrease of the rate constant associated with the dissociation of NADH from the NADH/thioacylenzyme complex, thus demonstrating that the weaker stabilization of the adenine ring is a key factor in triggering the early NADH release in the MSDH-catalyzed reaction. This study provides for the first time structural insights into the mechanism whereby the cofactor binding mode is responsible at least in part for the different kinetic behaviors of the hydrolytic and CoA-dependent ALDHs.
Collapse
Affiliation(s)
- Raphaël Bchini
- Unité Mixte de Recherche CNRS-Université de Lorraine 7214 AREMS, ARN-RNP Structure-Fonction-Maturation, Enzymologie Moléculaire et Structurale, Faculté de Médecine, Biopôle, 9 Avenue de la Forêt de Haye, BP 184, 54506 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Steinbach A, Fraas S, Harder J, Warkentin E, Kroneck PMH, Ermler U. Crystal structure of a ring-cleaving cyclohexane-1,2-dione hydrolase, a novel member of the thiamine diphosphate enzyme family. FEBS J 2012; 279:1209-19. [DOI: 10.1111/j.1742-4658.2012.08513.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida KI, Bisaria VS, Kondo A. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 2012; 94:651-8. [DOI: 10.1007/s00253-011-3774-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/08/2011] [Accepted: 11/20/2011] [Indexed: 11/29/2022]
|
44
|
Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family. J Bacteriol 2011; 193:6760-9. [PMID: 21965568 DOI: 10.1128/jb.05348-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict.
Collapse
|
45
|
Yamaoka M, Osawa S, Morinaga T, Takenaka S, Yoshida KI. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. Microb Cell Fact 2011; 10:69. [PMID: 21896210 PMCID: PMC3176187 DOI: 10.1186/1475-2859-10-69] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A stereoisomer of inositol, scyllo-inositol, is known as a promising therapeutic agent for Alzheimer's disease, since it prevents the accumulation of beta-amyloid deposits, a hallmark of the disease. However, this compound is relatively rare in nature, whereas another stereoisomer of inositol, myo-inositol, is abundantly available. RESULTS Bacillus subtilis possesses a unique inositol metabolism involving both stereoisomers. We manipulated the inositol metabolism in B. subtilis to permit the possible bioconversion from myo-inositol to scyllo-inositol. Within 48 h of cultivation, the engineered strain was able to convert almost half of 10 g/L myo-inositol to scyllo-inositol that accumulated in the culture medium. CONCLUSIONS The engineered B. subtilis serves as a prototype of cell factory enabling a novel and inexpensive supply of scyllo-inositol.
Collapse
Affiliation(s)
- Masaru Yamaoka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | | | | | | | | |
Collapse
|
46
|
The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. J Bacteriol 2011; 193:5155-63. [PMID: 21784930 DOI: 10.1128/jb.05371-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.
Collapse
|
47
|
Morita YS, Fukuda T, Sena CB, Yamaryo-Botte Y, McConville MJ, Kinoshita T. Inositol lipid metabolism in mycobacteria: Biosynthesis and regulatory mechanisms. Biochim Biophys Acta Gen Subj 2011; 1810:630-41. [DOI: 10.1016/j.bbagen.2011.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
|
48
|
Talfournier F, Stines-Chaumeil C, Branlant G. Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme A binding. J Biol Chem 2011; 286:21971-81. [PMID: 21515690 DOI: 10.1074/jbc.m110.213280] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylmalonate-semialdehyde dehydrogenase (MSDH) belongs to the CoA-dependent aldehyde dehydrogenase subfamily. It catalyzes the NAD-dependent oxidation of methylmalonate semialdehyde (MMSA) to propionyl-CoA via the acylation and deacylation steps. MSDH is the only member of the aldehyde dehydrogenase superfamily that catalyzes a β-decarboxylation process in the deacylation step. Recently, we demonstrated that the β-decarboxylation is rate-limiting and occurs before CoA attack on the thiopropionyl enzyme intermediate. Thus, this prevented determination of the transthioesterification kinetic parameters. Here, we have addressed two key aspects of the mechanism as follows: 1) the molecular basis for recognition of the carboxylate of MMSA; and 2) how CoA binding modulates its reactivity. We substituted two invariant arginines, Arg-124 and Arg-301, by Leu. The second-order rate constant for the acylation step for both mutants was decreased by at least 50-fold, indicating that both arginines are essential for efficient MMSA binding through interactions with the carboxylate group. To gain insight into the transthioesterification, we substituted MMSA with propionaldehyde, as both substrates lead to the same thiopropionyl enzyme intermediate. This allowed us to show the following: 1) the pK(app) of CoA decreases by ∼3 units upon binding to MSDH in the deacylation step; and 2) the catalytic efficiency of the transthioesterification is increased by at least 10(4)-fold relative to a chemical model. Moreover, we observed binding of CoA to the acylation complex, supporting a CoA-binding site distinct from that of NAD(H).
Collapse
Affiliation(s)
- François Talfournier
- Unité Mixte de Recherche CNRS, Université Henri Poincaré 7214 AREMS, ARN-RNP Structure-Fonction-Maturation, Enzymologie Moléculaire et Structurale, Nancy Université, Faculté des Sciences et Technologies, Bd. des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France.
| | | | | |
Collapse
|
49
|
Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. J Bacteriol 2011; 193:1427-35. [PMID: 21239589 DOI: 10.1128/jb.00043-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capability of Salmonella enterica serovar Typhimurium strain 14028 (S. Typhimurium 14028) to utilize myo-inositol (MI) is determined by the genomic island GEI4417/4436 carrying the iol genes that encode enzymes, transporters, and a repressor responsible for the MI catabolic pathway. In contrast to all bacteria investigated thus far, S. Typhimurium 14028 growing on MI as the sole carbon source is characterized by a remarkable long lag phase of 40 to 60 h. We report here that on solid medium with MI as the sole carbon source, this human pathogen exhibits a bistable phenotype characterized by a dissection into large colonies and a slow-growing bacterial background. This heterogeneity is reversible and therefore not caused by mutation, and it is not observed in the absence of the iol gene repressor IolR nor in the presence of at least 0.55% CO(2). Bistability is correlated with the activity of the iolE promoter (P(iolE)), but not of P(iolC) or P(iolD), as shown by promoter-gfp fusions. On the single-cell level, fluorescence microscopy and flow cytometry analysis revealed a gradual switch of P(iolE) from the "off" to the "on" status during the late lag phase and the transition to the log phase. Deletion of iolR or the addition of 0.1% NaHCO(3) induced an early growth start of S. Typhimurium 14028 in minimal medium with MI. The addition of ethoxyzolamide, an inhibitor of carboanhydrases, elongated the lag phase in the presence of bicarbonate. The positive-feedback loop via repressor release and positive induction by bicarbonate-CO(2) might allow S. Typhimurium 14028 to adapt to rapidly changing environments. The phenomenon described here is a novel example of bistability in substrate degradation, and, to our knowledge, is the first demonstration of gene regulation by bicarbonate-CO(2) in Salmonella.
Collapse
|
50
|
Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification. Biochem J 2010; 432:237-47. [PMID: 20809899 DOI: 10.1042/bj20101079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inositol dehydrogenase from Bacillus subtilis (BsIDH) is a NAD+-dependent enzyme that catalyses the oxidation of the axial hydroxy group of myo-inositol to form scyllo-inosose. We have determined the crystal structures of wild-type BsIDH and of the inactive K97V mutant in apo-, holo- and ternary complexes with inositol and inosose. BsIDH is a tetramer, with a novel arrangement consisting of two long continuous β-sheets, formed from all four monomers, in which the two central strands are crossed over to form the core of the tetramer. Each subunit in the tetramer consists of two domains: an N-terminal Rossmann fold domain containing the cofactor-binding site, and a C-terminal domain containing the inositol-binding site. Structural analysis allowed us to determine residues important in cofactor and substrate binding. Lys97, Asp172 and His176 are the catalytic triad involved in the catalytic mechanism of BsIDH, similar to what has been proposed for related enzymes and short-chain dehydrogenases. Furthermore, a conformational change in the nicotinamide ring was observed in some ternary complexes, suggesting hydride transfer to the si-face of NAD+. Finally, comparison of the structure and sequence of BsIDH with other putative inositol dehydrogenases allowed us to differentiate these enzymes into four subfamilies based on six consensus sequence motifs defining the cofactor- and substrate-binding sites.
Collapse
|