1
|
Yuan S, Fu W, Du M, Yao R, Zhang D, Li C, Chen Z, Wang J. Enhanced cold tolerance mechanisms in Euglena gracilis: comparative analysis of pre-adaptation and direct low-temperature exposure. Front Microbiol 2024; 15:1465351. [PMID: 39483759 PMCID: PMC11524907 DOI: 10.3389/fmicb.2024.1465351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Microalgae, known for their adaptability to extreme environments, are important for basic research and industrial applications. Euglena, unique for its lack of a cell wall, has garnered attention due to its versatility and the presence of bioactive compounds. Despite its potential, few studies have focused on Euglena's cold adaptation mechanisms. Methods This study investigates the cold adaptation mechanisms of Euglena gracilis, a microalga found in highly diverse environmental habitats, by comparing its growth, photosynthetic performance, and physiological and biochemical responses under two low-temperature cultivation modes: pre-adaptation to 16°C followed by exposure to 4°C (PreC) and direct exposure to 4°C (DirC). Results and discussion In this study, the PreC group exhibited superior growth rates, higher photosynthetic efficiency, and more excellent antioxidant activity compared to the DirC group. These advantages were attributed to higher levels of protective compounds, enhanced membrane stability, and increased unsaturated fatty acid content. The PreC group's ability to maintain higher cell vitality under cold stress conditions underscores the significance of pre-adaptation in enhancing cold tolerance. The findings from this research provide valuable insights into the mechanisms underlying cold adaptation in E. gracilis, emphasizing the benefits of pre-adaptation. These insights are crucial for optimizing the cultivation of algal species under cold stress conditions, which is essential for both biotechnological applications and ecological studies. This study not only advances our understanding of Euglena's adaptive responses to low temperatures but also contributes to the broader field of algal research and its industrial exploitation.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Hainan Chenhai Aquatic Co., Ltd., Sanya, China
| | - Wen Fu
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rao Yao
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Dan Zhang
- Mechanical Engineering College, Xi’an Shiyou University, Xi’an, China
| | - Chao Li
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Jabbur ML, Bratton BP, Johnson CH. Bacteria can anticipate the seasons: Photoperiodism in cyanobacteria. Science 2024; 385:1105-1111. [PMID: 39236161 PMCID: PMC11473183 DOI: 10.1126/science.ado8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Photoperiodic time measurement is the ability of plants and animals to measure differences in day versus night length (photoperiod) and use that information to anticipate critical seasonal transformations, such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms, such as gonadal stimulation, flowering, and hibernation. Unexpectedly, we observed this capability in cyanobacteria-unicellular prokaryotes with generation times as short as 5 to 6 hours. Cyanobacteria exposed to short, winter-like days developed enhanced resistance to cold mediated by desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping required an intact circadian clockwork and developed over multiple cycles of photoperiod. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated and enabled genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, TN, USA
| | - Benjamin P. Bratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
3
|
Jabbur ML, Johnson CH. Bacteria can anticipate the seasons: photoperiodism in cyanobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593996. [PMID: 38798677 PMCID: PMC11118479 DOI: 10.1101/2024.05.13.593996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photoperiodic Time Measurement is the ability of plants and animals to measure differences in day/night-length (photoperiod) and use that information to anticipate critical seasonal transformations such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms such as gonadal growth/regression, flowering, and hibernation. Unexpectedly, we discovered this capability in cyanobacteria, unicellular prokaryotes with generation times of only 5-6 h. Cyanobacteria in short winter-like days develop enhanced resistance to cold that involves desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping requires an intact circadian clockwork and develops over multiple cycles. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated, and involved genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, 37221, USA
| | | |
Collapse
|
4
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
5
|
Jiang Y, Wang Z, Du H, Dong R, Yuan Y, Hua J. Assessment of functional relevance of genes associated with local temperature variables in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3290-3304. [PMID: 35943206 DOI: 10.1111/pce.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
How likely genetic variations associated with environment identified in silico from genome wide association study are functionally relevant to environmental adaptation has been largely unexplored experimentally. Here we analyzed top 29 genes containing polymorphisms associated with local temperature variation (minimum, mean, maximum) among 1129 natural accessions of Arabidopsis thaliana. Their loss-of-function mutants were assessed for growth and stress tolerance at five temperatures. Twenty genes were found to affect growth or tolerance at one or more of these temperatures. Significantly, genes associated with maximum temperature more likely have a detect a function at higher temperature, while genes associated with minimum temperature more likely have a function at lower temperature. In addition, gene variants are distributed more frequently at geographic locations where they apparently offer an enhanced growth or tolerance for five genes tested. Furthermore, variations in a large proportion of the in silico identified genes associated with minimum or mean-temperatures exhibited a significant association with growth phenotypes experimentally assessed at low temperature for a small set of natural accessions. This study shows a functional relevance of gene variants associated with environmental variables and supports the feasibility of the use of local temperature factors in investigating the genetic basis of temperature adaptation.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Hui Du
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Runlong Dong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yaping Yuan
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Centurion VB, Campanaro S, Basile A, Treu L, Oliveira VM. Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiol Res 2022; 265:127197. [PMID: 36174355 DOI: 10.1016/j.micres.2022.127197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| | - S Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
| | - A Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - L Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
7
|
Ye T, Wang B, Li C, Bian P, Chen L, Wang G. Exposure of cyanobacterium Nostoc sp. to the Mars-like stratosphere environment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112307. [PMID: 34649187 DOI: 10.1016/j.jphotobiol.2021.112307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023]
Abstract
During the HH-19-2 flight mission of the Chinese Scientific Experimental System, dried Nostoc sp. cells were exposed to the stratosphere environment (32,508 m altitude) for 3 h and 22 min. The atmospheric pressure, temperature, relative humidity, and ionizing and non-ionizing radiation levels at that altitude are similar to those on the surface of Mars. Although analyses revealed decreased photosynthetic activity, a decline in autofluorescence, and damage to the cellular morphology in the flight-exposed sample, the death rate was low (28%). Physiological changes were not obvious after the exposure to the Mars-like vacuum conditions. The ground-exposed samples showed a similar trend to the flight-exposed samples, but the damage was relatively slight. RNA-sequencing data revealed a number of affected metabolic pathways: photosynthetic system and CO2 fixation function, activation of antioxidant systems, heat shock protein, DNA repair, and protein synthesis. Results suggest that Nostoc sp. has the potential to survive in a Mars-like environment and that it may be a suitable pioneer species to colonize Mars in the future in closed life-support systems (base) or in localities with relatively suitable conditions for life, such as localities with water available.
Collapse
Affiliation(s)
- Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Abstract
Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA;
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA; .,Department of Cell and Tissue Biology, University of California, San Francisco, California 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
9
|
Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. J Biosci Bioeng 2021; 131:491-500. [PMID: 33610455 DOI: 10.1016/j.jbiosc.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023]
Abstract
Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO2 tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution. In two parallel experiments that lasted over 8400 h of culturing and 100 serial passages, S. elongatus PCC 11801 was evolved to tolerate 5 g/L n-butanol or 30 g/L 2,3-butanediol representing a 100% improvement in concentrations tolerated. The evolved strains retained alcohol tolerance even after being passaged several times without the alcohol stress suggesting that the changes were permanent. Whole genome sequencing of the n-butanol evolved strains revealed mutations in a number of stress responsive genes encoding translation initiation factors, RpoB and an ABC transporter. In 2,3-butanediol evolved strains, genes for ClpC, a different ABC transporter, glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase were found to be mutated. Furthermore, the evolved strains showed significant improvement in tolerance toward several other alcohols. Notably, the n-butanol evolved strain could tolerate up to 32 g/L ethanol, thereby making it a promising host for photosynthetic production of biofuels via metabolic engineering.
Collapse
|
10
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
11
|
Hoschek A, Schmid A, Bühler B. In Situ O2Generation for Biocatalytic Oxyfunctionalization Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201801262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Hoschek
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Andreas Schmid
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Bruno Bühler
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| |
Collapse
|
12
|
Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA. Proc Natl Acad Sci U S A 2018; 115:E7174-E7183. [PMID: 29991601 DOI: 10.1073/pnas.1802940115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light-dark cycles. Thus, we sought to identify genes that are specifically necessary in a day-night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light-dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light-dark survival in photosynthetic organisms, identified unforeseen clock-protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.
Collapse
|
13
|
Horton MW, Willems G, Sasaki E, Koornneef M, Nordborg M. The genetic architecture of freezing tolerance varies across the range of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2016; 39:2570-2579. [PMID: 27487257 DOI: 10.1111/pce.12812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The capacity to tolerate freezing temperatures limits the geographical distribution of many plants, including several species of agricultural importance. However, the genes involved in freezing tolerance remain largely unknown. Here, we describe the variation in constitutive freezing tolerance that occurs among worldwide accessions of Arabidopsis thaliana. We found that although plants from high latitudes tend to be more freezing tolerant than plants from low latitudes, the environmental factors that shape cold adaptation differ across the species range. Consistent with this, we found that the genetic architecture of freezing tolerance also differs across its range. Conventional genome-wide association studies helped identify a priori and other promising candidate genes. However, simultaneously modelling climate variables and freezing tolerance together pinpointed other excellent a priori candidate genes. This suggests that if the selective factor underlying phenotypic variation is known, multi-trait mixed models may aid in identifying the genes that underlie adaptation.
Collapse
Affiliation(s)
- Matthew W Horton
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria.
- Department of Plant and Microbial Biology, University of Zurich, CH-8008, Zurich, Switzerland.
| | - Glenda Willems
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eriko Sasaki
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, D-50892, Cologne, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
14
|
Flores-Pérez Ú, Bédard J, Tanabe N, Lymperopoulos P, Clarke AK, Jarvis P. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. PLANT PHYSIOLOGY 2016; 170:147-62. [PMID: 26586836 PMCID: PMC4704595 DOI: 10.1104/pp.15.01538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone's interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import.
Collapse
Affiliation(s)
- Úrsula Flores-Pérez
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Noriaki Tanabe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Panagiotis Lymperopoulos
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Adrian K Clarke
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| |
Collapse
|
15
|
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Rajaram H, Chaurasia AK, Apte SK. Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology (Reading) 2014; 160:647-658. [DOI: 10.1099/mic.0.073478-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria constitute a morphologically diverse group of oxygenic photoautotrophic microbes which range from unicellular to multicellular, and non-nitrogen-fixing to nitrogen-fixing types. Sustained long-term exposure to changing environmental conditions, during their three billion years of evolution, has presumably led to their adaptation to diverse ecological niches. The ability to maintain protein conformational homeostasis (folding–misfolding–refolding or aggregation–degradation) by molecular chaperones holds the key to the stress adaptability of cyanobacteria. Although cyanobacteria possess several genes encoding DnaK and DnaJ family proteins, these are not the most abundant heat-shock proteins (Hsps), as is the case in other bacteria. Instead, the Hsp60 family of proteins, comprising two phylogenetically conserved proteins, and small Hsps are more abundant during heat stress. The contribution of the Hsp100 (ClpB) family of proteins and of small Hsps in the unicellular cyanobacteria (Synechocystis and Synechococcus) as well as that of Hsp60 proteins in the filamentous cyanobacteria (Anabaena) to thermotolerance has been elucidated. The regulation of chaperone genes by several cis-elements and trans-acting factors has also been well documented. Recent studies have demonstrated novel transcriptional and translational (mRNA secondary structure) regulatory mechanisms in unicellular cyanobacteria. This article provides an insight into the heat-shock response: its organization, and ecophysiological regulation and role of molecular chaperones, in unicellular and filamentous nitrogen-fixing cyanobacterial strains.
Collapse
Affiliation(s)
- Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Akhilesh Kumar Chaurasia
- Samsung Biomedical Research Institute, School of Medicine, SKKU, Suwon, 440-746 Republic of Korea
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| |
Collapse
|
17
|
Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 2011; 12:2658-76. [PMID: 20482592 DOI: 10.1111/j.1462-2920.2010.02235.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms.
Collapse
Affiliation(s)
- Lily Ting
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Sjögren LL, Clarke AK. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. THE PLANT CELL 2011; 23:322-32. [PMID: 21266658 PMCID: PMC3051245 DOI: 10.1105/tpc.110.082321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 12/15/2010] [Accepted: 01/09/2011] [Indexed: 05/23/2023]
Abstract
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.
Collapse
|
19
|
Abstract
One of the many important consequences that temperature down-shift has on cells is stabilization of secondary structures of RNAs. This stabilization has wide-spread effects, such as inhibition of expression of several genes due to termination of their transcription and inefficient RNA degradation that adversely affect cell growth at low temperature. Several cold shock proteins are produced to counteract these effects and thus allow cold acclimatization of the cell. The main RNA modulating cold shock proteins of E. coli can be broadly divided into two categories, (1) the CspA family proteins, which mainly affect the transcription and possibly translation at low temperature through their RNA chaperoning function and (2) RNA helicases and exoribonucleases that stimulate RNA degradation at low temperature through their RNA unwinding activity.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, CABM, Piscataway, NJ, USA
| | | |
Collapse
|
20
|
Rathbun KM, Hall JE, Thompson SA. Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization. BMC Microbiol 2009; 9:160. [PMID: 19664234 PMCID: PMC2782263 DOI: 10.1186/1471-2180-9-160] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 08/08/2009] [Indexed: 12/01/2022] Open
Abstract
Background Campylobacter jejuni is a gastrointestinal pathogen of humans, but part of the normal flora of poultry, and therefore grows well at the respective body temperatures of 37°C and 42°C. Proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 37°C of Cj0596, a predicted periplasmic chaperone that is similar to proteins involved in outer membrane protein folding and virulence in other bacteria. Results The cj0596 gene was highly conserved in 24 strains and species of Campylobacter, implying the importance of this gene. To study the role that Cj0596 plays in C. jejuni pathogenesis, a mutant derivative of strain 81–176 was constructed in which the cj0596 gene was precisely deleted. A revertant of this mutant was isolated by restoring the gene to its original chromosomal location using streptomycin counterselection. The cj0596 mutant strain demonstrated a slightly decreased growth rate and lower final growth yield, yet was more motile and more invasive of human intestinal epithelial cells than wild-type. In either single or mixed infections, the mutant was less able to colonize mice than 81–176. The cj0596 mutant also expressed altered levels of several proteins. Conclusion Mutation of cj0596 has an effect on phenotypes related to C. jejuni pathogenesis, probably due to its role in the proper folding of critical outer membrane proteins.
Collapse
Affiliation(s)
- Kimberly M Rathbun
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA.
| | | | | |
Collapse
|
21
|
Chattopadhyay MK. Cryotolerance in bacteria: interlink with adaptation to other stress factors. Trends Microbiol 2008; 16:455. [DOI: 10.1016/j.tim.2008.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|
22
|
Characterization of a unique ClpB protein of Mycoplasma pneumoniae and its impact on growth. Infect Immun 2008; 76:5082-92. [PMID: 18779336 DOI: 10.1128/iai.00698-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae accounts for 20 to 30% of all community-acquired pneumonia and has been associated with other airway pathologies, including asthma, and a range of extrapulmonary manifestations. Although the entire genomic sequence of M. pneumoniae has been completed, the functions of many of these genes in mycoplasma physiology are unknown. In this study, we focused on clpB, a well-known heat shock gene in other bacteria, to examine its role in mycoplasma growth. Transcriptional and translational analyses of heat shock in M. pneumoniae indicated that clpB is significantly upregulated, reinforcing its status as a critical responder to heat stress. Interestingly, M. pneumoniae ClpB does not use dual translational start points for ClpB synthesis, like other ClpB-characterized bacteria. Biochemical characterization of purified M. pneumoniae recombinant ClpB revealed casein- and lysine-independent ATPase activity and DnaK-DnaJ-GrpE-dependent chaperone activity. An M. pneumoniae mini-Tn4001-integrated, clpB-null mutant was impaired in its ability to replicate under permissive growth conditions, demonstrating the growth-promoting status of ClpB.
Collapse
|
23
|
Abstract
This review focuses on the cold shock response of Escherichia coli. Change in temperature is one of the most common stresses that an organism encounters in nature. Temperature downshift affects the cell on various levels: (i) decrease in the membrane fluidity; (ii) stabilization of the secondary structures of RNA and DNA; (iii) slow or inefficient protein folding; (iv) reduced ribosome function, affecting translation of non-cold shock proteins; (v) increased negative supercoiling of DNA; and (vi) accumulation of various sugars. Cold shock proteins and certain sugars play a key role in dealing with the initial detrimental effect of cold shock and maintaining the continued growth of the organism at low temperature. CspA is the major cold shock protein of E. coli, and its homologues are found to be widespread among bacteria, including psychrophilic, psychrotrophic, mesophilic, and thermophilic bacteria, but are not found in archaea or cyanobacteria. Significant, albeit transient, stabilization of the cspA mRNA immediately following temperature downshift is mainly responsible for its cold shock induction. Various approaches were used in studies to detect cold shock induction of cspA mRNA. Sugars are shown to confer protection to cells undergoing cold shock. The study of the cold shock response has implications in basic and health-related research as well as in commercial applications. The cold shock response is elicited by all types of bacteria and affects these bacteria at various levels, such as cell membrane, transcription, translation, and metabolism.
Collapse
|
24
|
Jeamton W, Mungpakdee S, Sirijuntarut M, Prommeenate P, Cheevadhanarak S, Tanticharoen M, Hongsthong A. A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol Lett 2008; 281:121-31. [DOI: 10.1111/j.1574-6968.2008.01100.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Yin C, Li W, Du Y, Kong R, Xu X. Identification of a gene, ccr-1 (sll1242), required for chill-light tolerance and growth at 15 °C in Synechocystis sp. PCC 6803. Microbiology (Reading) 2007; 153:1261-1267. [PMID: 17379735 DOI: 10.1099/mic.0.2006/005074-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mumol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mumol photons m(-2) s(-1). sll1242, named ccr (cyanobacterial cold resistance gene)-1, may be required for cold acclimation of cyanobacteria in light.
Collapse
Affiliation(s)
- Chuntao Yin
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Weizhi Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ye Du
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Renqiu Kong
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
26
|
Stanne TM, Pojidaeva E, Andersson FI, Clarke AK. Distinctive types of ATP-dependent Clp proteases in cyanobacteria. J Biol Chem 2007; 282:14394-402. [PMID: 17371875 DOI: 10.1074/jbc.m700275200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.
Collapse
Affiliation(s)
- Tara M Stanne
- Department of Plant and Environmental Science, Gothenburg University, Gothenburg, Sweden
| | | | | | | |
Collapse
|
27
|
Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. PLANTA 2006; 224:1103-15. [PMID: 16705403 DOI: 10.1007/s00425-006-0292-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 04/11/2006] [Indexed: 05/09/2023]
Abstract
ClpP4 is a nuclear-encoded plastid protein that functions as a proteolytic subunit of the ATP-dependent Clp protease of higher plants. Given the lack of viable clpP4 knockout mutants, antisense clpP4 repression lines were prepared to study the functional importance of ClpP4 in Arabidopsis thaliana. Screening of transformants revealed viable lines with up to 90% loss of wild type levels of ClpP4 protein, while those with > 90% were severely bleached and strongly retarded in vegetative growth, failing to reach reproductive maturity. Of the viable antisense plants, repression of clpP4 expression produced a pleiotropic phenotype, of which slow growth and leaf variegation were most prominent. Chlorosis was most severe in younger leaves, with the affected regions localized around the mid-vein and exhibiting impaired chloroplast development and mesophyll cell differentiation. Chlorosis lessened during leaf expansion until all had regained the wild type appearance upon maturity. This change in phenotype correlated with the developmental expression of ClpP4 in the wild type, in which ClpP4 was less abundant in mature leaves due to post-transcriptional/translational regulation. Repression of ClpP4 caused a concomitant down-regulation of other nuclear-encoded ClpP paralogs in the antisense lines, but no change in other chloroplast-localized Clp proteins. Greening of the young chlorotic antisense plants upon maturation was accelerated by increased light, either by longer photoperiod or by higher growth irradiance; conditions that both raised levels of ClpP4 in wild type leaves. In contrast, shift to low growth irradiance decreased the relative amount of ClpP4 in wild type leaves, and caused newly developed leaves of fully greened antisense lines to regain the chlorotic phenotype.
Collapse
Affiliation(s)
- Bo Zheng
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden
| | | | | | | | | |
Collapse
|
28
|
Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:5783-96. [PMID: 16885446 PMCID: PMC1540084 DOI: 10.1128/jb.00074-06] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of DeltaclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.
Collapse
Affiliation(s)
- Antje Michel
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Spano G, Massa S. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 2006; 32:77-86. [PMID: 16809231 DOI: 10.1080/10408410600709800] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lactic acid bacteria (LAB) constitute a heterogeneous group of bacteria that are traditionally used to produce fermented foods. The industrialization of food transformations has increased the economical importance of LAB, as they play a crucial role in the development of the organoleptic and hygienic quality of fermented products. However, the strains selected for industrial purposes, should tolerate adverse conditions encountered in industrial processes, either during starter handling and storage (freeze-drying, freezing, or spray-drying) or during food processing in which abiotic stresses such as heat, cold, acidity, and high concentration of NaCl or ethanol are common. Wine LAB have to deal with several stresses including an acidic pH, a high alcoholic content, non optimal growth temperatures, and growth-inhibitory compounds such as fatty acids and tannins, originated from yeast and bacteria metabolism. Wine LAB have developed several mechanisms to escape or to tolerate wine conditions. They carry out a malolactic fermentation in this stressful environment. In addition to the regulation of the expression of specific genes, bacteria have evolved adaptive networks to face the challenges of a changing environment and to survive under conditions of stress. The so called Global Regulatory Systems control the simultaneous expression of a large number of genes in response to a variety of environmental stress factors. CIRCE sequences able to bind the HrcA repressor, sigma(B) dependent promoters and CtsR regulatory elements have been observed in several genes identified from wine LAB. Improved knowledge of regulators and a better understanding of LAB stress responses could constitute a basis of comparison with the well known model microorganisms, Escherichia coli and Bacillus subtilis. Moreover, it can provide an important insight into improving current industrial starter strains.
Collapse
Affiliation(s)
- G Spano
- Department of Food Science, Foggia University, via Napoli 25, 71100 Foggia, Italy.
| | | |
Collapse
|
30
|
Abstract
Survival of bacteria at low temperatures provokes scientific interest because of several reasons. Investigations in this area promise insight into one of the mysteries of life science - namely, how the machinery of life operates at extreme environments. Knowledge obtained from these studies is likely to be useful in controlling pathogenic bacteria, which survive and thrive in cold-stored food materials. The outcome of these studies may also help us to explore the possibilities of existence of life in distant frozen planets and their satellites.
Collapse
|
31
|
Simão RCG, Susin MF, Alvarez-Martinez CE, Gomes SL. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Mol Microbiol 2005; 57:592-603. [PMID: 15978087 DOI: 10.1111/j.1365-2958.2005.04713.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heat shock response in Caulobacter crescentus was previously shown to be positively regulated by the alternative sigma factor of RNA polymerase (RNAP) sigma(32), and negatively modulated by DnaK during the induction phase of the heat shock response but not during the recovery phase. In the present work we have investigated the involvement of the chaperone ClpB in the control of the heat shock response in C. crescentus. Data obtained indicated a role of ClpB in downregulation of heat shock protein (HSP) synthesis, as cells lacking this chaperone showed a prolonged shutoff phase of the heat shock response. In Escherichia coli, it has been proposed that the DnaK chaperone system switches transcription back to constitutively expressed genes through simultaneous reactivation of heat-aggregated sigma(70), as well as sequestration of sigma(32) away from RNAP. In C. crescentus, results obtained with a clpB null mutant indicate that ClpB could be involved in the reactivation of the major sigma factor sigma(73). In support of this hypothesis, we showed that transcription directed from sigma(73)-dependent promoters is not switched back in the clpB null mutant during the recovery phase. Furthermore, we observed that resolubilization of heat-aggregated sigma(73) is dependent on the presence of ClpB. Our findings also indicated that the absence of ClpB made cells more sensitive to heat shock and ethanol but not to other stresses, and unable to acquire thermotolerance.
Collapse
Affiliation(s)
- Rita C G Simão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | |
Collapse
|
32
|
Lenco J, Pavkova I, Hubalek M, Stulik J. Insights into the oxidative stress response in Francisella tularensis LVS and its mutant DeltaiglC1+2 by proteomics analysis. FEMS Microbiol Lett 2005; 246:47-54. [PMID: 15869961 DOI: 10.1016/j.femsle.2005.03.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/14/2005] [Accepted: 03/21/2005] [Indexed: 11/28/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.
Collapse
Affiliation(s)
- Juraj Lenco
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Nag S, Das S, Chaudhuri K. In vivo induced clpB1 gene of Vibrio cholerae is involved in different stress responses and affects in vivo cholera toxin production. Biochem Biophys Res Commun 2005; 331:1365-73. [PMID: 15883026 DOI: 10.1016/j.bbrc.2005.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Indexed: 11/17/2022]
Abstract
Previously in global transcription profile approach one of the cosmid clones of Vibrio cholerae containing the genes pnuC, icmF, and a fragment of clpB2 showed higher expression in V. cholerae grown inside rabbit intestine. In the present report, both the stress responsive clpB genes of V. cholerae O395 were cloned, clpB1 from chromosome I and clpB2 present in chromosome II. From the Northern blot hybridization it was observed that the level of transcription of clpB2 was very low which could be due to the weak promoter strength of clpB2 as predicted in silico. The deduced amino acid sequence showed that clpB1 possesses features typical of the ClpB ATPase family of stress response proteins. The clpB1 gene showed about three times higher expression under in vivo condition than in vitro. Increased expression of clpB1 gene was also observed at high temperature, high salt, and in the condition mimicking human intestine viz., 37 degrees C, pH 8.5, 300 mM NaCl, which is known to be the repressive condition for ToxR, the global transcriptional regulator of virulence in V. cholerae. The clpB1 insertion mutant showed increased sensitivity towards high temperature, oxidative stress, and acid pH. ClpB1 also conferred thermotolerance to V. cholerae. These effects could be reversed by complementation. Although clpB1 appeared not to be under the control of virulence regulatory cascade of V. cholerae, the CT production was reduced in clpB1 mutant when tested in vivo in an infant mice model.
Collapse
Affiliation(s)
- Sanjay Nag
- Human Genetics and Genomics Group, Indian Institute of Chemical Biology, Jadavpur, Calcutta 700 032, India
| | | | | |
Collapse
|
34
|
Spano G, Beneduce L, Perrotta C, Massa S. Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine Lactobacillus plantarum. Res Microbiol 2005; 156:219-24. [PMID: 15748987 DOI: 10.1016/j.resmic.2004.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/08/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Using a molecular approach based on PCR, RT-PCR and northern blot analysis, a new member of the small heat shock family of wine, Lactobacillus plantarum, was cloned and characterized. The protein sequence deduced from the isolated gene had a calculated molecular mass of 18.548 kDa and was therefore named HSP 18.55. The gene codes for a protein homologous to the previously characterized HSP 19.3 and HSP 18.5 and is co-transcribed with an upstream gene of unknown function. Analysis of the 5' flanking region of the hsp 18.55 gene revealed the presence of putative cis elements able to bind alternative sigma factor sigma(B). Based on its structure, the gene was classified as belonging to class II of the heat shock genes according to Bacillus subtilis nomenclature for shock-responsive genes. Expression of the newly identified small heat shock gene, analyzed by RT-PCR and northern blot analysis, was induced by a wide range of abiotic stresses including heat, cold and ethanol, suggesting that the small family of heat shock genes is probably involved in the general stress response in wine L. plantarum. Moreover, the expression of hsp 18.5, hsp 18.55 and hsp 19.3 genes, analyzed over a complete culture cycle, revealed that early growing cells contained substantial amounts of hsp 18.5, hsp 18.55 and hsp 19.3 mRNAs, which rapidly declined upon entry into stationary phase.
Collapse
Affiliation(s)
- G Spano
- Department of Food Science, Foggia University, via Napoli 25, 71100 Foggia, Italy.
| | | | | | | |
Collapse
|
35
|
Spano G, Capozzi V, Vernile A, Massa S. Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J Appl Microbiol 2005; 97:774-82. [PMID: 15357727 DOI: 10.1111/j.1365-2672.2004.02359.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Understanding the molecular response to stress tolerance of wine Lactobacillus plantarum. METHODS AND RESULTS Two genes codifying for heat shock proteins were cloned from wine L. plantarum. The coding regions of the two heat shock genes are 420 and 444 nucleotides long, and started with an ATG codon suggesting that they were translated. The protein sequences deduced from the isolated genes have a molecular mass of 18.483 and 19.282 kDa, respectively, and were therefore named hsp18.5 and hsp19.3. The expression of small heat shock genes was analysed by RT-PCR analysis. Moreover, the 5' and 3' noncoding regions were cloned and sequenced. CONCLUSIONS The expression of the heat shock genes was strongly induced by heat, cold and ethanol stress. Analysis of the 5' and 3' flanking regions of hsp18.5 and hsp19.3 genes, revealed the presence of an inverted repeat sequence (TTAGCACTC-N(9)-GAGTGCTAA) homologue to the CIRCE elements found to the upstream regulatory region of heat shock operons, and an inverted sequence that could form a stem and loop structure that it is likely to function as a transcriptional terminator. Based on their structures, the genes were classified as belonging to Class I of heat shock genes according to the B. subtilis nomenclature of heat response genes. SIGNIFICANCE AND IMPACT OF THE STUDY Small heat shock genes isolated from wine L. plantarum might have a role in preventing damage by cold stress.
Collapse
Affiliation(s)
- G Spano
- Department of Food Science, Foggia University, Foggia, Italy.
| | | | | | | |
Collapse
|
36
|
Phadtare S, Inouye M. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 2004; 186:7007-14. [PMID: 15466053 PMCID: PMC522181 DOI: 10.1128/jb.186.20.7007-7014.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA microarray-based global transcript profiling of Escherichia coli in response to cold shock showed that in addition to the known cold shock-inducible genes, new genes such as the flagellar operon, those encoding proteins involved in sugar transport and metabolism, and remarkably, genes encoding certain heat shock proteins are induced by cold shock. In the light of strong reduction in metabolic activity of the cell after temperature downshift, the induction of sugar metabolism machinery is unexpected. The deletion of four csps (cspA, cspB, cspG, and cspE) affected cold shock induction of mostly those genes that are transiently induced in the acclimation phase, emphasizing that CspA homologues are essential in the acclimation phase. Relevance of these findings with respect to the known RNA chaperone function of CspA homologues is discussed.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Ln., Piscataway, NJ 08854, USA.
| | | |
Collapse
|
37
|
Mary I, Tu CJ, Grossman A, Vaulot D. Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. MICROBIOLOGY-SGM 2004; 150:1271-1281. [PMID: 15133090 DOI: 10.1099/mic.0.27014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyanobacteria constitute an ancient, diverse and ecologically important bacterial group. The responses of these organisms to light and nutrient conditions are finely controlled, enabling the cells to survive a range of environmental conditions. In particular, it is important to understand how cyanobacteria acclimate to the absorption of excess excitation energy and how stress-associated transcripts accumulate following transfer of cells from low- to high-intensity light. In this study, quantitative RT-PCR was used to monitor changes in levels of transcripts encoding chaperones and stress-associated proteases in three cyanobacterial strains that inhabit different ecological niches: the freshwater strain Synechocystis sp. PCC 6803, the marine high-light-adapted strain Prochlorococcus MED4 and the marine low-light-adapted strain Prochlorococcus MIT9313. Levels of transcripts encoding stress-associated proteins were very sensitive to changes in light intensity in all of these organisms, although there were significant differences in the degree and kinetics of transcript accumulation. A specific set of genes that seemed to be associated with high-light adaptation (groEL/groES, dnaK2, dnaJ3, clpB1 and clpP1) could be targeted for more detailed studies in the future. Furthermore, the strongest responses were observed in Prochlorococcus MED4, a strain characteristic of the open ocean surface layer, where hsp genes could play a critical role in cell survival.
Collapse
Affiliation(s)
- Isabelle Mary
- Station Biologique, UMR 7127, CNRS et Université Pierre et Marie Curie, BP 74, F-29682 Roscoff cedex, France
| | - Chao-Jung Tu
- Carnegie Institution of Washington, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | - Arthur Grossman
- Carnegie Institution of Washington, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | - Daniel Vaulot
- Station Biologique, UMR 7127, CNRS et Université Pierre et Marie Curie, BP 74, F-29682 Roscoff cedex, France
| |
Collapse
|
38
|
Chastanet A, Derre I, Nair S, Msadek T. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 2004; 186:1165-74. [PMID: 14762012 PMCID: PMC344206 DOI: 10.1128/jb.186.4.1165-1174.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp-HSP100 ATPases are a widespread family of ubiquitous proteins that occur in both prokaryotes and eukaryotes and play important roles in the folding of newly synthesized proteins and refolding of aggregated proteins. They have also been shown to participate in the virulence of several pathogens, including Listeria monocytogenes. Here, we describe a member of the Clp-HSP100 family of L. monocytogenes that harbors all the characteristics of the ClpB subclass, which is absent in the closely related gram-positive model organism, Bacillus subtilis. Transcriptional analysis of clpB revealed a heat shock-inducible sigma(A)-type promoter. Potential binding sites for the CtsR regulator of stress response were identified in the promoter region. In vivo and in vitro approaches were used to show that expression of clpB is repressed by CtsR, a finding indicating that clpB is a novel member of the L. monocytogenes CtsR regulon. We showed that ClpB is involved in the pathogenicity of L. monocytogenes since the DeltaclpB mutant is significantly affected by virulence in a murine model of infection; we also demonstrate that this effect is apparently not due to a defect in general stress resistance. Indeed, ClpB is not involved in tolerance to heat, salt, detergent, puromycin, or cold stress, even though its synthesis is inducible by heat shock. However, ClpB was shown to play a role in induced thermotolerance, allowing increased resistance of L. monocytogenes to lethal temperatures. This work gives the first example of a clpB gene directly controlled by CtsR and describes the first role for a ClpB protein in induced thermotolerance and virulence in a gram-positive organism.
Collapse
Affiliation(s)
- Arnaud Chastanet
- Unité de Biochimie Microbienne, Institut Pasteur, CNRS URA 2172, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
39
|
Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis. J Biol Chem 2003; 278:12191-8. [PMID: 12502718 DOI: 10.1074/jbc.m212204200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sudden decrease in ambient temperature induces the expression of a number of genes in poikilothermic organisms. We report here that the cold inducibility of gene expression in Synechocystis sp. PCC 6803 was enhanced by the rigidification of membrane lipids that was engineered by disruption of genes for fatty acid desaturases. DNA microarray analysis revealed that cold-inducible genes could be divided into three groups according to the effects of the rigidification of membrane lipids. The first group included genes whose expression was not induced by cold in wild-type cells but became strongly cold-inducible upon rigidification of membrane lipids. This group included certain heat-shock genes, genes for subunits of the sulfate transport system, and the hik34 gene for a histidine kinase. The second group consisted of genes whose cold inducibility was moderately enhanced by the rigidification of membrane lipids. Most genes in this group encoded proteins of as yet unknown function. The third group consisted of genes whose cold inducibility was unaffected by the rigidification of membrane lipids. This group included genes for an RNA helicase and an RNA-binding protein. DNA microarray analysis also indicated that the rigidification of membrane lipids had no effect on the heat inducibility of gene expression. Hik33, a cold-sensing histidine kinase, regulated the expression of most genes in the second and third groups but of only a small number of genes in the first group, an observation that suggests that the cold-inducible expression of genes in the first group might be regulated by a cold sensor that remains to be identified.
Collapse
Affiliation(s)
- Masami Inaba
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|
41
|
Fedhila S, Msadek T, Nel P, Lereclus D. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. J Bacteriol 2002; 184:5554-62. [PMID: 12270812 PMCID: PMC139615 DOI: 10.1128/jb.184.20.5554-5562.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have approximately 88 and 67% amino acid sequence identity with ClpP of B. subtilis, respectively. Inactivation of clpC in B. thuringiensis impaired sporulation efficiency. The clpP1 and clpP2 mutants were both slightly susceptible to salt stress, whereas disruption of clpP2 negatively affected sporulation and abolished motility. Virulence of the clp mutants was assessed by injecting bacteria into the hemocoel of Bombyx mori larvae. The clpP1 mutant displayed attenuated virulence, which appeared to be related to its inability to grow at low temperature (25 degrees C), suggesting an essential role for ClpP1 in tolerance of low temperature. Microscopic examination of clpP1 mutant cells grown at 25 degrees C showed altered bacterial division, with cells remaining attached after septum formation. Analysis of lacZ transcriptional fusions showed that clpP1 was expressed at 25 and 37 degrees C during the entire growth cycle. In contrast, clpP2 was expressed at 37 degrees C but not at 25 degrees C, suggesting that ClpP2 cannot compensate for the absence of ClpP1 in the clpP1 mutant cells at low temperature. Our study demonstrates that ClpP1 and ClpP2 control distinct cellular regulatory pathways in B. thuringiensis.
Collapse
Affiliation(s)
- Sinda Fedhila
- Unité de Recherches de Lutte Biologique, Institut National de la Recherche Agronomique, 78285 Guyancourt Cedex, France.
| | | | | | | |
Collapse
|
42
|
Jesuino RSA, Azevedo MO, Felipe MSS, Pereira M, De Almeida Soares CM. Characterization of a chaperone ClpB homologue of Paracoccidioides brasiliensis. Yeast 2002; 19:963-72. [PMID: 12125053 DOI: 10.1002/yea.888] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and sequence analysis of a genomic clone encoding a Paracoccidioides brasiliensis ClpB chaperone homologue (PbClpB). The clpb gene was identified in a lambda Dash II library. Sequencing of Pbclpb revealed a long open reading frame capable of encoding a 792 amino acid, 87.9 kDa protein, pI of 5.34. The predicted polypeptide contains several consensus motifs of the ClpB proteins. Canonical sequences such as two putative nucleotide-binding sites, chaperonins ClpA/B signatures and highly conserved casein kinase phosphorylation domains are present. ClpB is 69% to 49% identical to members of the ClpB family from several organisms from prokaryotes to eukaryotes. The transcript of PbclpB was detected as a mRNA species of 3.0 kb, preferentially expressed in the yeast parasitic phase of the fungus. A 89 kDa protein was also detected in yeast cells of P. brasiliensis.
Collapse
Affiliation(s)
- Rosália S A Jesuino
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, ICB II, Campus II, 74001-970, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
43
|
Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ. Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 2002; 68:1697-705. [PMID: 11916687 PMCID: PMC123842 DOI: 10.1128/aem.68.4.1697-1705.2002] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/08/2002] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that is able to grow at refrigeration temperatures. To investigate microbial gene expression associated with cold acclimation, we used a differential cDNA cloning procedure known as selective capture of transcribed sequences (SCOTS) to identify bacterial RNAs that were expressed at elevated levels in bacteria grown at 10 degrees C compared to those grown at 37 degrees C. A total of 24 different cDNA clones corresponding to open reading frames in the L. monocytogenes strain EGD-e genome were obtained by SCOTS. These included cDNAs for L. monocytogenes genes involved in previously described cold-adaptive responses (flaA and flp), regulatory adaptive responses (rpoN, lhkA, yycJ, bglG, adaB, and psr), general microbial stress responses (groEL, clpP, clpB, flp, and trxB), amino acid metabolism (hisJ, trpG, cysS, and aroA), cell surface alterations (fbp, psr, and flaA), and degradative metabolism (eutB, celD, and mleA). Four additional cDNAs were obtained corresponding to genes potentially unique to L. monocytogenes and showing no significant similarity to any other previously described genes. Northern blot analyses confirmed increased steady-state levels of RNA for all members of a subset of genes examined during growth at a low temperature. These results indicated that L. monocytogenes acclimation to growth at 10 degrees C likely involves amino acid starvation, oxidative stress, aberrant protein synthesis, cell surface remodeling, alterations in degradative metabolism, and induction of global regulatory responses.
Collapse
Affiliation(s)
- Siqing Liu
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | | | | | | | |
Collapse
|
44
|
Los DA, Murata N. Sensing and Responses to Low Temperature in Cyanobacteria. CELL AND MOLECULAR RESPONSE TO STRESS 2002. [DOI: 10.1016/s1568-1254(02)80012-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
45
|
Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK. Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. PHYSIOLOGIA PLANTARUM 2002; 114:92-101. [PMID: 11982939 DOI: 10.1034/j.1399-3054.2002.1140113.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ATP-dependent Clp protease is one of the newly identified proteolytic systems in plant organelles that incorporate the activity of molecular chaperones to target specific polypeptide substrates and avoid inadvertent degradation of others. We describe new nuclear-encoded ClpC (ClpC1) and ClpP (ClpP3-5) isomers in Arabidopsis thaliana that raise the total number of identified Clp proteins to 19. The extra Clp proteins are localized within the stroma of chloroplasts along with the ClpD, -P1 and -P6 proteins. Potential differential regulation among these Clp proteins was analysed at both the mRNA and protein level. A comparison between different tissues showed increasing amounts of all plastid Clp proteins from roots to stems to leaves suggested the greatest abundance of proteins was in chloroplasts. The increases in protein were mirrored at the mRNA level for most ClpP isomers (ClpP1, -3, -4 and -6) but not for the three Hsp100 proteins (ClpC1, -C2 and -D) and ClpP5, which exhibited little change in transcript levels, suggesting post-transcriptional/translational regulation. Potential stress induction was also tested for all chloroplast Clp proteins by a series of brief and prolonged stress conditions. Short-term moderate and severe stresses (desiccation, high salt, cold, heat, oxidation, wounding and high light) all failed to elicit significant or rapid increases in any chloroplast Clp protein. However, increases in mRNA and protein content for ClpD and several ClpP isomers did occur during long-term high light and cold acclimation of Arabidopsis plants. These results reveal the great complexity of Clp proteins within the stroma of plant chloroplasts, and that these proteins, rather than being rapidly induced stress proteins, are primarily constitutive proteins that may also be involved in plant acclimation to different physiological conditions.
Collapse
Affiliation(s)
- Bo Zheng
- Umeå Plant Sciences Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden Department of Agricultural Botany, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nám.2, C2-16610 Prague 6, Czech Republic Present address: Botanical Institute, Göteborg University, Box 461, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
46
|
Eriksson MJ, Schelin J, Miskiewicz E, Clarke AK. Novel form of ClpB/HSP100 protein in the cyanobacterium Synechococcus. J Bacteriol 2001; 183:7392-6. [PMID: 11717299 PMCID: PMC95589 DOI: 10.1128/jb.183.24.7392-7396.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus sp. strain PCC 7942 has a second clpB gene that encodes a 97-kDa protein with novel features. ClpBII is the first ClpB not induced by heat shock or other stresses; it is instead an essential, constitutive protein. ClpBII is unable to complement ClpBI function for acquired thermotolerance. No truncated ClpBII version is normally produced, unlike other bacterial forms, while ectopic synthesis of a putative truncated ClpBII dramatically decreased cell viability.
Collapse
Affiliation(s)
- M J Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
47
|
Clarke AK, Eriksson MJ. The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 2000; 182:7092-6. [PMID: 11092876 PMCID: PMC94841 DOI: 10.1128/jb.182.24.7092-7096.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ClpB is a highly conserved heat shock protein that is essential for thermotolerance in bacteria and eukaryotes. One distinctive feature of all bacterial clpB genes is the dual translation of a truncated 79-kDa form (ClpB-79) in addition to the full-length 93-kDa protein (ClpB-93). To investigate the currently unknown function of ClpB-79, we have examined the ability of the two different-sized ClpB homologues from the cyanobacterium Synechococcus sp. strain PCC 7942 to confer thermotolerance. We show that the ClpB-79 form has the same capacity as ClpB-93 to confer thermotolerance and that the ClpB-79 protein contributes ca. one-third of the total thermotolerance developed in wild-type Synechococcus, the first in vivo demonstration of a functional role for ClpB-79 in bacteria.
Collapse
Affiliation(s)
- A K Clarke
- Umeå Plant Sciences Centre, Department of Plant Physiology, University of Umeâ, Umeâ S-901 87, Sweden.
| | | |
Collapse
|
48
|
Tanaka Y, Nishiyama Y, Murata N. Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. PLANT PHYSIOLOGY 2000; 124:441-9. [PMID: 10982457 PMCID: PMC59157 DOI: 10.1104/pp.124.1.441] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 05/19/2000] [Indexed: 05/17/2023]
Abstract
The mechanism responsible for the enhancement of the thermal stability of the oxygen-evolving machinery of photosystem II during acclimation of Chlamydomonas reinhardtii to high temperatures such as 35 degrees C remains unknown. When cells that had been grown at 20 degrees C were transferred to 35 degrees C, the thermal stability of the oxygen-evolving machinery increased and within 8 h it was equivalent to that in cells grown initially at 35 degrees C. Such enhancement of thermal stability was prevented by cycloheximide and by lincomycin, suggesting that the synthesis de novo of proteins encoded by both the nuclear and the chloroplast genome was required for this process. No increase in thermal stability was observed when cells that had been grown at 35 degrees C were exposed to heat shock at 41 degrees C, optimum conditions for the induction of the synthesis of homologs of three heat shock proteins (Hsps), namely, Hsp60, Hsp70, and Hsp22. Moreover, no synthesis of these homologs of Hsps was induced at 35 degrees C. Thus it appears likely that Hsps are not involved in the enhancement of the thermal stability of the oxygen-evolving machinery.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
49
|
Chamot D, Owttrim GW. Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120. J Bacteriol 2000; 182:1251-6. [PMID: 10671444 PMCID: PMC94409 DOI: 10.1128/jb.182.5.1251-1256.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Anabaena sp. strain PCC 7120 RNA helicase gene crhC is induced by cold shock. crhC transcripts are not detectable at 30 degrees C but accumulate at 20 degrees C, and levels remain elevated for the duration of the cold stress. Light-derived metabolic capability, and not light per se, is required for crhC transcript accumulation. Enhanced crhC mRNA stability contributes significantly to the accumulation of crhC transcripts, with the crhC half-life increasing sixfold at 20 degrees C. The accumulation is reversible, with the cells responding more rapidly to temperature downshifts than to upshifts, as a result of the lack of active mRNA destabilization and the continuation of crhC transcription, at least transiently, after a temperature upshift. Translational inhibitors do not induce crhC expression to cold shock levels, indicating that inhibition of translation is only one of the signals required to activate the cold shock response in Anabaena. Limited amounts of protein synthesis are required for the cold shock-induced accumulation of crhC transcripts, as normal levels of accumulation occur in the presence of tetracycline but are abolished by chloramphenicol. Regulation of crhC expression may also extend to the translational level, as CrhC protein levels do not correlate completely with the pattern of mRNA transcript accumulation. Our experiments indicate that the regulation of crhC transcript accumulation is tightly controlled by both temperature and metabolic activity at the levels of transcription, mRNA stabilization, and translation.
Collapse
Affiliation(s)
- D Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
50
|
Thomas DJ, Thomas JB, Prier SD, Nasso NE, Herbert SK. Iron superoxide dismutase protects against chilling damage in the cyanobacterium synechococcus species PCC7942. PLANT PHYSIOLOGY 1999; 120:275-282. [PMID: 10318704 PMCID: PMC59259 DOI: 10.1104/pp.120.1.275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/1998] [Accepted: 02/11/1999] [Indexed: 05/22/2023]
Abstract
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB-, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0 degrees C, 10 degrees C, 17 degrees C, and 27 degrees C in moderate light. At 27 degrees C, the sodB- and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB- strain was more sensitive to chilling stress at 17 degrees C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB- strains exhibited similar chilling damage at 0 degrees C and 10 degrees C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB- strain than in the wild type at 17 degrees C and 27 degrees C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0 degrees C.
Collapse
Affiliation(s)
- DJ Thomas
- University of Idaho, Department of Biological Sciences, Moscow, Idaho 83844-3051, USA
| | | | | | | | | |
Collapse
|