1
|
Widney KA, Yang DD, Rusch LM, Copley SD. CRISPR-Cas9-assisted genome editing in E. coli elevates the frequency of unintended mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.584922. [PMID: 38562785 PMCID: PMC10983943 DOI: 10.1101/2024.03.19.584922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cas-assisted lambda Red recombineering techniques have rapidly become a mainstay of bacterial genome editing. Such techniques have been used to construct both individual mutants and massive libraries to assess the effects of genomic changes. We have found that a commonly used Cas9-assisted editing method results in unintended mutations elsewhere in the genome in 26% of edited clones. The unintended mutations are frequently found over 200 kb from the intended edit site and even over 10 kb from potential off-target sites. We attribute the high frequency of unintended mutations to error-prone polymerases expressed in response to dsDNA breaks introduced at the edit site. Most unintended mutations occur in regulatory or coding regions and thus may have phenotypic effects. Our findings highlight the risks associated with genome editing techniques involving dsDNA breaks in E. coli and likely other bacteria and emphasize the importance of sequencing the genomes of edited cells to ensure the absence of unintended mutations.
Collapse
Affiliation(s)
- Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| |
Collapse
|
2
|
Łazowski K, Faraz M, Vaisman A, Ashton NW, Jonczyk P, Fijalkowska IJ, Clausen AR, Woodgate R, Makiela-Dzbenska K. Strand specificity of ribonucleotide excision repair in Escherichia coli. Nucleic Acids Res 2023; 51:1766-1782. [PMID: 36762476 PMCID: PMC9976901 DOI: 10.1093/nar/gkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Piotr Jonczyk
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
3
|
Ojha D, Jaszczur MM, Sikand A, McDonald JP, Robinson A, van Oijen AM, Mak CH, Pinaud F, Cox MM, Woodgate R, Goodman MF. Host cell RecA activates a mobile element-encoded mutagenic DNA polymerase. Nucleic Acids Res 2022; 50:6854-6869. [PMID: 35736210 PMCID: PMC9262582 DOI: 10.1093/nar/gkac515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chi H Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 Wisconsin, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
McDonald JP, Quiros DR, Vaisman A, Mendez AR, Reyelt J, Schmidt M, Gonzalez M, Woodgate R. CroS R391 , an ortholog of the λ Cro repressor, plays a major role in suppressing polV R391 -dependent mutagenesis. Mol Microbiol 2021; 116:877-889. [PMID: 34184328 PMCID: PMC8460599 DOI: 10.1111/mmi.14777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Dominic R. Quiros
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Alexandra Vaisman
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | | | - Jan Reyelt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
- Present address:
AGC Biologics GmbHHeidelbergGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | | | - Roger Woodgate
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
5
|
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity. DNA Repair (Amst) 2021; 103:103130. [PMID: 33991871 DOI: 10.1016/j.dnarep.2021.103130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.
Collapse
|
6
|
Faraz M, Woodgate R, Clausen AR. Tracking Escherichia coli DNA polymerase V to the entire genome during the SOS response. DNA Repair (Amst) 2021; 101:103075. [PMID: 33662762 PMCID: PMC8286053 DOI: 10.1016/j.dnarep.2021.103075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA and can be used as a marker of DNA replication enzymology. To investigate on a genome-wide scale, how E. coli pol V accesses undamaged chromosomal DNA during the SOS response, we mapped the location of ribonucleotides incorporated by steric gate variants of pol V across the entire E. coli genome. To do so, we used strains that are deficient in ribonucleotide excision repair (ΔrnhB), deficient in pol IV DNA polymerase, constitutively express all SOS-regulated genes [lexA(Def)] and constitutively “activated” RecA* (recA730). The strains also harbor two steric gate variants of E. coli pol V (Y11A, or F10L), or a homolog of pol V, (pol VR391-Y13A). Ribonucleotides are frequently incorporated by the pol V-Y11A and pol VR391-Y13A variants, with a preference to the lagging strand. In contrast, the pol V-F10L variant incorporates less ribonucleotides and no strand preference is observed. Sharp transitions in strand specificity are observed at the replication origin (oriC), while a gradient is observed at the termination region. To activate RecA* in a recA+ strain, we treated the strains with ciprofloxacin and genome-wide mapped the location of the incorporated ribonucleotides. Again, the pol V-Y11A steric gate variant exhibited a lagging strand preference. Our data are consistent with a specific role for pol V in lagging strand DNA synthesis across the entire E. coli genome during the SOS response.
Collapse
Affiliation(s)
- Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
7
|
Ozdemirel HO, Ulusal D, Kucukyildirim Celik S. Streptomycin and nalidixic acid elevate the spontaneous genome-wide mutation rate in Escherichia coli. Genetica 2021; 149:73-80. [PMID: 33502702 DOI: 10.1007/s10709-021-00114-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
Since antibiotic resistance is a growing public health problem worldwide, it is important to understand how antibiotics and spontaneous mutations cooperate and shape the genome-wide mutation rate and spectrum. Here, we quantitatively evaluate genome-wide mutational profiles of Escherichia coli after long-term subinhibitory exposure to a broad-spectrum (streptomycin) and a narrow-spectrum antibiotic (nalidixic acid), using a mutation accumulation design combined with whole-genome resequencing of replicate lines as a mutagenicity test. We determined that, while the genome-wide mutation rate is slightly higher in the streptomycin-treated lines compared to the control lines, there is a significant increase in the nalidixic acid-treated lines. Our findings suggest that both broad and narrow-spectrum antibiotics may elevate the mutation rates in E. coli, but mechanisms of action may affect the consequence, thus contribute to accelerating the rate of adaptation and conferring antibiotic resistance.
Collapse
Affiliation(s)
| | - Dilara Ulusal
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
8
|
Niccum BA, Coplen CP, Lee H, Mohammed Ismail W, Tang H, Foster PL. New complexities of SOS-induced "untargeted" mutagenesis in Escherichia coli as revealed by mutation accumulation and whole-genome sequencing. DNA Repair (Amst) 2020; 90:102852. [PMID: 32388005 DOI: 10.1016/j.dnarep.2020.102852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023]
Abstract
When its DNA is damaged, Escherichia coli induces the SOS response, which consists of about 40 genes that encode activities to repair or tolerate the damage. Certain alleles of the major SOS-control genes, recA and lexA, cause constitutive expression of the response, resulting in an increase in spontaneous mutations. These mutations, historically called "untargeted", have been the subject of many previous studies. Here we re-examine SOS-induced mutagenesis using mutation accumulation followed by whole-genome sequencing (MA/WGS), which allows a detailed picture of the types of mutations induced as well as their sequence-specificity. Our results confirm previous findings that SOS expression specifically induces transversion base-pair substitutions, with rates averaging about 60-fold above wild-type levels. Surprisingly, the rates of G:C to C:G transversions, normally an extremely rare mutation, were induced an average of 160-fold above wild-type levels. The SOS-induced transversion showed strong sequence specificity, the most extreme of which was the G:C to C:G transversions, 60% of which occurred at the middle base of 5'GGC3'+5'GCC3' sites, although these sites represent only 8% of the G:C base pairs in the genome. SOS-induced transversions were also DNA strand-biased, occurring, on average, 2- to 4- times more often when the purine was on the leading-strand template and the pyrimidine on the lagging-strand template than in the opposite orientation. However, the strand bias was also sequence specific, and even of reverse orientation at some sites. By eliminating constraints on the mutations that can be recovered, the MA/WGS protocol revealed new complexities of SOS "untargeted" mutations.
Collapse
Affiliation(s)
- Brittany A Niccum
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Heewook Lee
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Wazim Mohammed Ismail
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
9
|
Walsh E, Henrikus SS, Vaisman A, Makiela-Dzbenska K, Armstrong TJ, Łazowski K, McDonald JP, Goodman MF, van Oijen AM, Jonczyk P, Fijalkowska IJ, Robinson A, Woodgate R. Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V ICE391. DNA Repair (Amst) 2019; 84:102685. [PMID: 31543434 DOI: 10.1016/j.dnarep.2019.102685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/18/2022]
Abstract
pol VICE391 (RumA'2B) is a low-fidelity polymerase that promotes considerably higher levels of spontaneous "SOS-induced" mutagenesis than the related E. coli pol V (UmuD'2C). The molecular basis for the enhanced mutagenesis was previously unknown. Using single molecule fluorescence microscopy to visualize pol V enzymes, we discovered that the elevated levels of mutagenesis are likely due, in part, to prolonged binding of RumB to genomic DNA leading to increased levels of DNA synthesis compared to UmuC. We have generated a steric gate pol VICE391 variant (pol VICE391_Y13A) that readily misincorporates ribonucleotides into the E. coli genome and have used the enzyme to investigate the molecular mechanisms of Ribonucleotide Excision Repair (RER) under conditions of increased ribonucleotide-induced stress. To do so, we compared the extent of spontaneous mutagenesis promoted by pol V and pol VICE391 to that of their respective steric gate variants. Levels of mutagenesis promoted by the steric gate variants that are lower than that of the wild-type enzyme are indicative of active RER that removes misincorporated ribonucleotides, but also misincorporated deoxyribonucleotides from the genome. Using such an approach, we confirmed that RNase HII plays a pivotal role in RER. In the absence of RNase HII, Nucleotide Excision Repair (NER) proteins help remove misincorporated ribonucleotides. However, significant RER occurs in the absence of RNase HII and NER. Most of the RNase HII and NER-independent RER occurs on the lagging strand during genome duplication. We suggest that this is most likely due to efficient RNase HI-dependent RER which recognizes the polyribonucleotide tracts generated by pol VICE391_Y13A. These activities are critical for the maintenance of genomic integrity when RNase HII is overwhelmed, or inactivated, as ΔrnhB or ΔrnhB ΔuvrA strains expressing pol VICE391_Y13A exhibit genome and plasmid instability in the absence of RNase HI.
Collapse
Affiliation(s)
- Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | - Thomas J Armstrong
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Krystian Łazowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910 USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
10
|
Makiela-Dzbenska K, Maslowska KH, Kuban W, Gawel D, Jonczyk P, Schaaper RM, Fijalkowska IJ. Replication fidelity in E. coli: Differential leading and lagging strand effects for dnaE antimutator alleles. DNA Repair (Amst) 2019; 83:102643. [PMID: 31324532 DOI: 10.1016/j.dnarep.2019.102643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022]
Abstract
DNA Pol III holoenzyme (HE) is the major DNA replicase of Escherichia coli. It is a highly accurate enzyme responsible for simultaneously replicating the leading- and lagging DNA strands. Interestingly, the fidelity of replication for the two DNA strands is unequal, with a higher accuracy for lagging-strand replication. We have previously proposed this higher lagging-strand fidelity results from the more dissociative character of the lagging-strand polymerase. In support of this hypothesis, an E. coli mutant carrying a catalytic DNA polymerase subunit (DnaE915) characterized by decreased processivity yielded an antimutator phenotype (higher fidelity). The present work was undertaken to gain deeper insight into the factors that influence the fidelity of chromosomal DNA replication in E. coli. We used three different dnaE alleles (dnaE915, dnaE911, and dnaE941) that had previously been isolated as antimutators. We confirmed that each of the three dnaE alleles produced significant antimutator effects, but in addition showed that these antimutator effects proved largest for the normally less accurate leading strand. Additionally, in the presence of error-prone DNA polymerases, each of the three dnaE antimutator strains turned into mutators. The combined observations are fully supportive of our model in which the dissociative character of the DNA polymerase is an important determinant of in vivo replication fidelity. In this model, increased dissociation from terminal mismatches (i.e., potential mutations) leads to removal of the mismatches (antimutator effect), but in the presence of error-prone (or translesion) DNA polymerases the abandoned terminal mismatches become targets for error-prone extension (mutator effect). We also propose that these dnaE alleles are promising tools for studying polymerase exchanges at the replication fork.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna H Maslowska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kuban
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Gawel
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Jonczyk
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | - Iwona J Fijalkowska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
12
|
Jaszczur MM, Vo DD, Stanciauskas R, Bertram JG, Sikand A, Cox MM, Woodgate R, Mak CH, Pinaud F, Goodman MF. Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genet 2019; 15:e1007956. [PMID: 30716079 PMCID: PMC6375631 DOI: 10.1371/journal.pgen.1007956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/14/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.
Collapse
Affiliation(s)
- Malgorzata M. Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Dan D. Vo
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Ramunas Stanciauskas
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jeffrey G. Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi H. Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wei W, Xiong L, Ye YN, Du MZ, Gao YZ, Zhang KY, Jin YT, Yang Z, Wong PC, Lau SKP, Kan B, Zhu J, Woo PCY, Guo FB. Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biol Evol 2018; 10:2072-2085. [PMID: 30060177 PMCID: PMC6105331 DOI: 10.1093/gbe/evy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Pandemic cholera is a major concern for public health because of its high mortality and morbidity. Mutation accumulation (MA) experiments were performed on a representative strain of the current cholera pandemic. Although the base-pair substitution mutation rates in Vibrio cholerae (1.24 × 10-10 per site per generation for wild-type lines and 3.29 × 10-8 for mismatch repair deficient lines) are lower than that previously reported in other bacteria using MA analysis, we discovered specific high rates (8.31 × 10-8 site/generation for wild-type lines and 1.82 × 10-6 for mismatch repair deficient lines) of base duplication or deletion driven by large-scale copy number variations (CNVs). These duplication-deletions are located in two pathogenic islands, IMEX and the large integron island. Each element of these islands has discrepant rate in rapid integration and excision, which provides clues to the pandemicity evolution of V. cholerae. These results also suggest that large-scale structural variants such as CNVs can accumulate rapidly during short-term evolution. Mismatch repair deficient lines exhibit a significantly increased mutation rate in the larger chromosome (Chr1) at specific regions, and this pattern is not observed in wild-type lines. We propose that the high frequency of GATC sites in Chr1 improves the efficiency of MMR, resulting in similar rates of mutation in the wild-type condition. In addition, different mutation rates and spectra were observed in the MA lines under distinct growth conditions, including minimal media, rich media and antibiotic treatments.
Collapse
Affiliation(s)
- Wen Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Sciences, Chongqing University, China
| | - Lifeng Xiong
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
| | - Yuan-Nong Ye
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Bioinformatics and Biomedical Bigdata Mining Laboratory, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Zhou Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai-Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Po-Chun Wong
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
| | - Susanna K P Lau
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Patrick C Y Woo
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation. Proc Natl Acad Sci U S A 2018; 115:4212-4217. [PMID: 29610333 DOI: 10.1073/pnas.1720353115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fidelity of DNA replication is a critical factor in the rate at which cells incur mutations. Due to the antiparallel orientation of the two chromosomal DNA strands, one strand (leading strand) is replicated in a mostly processive manner, while the other (lagging strand) is synthesized in short sections called Okazaki fragments. A fundamental question that remains to be answered is whether the two strands are copied with the same intrinsic fidelity. In most experimental systems, this question is difficult to answer, as the replication complex contains a different DNA polymerase for each strand, such as, for example, DNA polymerases δ and ε in eukaryotes. Here we have investigated this question in the bacterium Escherichia coli, in which the replicase (DNA polymerase III holoenzyme) contains two copies of the same polymerase (Pol III, the dnaE gene product), and hence the two strands are copied by the same polymerase. Our in vivo mutagenesis data indicate that the two DNA strands are not copied with the same accuracy, and that, remarkably, the lagging strand has the highest fidelity. We postulate that this effect results from the greater dissociative character of the lagging-strand polymerase, which provides additional options for error removal. Our conclusion is strongly supported by results with dnaE antimutator polymerases characterized by increased dissociation rates.
Collapse
|
15
|
Kubiak JM, Culyba MJ, Liu MY, Mo CY, Goulian M, Kohli RM. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage. ACS Synth Biol 2017; 6:2067-2076. [PMID: 28826208 PMCID: PMC5696648 DOI: 10.1021/acssynbio.7b00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bacterial SOS stress-response
pathway is a pro-mutagenic DNA
repair system that mediates bacterial survival and adaptation to genotoxic
stressors, including antibiotics and UV light. The SOS pathway is
composed of a network of genes under the control of the transcriptional
repressor, LexA. Activation of the pathway involves linked but distinct
events: an initial DNA damage event leads to activation of RecA, which
promotes autoproteolysis of LexA, abrogating its repressor function
and leading to induction of the SOS gene network. These linked events
can each independently contribute to DNA repair and mutagenesis, making
it difficult to separate the contributions of the different events
to observed phenotypes. We therefore devised a novel synthetic circuit
to unlink these events and permit induction of the SOS gene network
in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic
SOS circuit demonstrate small-molecule inducible expression of SOS
genes as well as the associated resistance to UV light. Exploiting
our ability to activate SOS genes independently of upstream events,
we further demonstrate that the majority of SOS-mediated mutagenesis
on the chromosome does not readily occur with orthogonal pathway induction
alone, but instead requires DNA damage. More generally, our approach
provides an exemplar for using synthetic circuit design to separate
an environmental stressor from its associated stress-response pathway.
Collapse
Affiliation(s)
- Jeffrey M. Kubiak
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Monica Yun Liu
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charlie Y. Mo
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Goulian
- Department
of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Nevin P, Gabbai CC, Marians KJ. Replisome-mediated translesion synthesis by a cellular replicase. J Biol Chem 2017. [PMID: 28642369 DOI: 10.1074/jbc.m117.800441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome integrity relies on the ability of the replisome to navigate ubiquitous DNA damage during DNA replication. The Escherichia coli replisome transiently stalls at leading-strand template lesions and can either reinitiate replication downstream of the lesion or recruit specialized DNA polymerases that can bypass the lesion via translesion synthesis. Previous results had suggested that the E. coli replicase might play a role in lesion bypass, but this possibility has not been tested in reconstituted DNA replication systems. We report here that the DNA polymerase III holoenzyme in a stalled E. coli replisome can directly bypass a single cyclobutane pyrimidine dimer or abasic site by translesion synthesis in the absence of specialized translesion synthesis polymerases. Bypass efficiency was proportional to deoxynucleotide concentrations equivalent to those found in vivo and was dependent on the frequency of primer synthesis downstream of the lesion. Translesion synthesis came at the expense of lesion-skipping replication restart. Replication of a cyclobutane pyrimidine dimer was accurate, whereas replication of an abasic site resulted in mainly -1 frameshifts. Lesion bypass was accompanied by an increase in base substitution frequency for the base preceding the lesion. These findings suggest that DNA damage at the replication fork can be replicated directly by the replisome without the need to activate error-prone pathways.
Collapse
Affiliation(s)
- Philip Nevin
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Carolina C Gabbai
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
17
|
Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 2016; 1:mSphere00163-16. [PMID: 27536734 PMCID: PMC4980697 DOI: 10.1128/msphere.00163-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment. The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.
Collapse
|
18
|
Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci U S A 2016; 113:E2498-505. [PMID: 27091991 DOI: 10.1073/pnas.1601208113] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although it is well known that microbial populations can respond adaptively to challenges from antibiotics, empirical difficulties in distinguishing the roles of de novo mutation and natural selection have left several issues unresolved. Here, we explore the mutational properties of Escherichia coli exposed to long-term sublethal levels of the antibiotic norfloxacin, using a mutation accumulation design combined with whole-genome sequencing of replicate lines. The genome-wide mutation rate significantly increases with norfloxacin concentration. This response is associated with enhanced expression of error-prone DNA polymerases and may also involve indirect effects of norfloxacin on DNA mismatch and oxidative-damage repair. Moreover, we find that acquisition of antibiotic resistance can be enhanced solely by accelerated mutagenesis, i.e., without direct involvement of selection. Our results suggest that antibiotics may generally enhance the mutation rates of target cells, thereby accelerating the rate of adaptation not only to the antibiotic itself but to additional challenges faced by invasive pathogens.
Collapse
|
19
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
20
|
Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun 2015; 6:8425. [PMID: 26443021 PMCID: PMC4633624 DOI: 10.1038/ncomms9425] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023] Open
Abstract
Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. Random DNA mutagenesis provides genetic diversity both in nature and the laboratory. Here, Badran and Liu present a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that surpasses the mutational efficiency and spectra of the most widely used in vivo and in vitro mutagenesis methods.
Collapse
|
21
|
Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, Ghodke H, Cox MM, Woodgate R, Goodman MF, van Oijen AM. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 2015; 11:e1005482. [PMID: 26317348 PMCID: PMC4552617 DOI: 10.1371/journal.pgen.1005482] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/03/2015] [Indexed: 01/04/2023] Open
Abstract
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Escherichia coli, and many other bacteria, respond to high levels of DNA damage with an inducible system called the SOS response. In this response, bacteria first try to restart replication using non-mutagenic DNA repair strategies. If that fails, replication can be restored using DNA polymerases that simply replicate over DNA lesions, a desperation strategy that results in mutations. DNA polymerase V (pol V) is responsible for most mutagenesis that accompanies the SOS response. Because of the risk inherent to elevated mutation levels, pol V activation is tightly constrained. This report introduces a new layer of regulation on pol V activation, with a novel spatial component. After synthesis, the UmuC subunit of pol V is sequestered transiently at the membrane. Release into the cytosol and final activation depends on the activity of RecA protein and the autocatalytic cleavage of UmuD to generate the UmuD' subunit of pol V. The resulting delay in activation represents an additional molecular mechanism that limits the amount of time that this sometimes necessary but potentially detrimental enzyme spends on the DNA.
Collapse
Affiliation(s)
- Andrew Robinson
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victor E. A. Caldas
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Meghna Patel
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christiaan M. Punter
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Harshad Ghodke
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Antoine M. van Oijen
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ, Schaaper RM. Suppression of the E. coli SOS response by dNTP pool changes. Nucleic Acids Res 2015; 43:4109-20. [PMID: 25824947 PMCID: PMC4417155 DOI: 10.1093/nar/gkv217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.
Collapse
Affiliation(s)
- Katarzyna H Maslowska
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | | | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Abstract
RNAi is conserved and has been studied in a broad cross-section of the fungal kingdom, including Neurospora crassa, Schizosaccharomyces pombe, Cryptococcus neoformans, and Mucor circinelloides. And yet well known species, including the model yeast Saccharomyces cerevisiae and the plant pathogen Ustilago maydis, have lost RNAi, providing insights and opportunities to illuminate benefits conferred both by the presence of RNAi and its loss. Some of the earliest studies of RNAi were conducted in Neurospora, contemporaneously with the elucidation of RNAi in Caenorhabditis elegans. RNAi is a key epigenetic mechanism for maintaining genomic stability and integrity, as well as to defend against viruses, and given its ubiquity was likely present in the last eukaryotic common ancestor. In this review, we describe the diversity of RNAi mechanisms found in the fungi, highlighting recent work in Neurospora, S. pombe, and Cryptococcus. Finally, we consider frequent, independent losses of RNAi in diverse fungal lineages and both review and speculate on evolutionary forces that may drive the losses or result therefrom.
Collapse
|
24
|
Jones PR. Genetic instability in cyanobacteria - an elephant in the room? Front Bioeng Biotechnol 2014; 2:12. [PMID: 25152885 PMCID: PMC4126474 DOI: 10.3389/fbioe.2014.00012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Many research groups are interested in engineering the metabolism of cyanobacteria with the objective to convert solar energy, CO2, and water (perhaps also N2) into commercially valuable products. Toward this objective, many challenges stand in the way before sustainable production can be realized. One of these challenges, potentially, is genetic instability. Although only a handful of reports of this phenomenon are available in the scientific literature, it does appear to be a real issue that so far has not been studied much in cyanobacteria. With this brief perspective, I wish to raise the awareness of this potential issue and hope to inspire future studies on the topic as I believe it will make an important contribution to enabling sustainable large-scale biotechnology in the future using aquatic photobiological microorganisms.
Collapse
Affiliation(s)
- Patrik R Jones
- Department of Life Sciences, Imperial College London , London , UK
| |
Collapse
|
25
|
Macguire AE, Ching MC, Diamond BH, Kazakov A, Novichkov P, Godoy VG. Activation of phenotypic subpopulations in response to ciprofloxacin treatment in Acinetobacter baumannii. Mol Microbiol 2014; 92:138-52. [PMID: 24612352 DOI: 10.1111/mmi.12541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other.
Collapse
Affiliation(s)
- Ashley E Macguire
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
26
|
Vaisman A, McDonald JP, Noll S, Huston D, Loeb G, Goodman MF, Woodgate R. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutat Res 2014; 761:21-33. [PMID: 24495324 DOI: 10.1016/j.mrfmmm.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
Low fidelity Escherichia coli DNA polymerase V (pol V/UmuD'2C) is best characterized for its ability to perform translesion synthesis (TLS). However, in recA730 lexA(Def) strains, the enzyme is expressed under optimal conditions allowing it to compete with the cell's replicase for access to undamaged chromosomal DNA and leads to a substantial increase in spontaneous mutagenesis. We have recently shown that a Y11A substitution in the "steric gate" residue of UmuC reduces both base and sugar selectivity of pol V, but instead of generating an increased number of spontaneous mutations, strains expressing umuC_Y11A are poorly mutable in vivo. This phenotype is attributed to efficient RNase HII-initiated repair of the misincorporated ribonucleotides that concomitantly removes adjacent misincorporated deoxyribonucleotides. We have utilized the ability of the pol V steric gate mutant to promote incorporation of large numbers of errant ribonucleotides into the E. coli genome to investigate the fundamental mechanisms underlying ribonucleotide excision repair (RER). Here, we demonstrate that RER is normally facilitated by DNA polymerase I (pol I) via classical "nick translation". In vitro, pol I displaces 1-3 nucleotides of the RNA/DNA hybrid and through its 5'→3' (exo/endo) nuclease activity releases ribo- and deoxyribonucleotides from DNA. In vivo, umuC_Y11A-dependent mutagenesis changes significantly in polymerase-deficient, or proofreading-deficient polA strains, indicating a pivotal role for pol I in ribonucleotide excision repair (RER). However, there is also considerable redundancy in the RER pathway in E. coli. Pol I's strand displacement and FLAP-exo/endonuclease activities can be facilitated by alternate enzymes, while the DNA polymerization step can be assumed by high-fidelity pol III. We conclude that RNase HII and pol I normally act to minimize the genomic instability that is generated through errant ribonucleotide incorporation, but that the "nick-translation" activities encoded by the single pol I polypeptide can be undertaken by a variety of back-up enzymes.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Stephan Noll
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Donald Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Gregory Loeb
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Department of Biological Sciences and Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
27
|
Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet 2013; 9:e1003878. [PMID: 24244177 PMCID: PMC3820734 DOI: 10.1371/journal.pgen.1003878] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th–5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER. Most DNA polymerases differentiate between ribo- and deoxyribonucleotides quite effectively, thereby deterring insertion of nucleotides with the “wrong” sugar into chromosomes. Nevertheless, a significant number of ribonucleotides still get stably incorporated into genomic DNA. E.coli pol V is among the most inaccurate DNA polymerases in terms of both sugar selectivity and base substitution fidelity. The umuC_Y11A steric gate variant of pol V is even less discriminating when selecting sugar of the incoming nucleotide while keeping a similar capacity to form non-Watson-Crick base pairs. In the present study, we describe mechanisms employed by E. coli to excise rNMPs from DNA and to concomitantly reduce the extent of spontaneous mutagenesis induced by umuC_Y11A. The first line of defense comes from Ribonuclease HII, which initiates the ribonucleotide excision repair pathway. In the absence of RNase HII, alternate repair pathways help remove the misincorporated ribonucleotides. Here, we present the first direct evidence that nucleotide excision repair (NER) has the capacity to recognize both correctly and incorrectly paired rNMPs embedded in DNA. The combined actions of RNase HII and NER thereby reduce the mutagenic potential of ribonucleotides errantly incorporated into prokaryotic genomes.
Collapse
|
28
|
|
29
|
McDonald JP, Vaisman A, Kuban W, Goodman MF, Woodgate R. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. PLoS Genet 2012; 8:e1003030. [PMID: 23144626 PMCID: PMC3493448 DOI: 10.1371/journal.pgen.1003030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/25/2012] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli pol V (UmuD'(2)C), the main translesion DNA polymerase, ensures continued nascent strand extension when the cellular replicase is blocked by unrepaired DNA lesions. Pol V is characterized by low sugar selectivity, which can be further reduced by a Y11A "steric-gate" substitution in UmuC that enables pol V to preferentially incorporate rNTPs over dNTPs in vitro. Despite efficient error-prone translesion synthesis catalyzed by UmuC_Y11A in vitro, strains expressing umuC_Y11A exhibit low UV mutability and UV resistance. Here, we show that these phenotypes result from the concomitant dual actions of Ribonuclease HII (RNase HII) initiating removal of rNMPs from the nascent DNA strand and nucleotide excision repair (NER) removing UV lesions from the parental strand. In the absence of either repair pathway, UV resistance and mutagenesis conferred by umuC_Y11A is significantly enhanced, suggesting that the combined actions of RNase HII and NER lead to double-strand breaks that result in reduced cell viability. We present evidence that the Y11A-specific UV phenotype is tempered by pol IV in vivo. At physiological ratios of the two polymerases, pol IV inhibits pol V-catalyzed translesion synthesis (TLS) past UV lesions and significantly reduces the number of Y11A-incorporated rNTPs by limiting the length of the pol V-dependent TLS tract generated during lesion bypass in vitro. In a recA730 lexA(Def) ΔumuDC ΔdinB strain, plasmid-encoded wild-type pol V promotes high levels of spontaneous mutagenesis. However, umuC_Y11A-dependent spontaneous mutagenesis is only ~7% of that observed with wild-type pol V, but increases to ~39% of wild-type levels in an isogenic ΔrnhB strain and ~72% of wild-type levels in a ΔrnhA ΔrnhB double mutant. Our observations suggest that errant ribonucleotides incorporated by pol V can be tolerated in the E. coli genome, but at the cost of higher levels of cellular mutagenesis.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wojciech Kuban
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra. Proc Natl Acad Sci U S A 2012; 109:13680-5. [PMID: 22869726 DOI: 10.1073/pnas.1205357109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The successful growth of hypermutator strains of bacteria contradicts a clear preference for lower mutation rates observed in the microbial world. Whether by general DNA repair deficiency or the inducible action of low-fidelity DNA polymerases, the evolutionary strategies of bacteria include methods of hypermutation. Although both raise mutation rate, general and inducible hypermutation operate through distinct molecular mechanisms and therefore likely impart unique adaptive consequences. Here we compare the influence of general and inducible hypermutation on adaptation in the model organism Pseudomonas aeruginosa PAO1 through experimental evolution. We observed divergent spectra of single base substitutions derived from general and inducible hypermutation by sequencing rpoB in spontaneous rifampicin-resistant (Rif(R)) mutants. Likewise, the pattern of mutation in a draft genome sequence of a derived inducible hypermutator isolate differed from those of general hypermutators reported in the literature. However, following experimental evolution, populations of both mutator types exhibited comparable improvements in fitness across varied conditions that differed from the highly specific adaptation of nonmutators. Our results suggest that despite their unique mutation spectra, general and inducible hypermutation can analogously influence the ecology and adaptation of bacteria, significantly shaping pathogenic populations where hypermutation has been most widely observed.
Collapse
|
31
|
Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 2012; 36:1105-21. [PMID: 22404288 DOI: 10.1111/j.1574-6976.2012.00338.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022] Open
Abstract
High accuracy (fidelity) of DNA replication is important for cells to preserve the genetic identity and to prevent the accumulation of deleterious mutations. The error rate during DNA replication is as low as 10(-9) to 10(-11) errors per base pair. How this low level is achieved is an issue of major interest. This review is concerned with the mechanisms underlying the fidelity of the chromosomal replication in the model system Escherichia coli by DNA polymerase III holoenzyme, with further emphasis on participation of the other, accessory DNA polymerases, of which E. coli contains four (Pols I, II, IV, and V). Detailed genetic analysis of mutation rates revealed that (1) Pol II has an important role as a back-up proofreader for Pol III, (2) Pols IV and V do not normally contribute significantly to replication fidelity, but can readily do so under conditions of elevated expression, (3) participation of Pols IV and V, in contrast to that of Pol II, is specific to the lagging strand, and (4) Pol I also makes a lagging-strand-specific fidelity contribution, limited, however, to the faithful filling of the Okazaki fragment gaps. The fidelity role of the Pol III τ subunit is also reviewed.
Collapse
Affiliation(s)
- Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
32
|
Vaisman A, Kuban W, McDonald JP, Karata K, Yang W, Goodman MF, Woodgate R. Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic Acids Res 2012; 40:6144-57. [PMID: 22422840 PMCID: PMC3401427 DOI: 10.1093/nar/gks233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The active form of Escherichia coli DNA polymerase V responsible for damage-induced mutagenesis is a multiprotein complex (UmuD′2C-RecA-ATP), called pol V Mut. Optimal activity of pol V Mut in vitro is observed on an SSB-coated single-stranded circular DNA template in the presence of the β/γ complex and a transactivated RecA nucleoprotein filament, RecA*. Remarkably, under these conditions, wild-type pol V Mut efficiently incorporates ribonucleotides into DNA. A Y11A substitution in the ‘steric gate’ of UmuC further reduces pol V sugar selectivity and converts pol V Mut into a primer-dependent RNA polymerase that is capable of synthesizing long RNAs with a processivity comparable to that of DNA synthesis. Despite such properties, Y11A only promotes low levels of spontaneous mutagenesis in vivo. While the Y11F substitution has a minimal effect on sugar selectivity, it results in an increase in spontaneous mutagenesis. In comparison, an F10L substitution increases sugar selectivity and the overall fidelity of pol V Mut. Molecular modeling analysis reveals that the branched side-chain of L10 impinges on the benzene ring of Y11 so as to constrict its movement and as a consequence, firmly closes the steric gate, which in wild-type enzyme fails to guard against ribonucleoside triphosphates incorporation with sufficient stringency.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:19311-6. [PMID: 22084087 DOI: 10.1073/pnas.1113664108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient. Indeed, efficient TLS additionally requires elevated dNTP levels. Similarly, for the bypass of an N-2-acetylaminofluorene-guanine adduct that requires Pol II instead of PolV, efficient TLS is only observed under conditions of high dNTP levels. We suggest that increased dNTP levels transiently modify the activity balance of Pol III (i.e., increasing the polymerase and reducing the proofreading functions). Indeed, we show that the stimulation of TLS by elevated dNTP levels can be mimicked by genetic inactivation of the proofreading function (mutD5 allele). We also show that spontaneous mutagenesis increases proportionally to dNTP pool levels, thus defining a unique spontaneous mutator phenotype. The so-called "dNTP mutator" phenotype does not depend upon any of the specialized DNA polymerases, and is thus likely to reflect an increase in Pol III's own replication errors because of the modified activity balance of Pol III. As up-regulation of the dNTP pool size represents a common physiological response to DNA damage, the present model is likely to represent a general and unique paradigm for TLS pathways in many organisms.
Collapse
|
34
|
Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS One 2011; 6:e20063. [PMID: 21695201 PMCID: PMC3112155 DOI: 10.1371/journal.pone.0020063] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/12/2011] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanism supporting survival at a critical high temperature (CHT) in Escherichia coli was investigated. Genome-wide screening with a single-gene knockout library provided a list of genes indispensable for growth at 47°C, called thermotolerant genes. Genes for which expression was affected by exposure to CHT were identified by DNA chip analysis. Unexpectedly, the former contents did not overlap with the latter except for dnaJ and dnaK, indicating that a specific set of non-heat shock genes is required for the organism to survive under such a severe condition. More than half of the mutants of the thermotolerant genes were found to be sensitive to H2O2 at 30°C, suggesting that the mechanism of thermotolerance partially overlaps with that of oxidative stress resistance. Their encoded enzymes or proteins are related to outer membrane organization, DNA double-strand break repair, tRNA modification, protein quality control, translation control or cell division. DNA chip analyses of essential genes suggest that many of the genes encoding ribosomal proteins are down-regulated at CHT. Bioinformatics analysis and comparison with the genomic information of other microbes suggest that E. coli possesses several systems for survival at CHT. This analysis allows us to speculate that a lipopolysaccharide biosynthesis system for outer membrane organization and a sulfur-relay system for tRNA modification have been acquired by horizontal gene transfer.
Collapse
|
35
|
Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, Frisch RL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One 2010; 5:e10862. [PMID: 20523737 PMCID: PMC2877720 DOI: 10.1371/journal.pone.0010862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Effect of translesion DNA polymerases, endonucleases and RpoS on mutation rates in Salmonella typhimurium. Genetics 2010; 185:783-95. [PMID: 20421601 DOI: 10.1534/genetics.110.116376] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutations (rifampicin, nalidixic acid, and chlorate resistance and Lac(+) reversion) during various growth conditions and with different levels of four translesion DNA polymerases (Pol II, Pol IV, Pol V, and SamAB) and RpoS. Constitutive derepression of the LexA regulon by a lexA(def) mutation had no effect on Lac(+) reversion rates but increased the other three mutation rates up to 11-fold, and the contribution of the translesion DNA polymerases to this mutagenesis varied with the type of mutation examined. The increase in mutation rates in the lexA(def) mutant required the presence of the LexA-controlled UvrB protein and endonucleases UvrC and Cho. With regard to the potential involvement of RpoS in mutagenesis, neither an increase in RpoS levels conferred by artificial overexpression from a plasmid nor long-term stationary phase incubation or slow growth caused an increase in any of the four mutation rates measured, alone or in combination with overexpression of the translesion DNA polymerases. In conclusion, mutation rates are remarkably robust and no combination of growth conditions, induction of translesion DNA polymerases by inactivation of LexA, or increased RpoS expression could confer an increase in mutation rates higher than the moderate increase caused by derepression of the LexA regulon alone.
Collapse
|
37
|
Nieminuszczy J, Mielecki D, Sikora A, Wrzesiński M, Chojnacka A, Krwawicz J, Janion C, Grzesiuk E. Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:791-799. [PMID: 19449394 DOI: 10.1002/em.20497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB-dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB(+) strains, preventing 1meA/3meC-induced mutations. We have found that in the absence of AlkB-mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC-->CG, GC-->TA, AT-->CG, and AT-->TA, whereas overproduction of PolV in CC101-106 alkB(-)/pRW134 strains leads to a markedly elevated level of GC-->TA, GC-->CG, and AT-->TA transversions. It has been observed that in the case of AB1157 alkB(-) strains, the MMS-induced and 1meA/3meC-dependent argE3-->Arg(+) reversion occurs efficiently, whereas lacZ(-)--> Lac(+) reversion in a set of CC101-106 alkB(-) strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101-106 than in AB1157 strains and the different genetic cell backgrounds in CC101-106 alkB(-) and AB1157 alkB(-) strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3-->Arg(+)) and low (lacZ(-) --> Lac(+)) frequency of MMS-induced mutations.
Collapse
Affiliation(s)
- Jadwiga Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009; 74:1114-27. [PMID: 19843230 DOI: 10.1111/j.1365-2958.2009.06921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 2009; 184:27-42. [PMID: 19841096 DOI: 10.1534/genetics.109.107482] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Translesion synthesis DNA polymerases contribute to DNA damage tolerance by mediating replication of damaged templates. Due to the low fidelity of these enzymes, lesion bypass is often mutagenic. We have previously shown that, in Saccharomyces cerevisiae, the contribution of the error-prone DNA polymerase zeta (Polzeta) to replication and mutagenesis is greatly enhanced if the normal replisome is defective due to mutations in replication genes. Here we present evidence that this defective-replisome-induced mutagenesis (DRIM) results from the participation of Polzeta in the copying of undamaged DNA rather than from mutagenic lesion bypass. First, DRIM is not elevated in strains that have a high level of endogenous DNA lesions due to defects in nucleotide excision repair or base excision repair pathways. Second, DRIM remains unchanged when the level of endogenous oxidative DNA damage is decreased by using anaerobic growth conditions. Third, analysis of the spectrum of mutations occurring during DRIM reveals the characteristic error signature seen during replication of undamaged DNA by Polzeta in vitro. These results extend earlier findings in Escherichia coli indicating that Y-family DNA polymerases can contribute to the copying of undamaged DNA. We also show that exposure of wild-type yeast cells to the replication inhibitor hydroxyurea causes a Polzeta-dependent increase in mutagenesis. This suggests that DRIM represents a response to replication impediment per se rather than to specific defects in the replisome components.
Collapse
|
40
|
Jung IL, Kim IG. Polyamine as a signaling molecule for controlling an adaptive mutation. BIOCHEMISTRY (MOSCOW) 2009; 73:1228-34. [PMID: 19120027 DOI: 10.1134/s0006297908110096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the absence of exogenous polyamines, the polyamine-deficient Escherichia coli mutant shows not only a characteristic dual-phase growth with abnormal growth, growth arrest, and normal growth after mutation, but also a higher expression of the SOS genes than the polyamine-proficient wild type. The interval of the growth arrest is inversely regulated in a polyamine concentration-dependent manner. These results indicate that the polyamines can act as a signal not only for provoking an adaptive mutation, but also for hastening generation of an adaptive mutation.
Collapse
Affiliation(s)
- Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Center, Korean Atomic Energy Research Institute, Yusong, Daejeon, 305-600, Korea
| | | |
Collapse
|
41
|
Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2008; 71:315-31. [PMID: 19019142 PMCID: PMC2680738 DOI: 10.1111/j.1365-2958.2008.06526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Collapse
Affiliation(s)
- Elena Curti
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Bacteria possessing elevated spontaneous mutation rates are prevalent in certain environments, which is a paradox because most mutations are deleterious. For example, cells with defects in the methyl-directed mismatch repair (MMR) system, termed mutators or hypermutators, are overrepresented in populations of bacterial pathogens, with the mutator trait hypothesized to be advantageous in the changing host enviroments faced during colonization and establishment of chronic infections. Error-prone DNA polymerases, such as polIV and polV, function in translesion DNA synthesis, a DNA damage response that ensures genome integrity with a cost of increased mutation. While the biochemical aspects of these mutability pathways are well understood, the biological impacts have received less attention. Here, an examination of bacterial mutability systems and specifically the ecological and evolutionary context resulting in the selection of these systems is carried out.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant Pathology, Centers for Microbial Ecology and Pathogenesis, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
43
|
Schlacher K, Goodman MF. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol 2007; 8:587-94. [PMID: 17551516 DOI: 10.1038/nrm2198] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This historical perspective integrates 50 years of research on SOS mutagenesis in Escherichia coli with the proverbial '3R' functions--replication, repair and recombination--that feature DNA polymerase V. Genetic and biochemical data are assimilated to arrive at a current picture of UV-damage-induced mutagenesis. An unprecedented DNA polymerase V transactivation mechanism, which involves the RecA protein, sheds new light on unresolved issues that have persisted over time, prompting us to reflect on evolving molecular concepts regarding DNA structures and polymerase-switching mechanisms.
Collapse
Affiliation(s)
- Katharina Schlacher
- University of Southern California, 1050 Childs Way, RIH 201B, Los Angeles, California 90089-2910, USA
| | | |
Collapse
|
44
|
Mead S, Vaisman A, Valjavec-Gratian M, Karata K, Vandewiele D, Woodgate R. Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391. Mol Microbiol 2007; 63:797-810. [PMID: 17302804 DOI: 10.1111/j.1365-2958.2006.05561.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although best characterized for their ability to traverse a variety of DNA lesions, Y-family DNA polymerases can also give rise to elevated spontaneous mutation rates if they are allowed to replicate undamaged DNA. One such enzyme that promotes high levels of spontaneous mutagenesis in Escherichia coli is polV(R391), a polV-like Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon R391. When expressed in a DeltaumuDC lexA(Def) recA730 strain, polV(R391) promotes higher levels of spontaneous mutagenesis than the related MucA'B (polR1) or UmuD'C (polV) polymerases respectively. Analysis of the spectrum of polV(R391)-dependent mutations in rpoB revealed a unique genetic fingerprint that is typified by an increase in C:G-->A:T and A:T-->T:A transversions at certain mutagenic hot spots. Biochemical characterization of polV(R391) highlights the exceptional ability of the enzyme to misincorporate T opposite C and T in sequence contexts corresponding to mutagenic hot spots. Purified polV(R391) can also bypass a T-T pyrimidine dimer efficiently and displays greater accuracy opposite the 3'T of the dimer than opposite an undamaged T. Our study therefore provides evidence for the molecular basis for the enhanced spontaneous mutator activity of RumA'B, as well as explains its ability to promote efficient and accurate bypass of T-T pyrimidine dimers in vivo.
Collapse
Affiliation(s)
- Samantha Mead
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
45
|
Al Mamun AAM. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli. Mutat Res 2007; 625:29-39. [PMID: 17586534 DOI: 10.1016/j.mrfmmm.2007.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/26/2007] [Accepted: 05/08/2007] [Indexed: 11/17/2022]
Abstract
Escherichia coli DNA polymerase II (Pol-II), encoded by the SOS-regulated polB gene, belongs to the highly conserved group B (alpha-like) family of "high-fidelity" DNA polymerases. Elevated expression of polB gene was recently shown to result in a significant elevation of translesion DNA synthesis at 3, N(4)-ethenocytosine lesion with concomitant increase in mutagenesis. Here, I show that elevated expression of Pol-II leads to an approximately 100-fold increase in spontaneous mutagenesis in a manner that is independent of SOS, umuDC, dinB, recA, uvrA and mutS functions. Cells grow slowly and filament with elevated expression of Pol-II. Introduction of carboxy terminus ("beta interaction domain") mutations in polB eliminates elevated spontaneous mutagenesis, as well as defects in cell growth and morphology, suggesting that these abilities require the interaction of Pol-II with the beta processivity subunit of DNA polymerase III. Introduction of a mutation in the proofreading exo motif of polB elevates mutagenesis by a further 180-fold, suggesting that Pol-II can effectively compete with DNA polymerase III for DNA synthesis. Thus, Pol-II can contribute to spontaneous mutagenesis when its expression is elevated.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, United States.
| |
Collapse
|
46
|
Koren A. The role of the DNA damage checkpoint in regulation of translesion DNA synthesis. Mutagenesis 2007; 22:155-60. [PMID: 17290049 DOI: 10.1093/mutage/gem003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA damage checkpoint is a signal transduction pathway that integrates DNA repair with cell cycle arrest and other cellular responses. The checkpoint response is also directly associated with mutagenic translesion DNA synthesis (TLS). For example, checkpoint activation requires complexes with roles in TLS regulation, and leads to elevated mutation levels. A role in TLS regulation implies that the checkpoint contributes to the generation of mutations, rather than their prevention. It can also explain several currently obscure aspects of this response.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Kuban W, Banach-Orlowska M, Schaaper RM, Jonczyk P, Fijalkowska IJ. Role of DNA polymerase IV in Escherichia coli SOS mutator activity. J Bacteriol 2006; 188:7977-80. [PMID: 16980447 PMCID: PMC1636302 DOI: 10.1128/jb.01088-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02 106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
48
|
Schlacher K, Pham P, Cox MM, Goodman MF. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 2006; 106:406-19. [PMID: 16464012 DOI: 10.1021/cr0404951] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Katharina Schlacher
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340, USA
| | | | | | | |
Collapse
|
49
|
Pham PT, Zhao W, Schaaper RM. Mutator mutants of Escherichia coli carrying a defect in the DNA polymerase III tau subunit. Mol Microbiol 2006; 59:1149-61. [PMID: 16430690 DOI: 10.1111/j.1365-2958.2005.05011.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.
Collapse
Affiliation(s)
- Phuong T Pham
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
50
|
Abdulovic A, Kim N, Jinks-Robertson S. Mutagenesis and the three R's in yeast. DNA Repair (Amst) 2006; 5:409-21. [PMID: 16412705 DOI: 10.1016/j.dnarep.2005.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.
Collapse
Affiliation(s)
- Amy Abdulovic
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|