1
|
Wang TJ, Shan YM, Li H, Dou WW, Jiang XH, Mao XM, Liu SP, Guan WJ, Li YQ. Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol 2017; 103:713-728. [PMID: 27874224 DOI: 10.1111/mmi.13583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
Antibiotic-producing microorganisms have evolved several self-resistance mechanisms to prevent auto-toxicity. Overexpression of specific transporters to improve the efflux of toxic antibiotics has been found one of the most important and intrinsic resistance strategies used by many Streptomyces strains. In this work, two ATP-binding cassette (ABC) transporter-encoding genes located in the natamycin biosynthetic gene cluster, scnA and scnB, were identified as the primary exporter genes for natamycin efflux in Streptomyces chattanoogensis L10. Two other transporters located outside the cluster, a major facilitator superfamily transporter Mfs1 and an ABC transporter NepI/II were found to play a complementary role in natamycin efflux. ScnA/ScnB and Mfs1 also participate in exporting the immediate precursor of natamycin, 4,5-de-epoxynatamycin, which is more toxic to S. chattanoogensis L10 than natamycin. As the major complementary exporter for natamycin efflux, Mfs1 is up-regulated in response to intracellular accumulation of natamycin and 4,5-de-epoxynatamycin, suggesting a key role in the stress response for self-resistance. This article discusses a novel antibiotic-related efflux and response system in Streptomyces, as well as a self-resistance mechanism in antibiotic-producing strains.
Collapse
Affiliation(s)
- Tan-Jun Wang
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yi-Ming Shan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Han Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei-Wang Dou
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shui-Ping Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wen-Jun Guan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
2
|
Lupien A, Gingras H, Bergeron MG, Leprohon P, Ouellette M. Multiple mutations and increased RNA expression in tetracycline-resistant Streptococcus pneumoniae as determined by genome-wide DNA and mRNA sequencing. J Antimicrob Chemother 2015; 70:1946-59. [PMID: 25862682 DOI: 10.1093/jac/dkv060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/13/2015] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The objective of this study was to characterize chromosomal mutations associated with resistance to tetracycline in Streptococcus pneumoniae. METHODS Chronological appearance of mutations in two S. pneumoniae R6 mutants (R6M1TC-5 and R6M2TC-4) selected for resistance to tetracycline was determined by next-generation sequencing. A role for the mutations identified was confirmed by reconstructing resistance to tetracycline in a S. pneumoniae R6 WT background. RNA sequencing was performed on R6M1TC-5 and R6M2TC-4 and the relative expression of genes was reported according to R6. Differentially expressed genes were classified according to their ontology. RESULTS WGS of R6M1TC-5 and R6M2TC-4 revealed mutations in the gene rpsJ coding for the ribosomal protein S10 and in the promoter region and coding sequences of the ABC genes patA and patB. These cells were cross-resistant to ciprofloxacin. Resistance reconstruction confirmed a role in resistance for the mutations in rpsJ and patA. Overexpression of the ABC transporter PatA/PatB or mutations in the coding sequence of patA contributed to resistance to tetracycline, ciprofloxacin and ethidium bromide, and was associated with a decreased accumulation of [(3)H]tetracycline. Comparative transcriptome profiling of the resistant mutants further revealed that, in addition to the overexpression of patA and patB, several genes of the thiamine biosynthesis and salvage pathway were increased in the two mutants, but also in clinical isolates resistant to tetracycline. This overexpression most likely contributes to the tetracycline resistance phenotype. CONCLUSIONS The combination of genomic and transcriptomic analysis coupled to functional studies has allowed the discovery of novel tetracycline resistance mutations in S. pneumoniae.
Collapse
Affiliation(s)
- Andréanne Lupien
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Hélène Gingras
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Michel G Bergeron
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Philippe Leprohon
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Ouellette
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 2012; 12:52. [PMID: 22906146 PMCID: PMC3533511 DOI: 10.1186/1472-6750-12-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
Abstract
Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.
Collapse
Affiliation(s)
- Lan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
4
|
The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 2012; 56:4806-15. [PMID: 22751536 DOI: 10.1128/aac.05546-11] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We hypothesize that low-level efflux pump expression is the first step in the development of high-level drug resistance in mycobacteria. We performed 28-day azithromycin dose-effect and dose-scheduling studies in our hollow-fiber model of disseminated Mycobacterium avium-M. intracellulare complex. Both microbial kill and resistance emergence were most closely linked to the within-macrophage area under the concentration-time curve (AUC)/MIC ratio. Quantitative PCR revealed that subtherapeutic azithromycin exposures over 3 days led to a 56-fold increase in expression of MAV_3306, which encodes a putative ABC transporter, and MAV_1406, which encodes a putative major facilitator superfamily pump, in M. avium. By day 7, a subpopulation of M. avium with low-level resistance was encountered and exhibited the classic inverted U curve versus AUC/MIC ratios. The resistance was abolished by an efflux pump inhibitor. While the maximal microbial kill started to decrease after day 7, a population with high-level azithromycin resistance appeared at day 28. This resistance could not be reversed by efflux pump inhibitors. Orthologs of pumps encoded by MAV_3306 and MAV_1406 were identified in Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum, Mycobacterium abscessus, and Mycobacterium ulcerans. All had highly conserved protein secondary structures. We propose that induction of several efflux pumps is the first step in a general pathway to drug resistance that eventually leads to high-level chromosomal-mutation-related resistance in mycobacteria as ordered events in an "antibiotic resistance arrow of time."
Collapse
|
5
|
Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob Agents Chemother 2009; 53:4673-7. [PMID: 19687245 DOI: 10.1128/aac.00853-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium.
Collapse
|
6
|
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33:430-49. [PMID: 19207745 DOI: 10.1111/j.1574-6976.2008.00157.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bekker OB, Elizarov SM, Alekseeva MT, Lyubimova IK, Danilenko VN. Ca2+-dependent modulation of antibiotic resistance in Streptomyces lividans 66 and Streptomyces coelicolor A3(2). Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708050081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 938] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
|
9
|
Struble JM, Gill RT. Reverse engineering antibiotic sensitivity in a multidrug-resistant Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother 2006; 50:2506-15. [PMID: 16801433 PMCID: PMC1489790 DOI: 10.1128/aac.01640-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a pervasive and growing clinical problem. We describe an evaluation of a reverse engineering approach for identifying cellular mechanisms and genes that could be manipulated to increase antibiotic sensitivity in a resistant Pseudomonas aeruginosa isolate. We began by chemically mutating a broadly resistant isolate of P. aeruginosa and screening for mutants with increased sensitivity to the aminoglycoside amikacin, followed by performing whole-genome transcriptional profiling of the mutant and wild-type strains to characterize the global changes occurring as a result of the mutations. We then performed a series of assays to characterize the mechanisms involved in the increased sensitivity of the mutant strains. We report four primary results: (i) mutations that increase sensitivity occur at a high frequency (10(-2)) relative to the frequency of those that increase resistance (10(-5) to 10(-10)) and occur at a frequency 10(4) higher than the frequency of a single point mutation; (ii) transcriptional profiles were altered in sensitive mutants, resulting in overall expression patterns more similar to those of the sensitive laboratory strain PAO1 than those of the parental resistant strain; (iii) genes found from transcriptional profiling had the more dramatic changes in expression-encoded functions related to cellular membrane permeability and aminoglycoside modification, both of which are known aminoglycoside resistance mechanisms; and finally, (iv) even though we did not identify the specific sites of mutation, several different follow-up MIC assays suggested that the mutations responsible for increased sensitivity differed between sensitive mutants.
Collapse
Affiliation(s)
- Julie M Struble
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
10
|
Rodríguez-García A, Santamarta I, Pérez-Redondo R, Martín JF, Liras P. Characterization of a two-gene operon epeRA involved in multidrug resistance in Streptomyces clavuligerus. Res Microbiol 2006; 157:559-68. [PMID: 16797928 DOI: 10.1016/j.resmic.2005.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/19/2005] [Accepted: 12/21/2005] [Indexed: 11/21/2022]
Abstract
Two genes, epeR and epeA, are located downstream of argH in the Streptomyces clavuligerus genome. EpeR belongs to the TetR family of transcriptional regulators. It is homologous to PqrA of Streptomyces coelicolor (74.3% identity) and to NfxB of Pseudomonas aeruginosa (30.9% identity). EpeA encodes a protein with 14 transmembrane spanning domains (TMS) of the major facilitator superfamily. It shares 68.9% identity to PqrB of S. coelicolor and 46.5% identity to LfrA, conferring resistance to fluoroquinolones in Mycobacterium smegmatis. Disruption of epeR results in a S. clavuligerus epeR::aph mutant which shows increased resistance to ethidium bromide and proflavine (16- and 32-fold higher than the wild type). Taking into consideration the sensitivity to drugs of different transformants carrying functional copies of either epeR or epeA, it might be concluded that both genes appear to be co-transcribed, with epeR encoding a regulatory protein which controls the expression of epeA.
Collapse
Affiliation(s)
- Antonio Rodríguez-García
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | | | | | | | | |
Collapse
|
11
|
Sletta H, Borgos SEF, Bruheim P, Sekurova ON, Grasdalen H, Aune R, Ellingsen TE, Zotchev SB. Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob Agents Chemother 2006; 49:4576-83. [PMID: 16251298 PMCID: PMC1280151 DOI: 10.1128/aac.49.11.4576-4583.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genes nysH and nysG, encoding putative ABC-type transporter proteins, are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. To assess the possible roles of these genes in nystatin biosynthesis, they were inactivated by gene replacements leading to in-frame deletions. Metabolite profile analysis of the nysH and nysG deletion mutants revealed that both of them synthesized nystatin at a reduced level and produced considerable amounts of a putative nystatin analogue. Liquid chromatography-mass spectrometry and nuclear magnetic resonance structural analyses of the latter metabolite confirmed its identity as 10-deoxynystatin, a nystatin precursor lacking a hydroxyl group at C-10. Washing experiments demonstrated that both nystatin and 10-deoxynystatin are transported out of cells, suggesting the existence of an alternative efflux system(s) for the transport of nystatin-related metabolites. This notion was further corroborated in experiments with the ATPase inhibitor sodium o-vanadate, which affected the production of nystatin and 10-deoxynystatin in the wild-type strain and transporter mutants in a different manner. The data obtained in this study suggest that the efflux of nystatin-related polyene macrolides occurs through several transporters and that the NysH-NysG efflux system provides conditions favorable for C-10 hydroxylation.
Collapse
Affiliation(s)
- Håvard Sletta
- Department of Biotechnology, SINTEF Materials and Chemistry, Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Borges-Walmsley MI, McKeegan KS, Walmsley AR. Structure and function of efflux pumps that confer resistance to drugs. Biochem J 2003; 376:313-38. [PMID: 13678421 PMCID: PMC1223791 DOI: 10.1042/bj20020957] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 08/04/2003] [Accepted: 09/18/2003] [Indexed: 11/17/2022]
Abstract
Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps.
Collapse
Affiliation(s)
- M Ines Borges-Walmsley
- Centre for Infectious Diseases, Department of Biological Sciences, Wolfson Research Institute, University of Durham - Stockton Campus, Stockton-on-Tees TS17 6BH, UK
| | | | | |
Collapse
|
13
|
Ostash BO, Fedorenko VO. Gene engineering of novel polyketide antibiotics producers. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Méndez C, Salas JA. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 2001; 152:341-50. [PMID: 11421281 DOI: 10.1016/s0923-2508(01)01205-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Knowledge about biosynthetic gene clusters from antibiotic-producing actinomycetes is continuously increasing and the presence of an ABC transporter system is a fairly general phenomenon in most of these clusters. These transporters are involved in the secretion of the antibiotic through the cell membrane and also contribute to self resistance to the produced antibiotic.
Collapse
Affiliation(s)
- C Méndez
- Departamento de Biologiá Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
15
|
Young J, Holland IB. ABC transporters: bacterial exporters-revisited five years on. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:177-200. [PMID: 10581355 DOI: 10.1016/s0005-2736(99)00158-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- J Young
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, Bâtiment 409, 91405, Orsay, France.
| | | |
Collapse
|