1
|
Wieschollek J, Fuller D, Gahramanova A, Millen T, Mislay AJ, Payne RR, Walsh DP, Zhao Y, Carney M, Cross J, Kashem J, Korde R, Lacy C, Lyons N, Mason T, Torres-Betancourt K, Trapnell T, Dennison CL, Chaput D, Scott KM. A new type of carboxysomal carbonic anhydrase in sulfur chemolithoautotrophs from alkaline environments. Appl Environ Microbiol 2024; 90:e0107524. [PMID: 39177330 PMCID: PMC11409652 DOI: 10.1128/aem.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Autotrophic bacteria are able to fix CO2 in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2 fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2 and HCO3- transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophic Bacteria that use the Calvin-Benson-Basham cycle. Members of the genus Thiomicrospira lack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2 fixation by carboxysomes from members of Thiomicrospira and potentially other Bacteria. Carboxysome enrichments from Thiomicrospira pelophila and Thiomicrospira aerophila were found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted in T. pelophila, cells could no longer grow under low-CO2 conditions, and CA activity was no longer detectable in their carboxysomes. When T. pelophila ιCA was expressed in a strain of Escherichia coli lacking native CA activity, this strain recovered an ability to grow under low CO2 conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCE Here, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2 fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions.
Collapse
Affiliation(s)
- Jana Wieschollek
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniella Fuller
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Arin Gahramanova
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Terrence Millen
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ashianna J. Mislay
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ren R. Payne
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniel P. Walsh
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - YuXuan Zhao
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Madilyn Carney
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Jaden Cross
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - John Kashem
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ruchi Korde
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Christine Lacy
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Noah Lyons
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Tori Mason
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | | | - Tyler Trapnell
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Clare L. Dennison
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Kathleen M. Scott
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
3
|
McCully AL, Onyeziri MC, LaSarre B, Gliessman JR, McKinlay JB. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a Rhodospirillum rubrum Calvin-cycle mutant. MICROBIOLOGY-SGM 2020; 166:199-211. [PMID: 31774392 DOI: 10.1099/mic.0.000877] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purple non-sulfur bacteria (PNSB) use light for energy and organic substrates for carbon and electrons when growing photoheterotrophically. This lifestyle generates more reduced electron carriers than are required for biosynthesis, even during consumption of some of the most oxidized organic substrates like malate and fumarate. Reduced electron carriers not used in biosynthesis must still be oxidized for photoheterotrophic growth to occur. Diverse PNSB commonly rely on the CO2-fixing Calvin cycle to oxidize reduced electron carriers. Some PNSB also produce H2 or reduce terminal electron acceptors as alternatives to the Calvin cycle. Rhodospirillum rubrum Calvin-cycle mutants defy this trend by growing phototrophically on malate or fumarate without H2 production or access to terminal electron acceptors. We used 13C-tracer experiments to examine how a Rs. rubrum Calvin-cycle mutant maintains electron balance under such conditions. We detected the reversal of some tricarboxylic acid cycle enzymes, carrying reductive flux from malate or fumarate to αKG. This pathway and the reductive synthesis of αKG-derived amino acids are likely important for electron balance, as supplementing the growth medium with αKG-derived amino acids prevented Rs. rubrum Calvin-cycle-mutant growth unless a terminal electron acceptor was provided. Flux estimates also suggested that the Calvin-cycle mutant preferentially synthesized isoleucine using the reductive threonine-dependent pathway instead of the less-reductive citramalate-dependent pathway. Collectively, our results suggest that alternative biosynthetic pathways can contribute to electron balance within the constraints of a relatively constant biomass composition.
Collapse
Affiliation(s)
- Alexandra L McCully
- Present address: Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Satagopan S, North JA, Arbing MA, Varaljay VA, Haines SN, Wildenthal JA, Byerly KM, Shin A, Tabita FR. Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO2 Fixation. Biochemistry 2019; 58:3880-3892. [DOI: 10.1021/acs.biochem.9b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sidney N. Haines
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kathryn M. Byerly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Annie Shin
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Function of three RuBisCO enzymes under different CO2 conditions in Hydrogenovibrio marinus. J Biosci Bioeng 2018; 126:730-735. [DOI: 10.1016/j.jbiosc.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
|
6
|
Böhnke S, Perner M. Unraveling RubisCO Form I and Form II Regulation in an Uncultured Organism from a Deep-Sea Hydrothermal Vent via Metagenomic and Mutagenesis Studies. Front Microbiol 2017; 8:1303. [PMID: 28747908 PMCID: PMC5506194 DOI: 10.3389/fmicb.2017.01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/04/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first major step of carbon fixation in the Calvin-Benson-Bassham (CBB) cycle. This autotrophic CO2 fixation cycle accounts for almost all the assimilated carbon on Earth. Due to the primary role that RubisCO plays in autotrophic carbon fixation, it is important to understand how its gene expression is regulated and the enzyme is activated. Since the majority of all microorganisms are currently not culturable, we used a metagenomic approach to identify genes and enzymes associated with RubisCO expression. The investigated metagenomic DNA fragment originates from the deep-sea hydrothermal vent field Nibelungen at 8°18′ S along the Mid-Atlantic Ridge. It is 13,046 bp and resembles genes from Thiomicrospira crunogena. The fragment encodes nine open reading frames (ORFs) which include two types of RubisCO, form I (CbbL/S) and form II (CbbM), two LysR transcriptional regulators (LysR1 and LysR2), two von Willebrand factor type A (CbbO-m and CbbO-1), and two AAA+ ATPases (CbbQ-m and CbbQ-1), expected to function as RubisCO activating enzymes. In silico analyses uncovered several putative LysR binding sites and promoter structures. Functions of some of these DNA motifs were experimentally confirmed. For example, according to mobility shift assays LysR1’s binding ability to the intergenic region of lysR1 and cbbL appears to be intensified when CbbL or LysR2 are present. Binding of LysR2 upstream of cbbM appears to be intensified if CbbM is present. Our study suggests that CbbQ-m and CbbO-m activate CbbL and that LysR1 and LysR2 proteins promote CbbQ-m/CbbO-m expression. CbbO-1 seems to activate CbbM and CbbM itself appears to contribute to intensifying LysR’s binding ability and thus its own transcriptional regulation. CbbM furthermore appears to impair cbbL expression. A model summarizes the findings and predicts putative interactions of the different proteins influencing RubisCO gene regulation and expression.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
7
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|
8
|
Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J Bacteriol 2014; 196:1231-7. [PMID: 24415727 DOI: 10.1128/jb.01299-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purple nonsulfur bacteria grow photoheterotrophically by using light for energy and organic compounds for carbon and electrons. Disrupting the activity of the CO2-fixing Calvin cycle enzyme, ribulose 1,5-bisphosphate carboxylase (RubisCO), prevents photoheterotrophic growth unless an electron acceptor is provided or if cells can dispose of electrons as H2. Such observations led to the long-standing model wherein the Calvin cycle is necessary during photoheterotrophic growth to maintain a pool of oxidized electron carriers. This model was recently challenged with an alternative model wherein disrupting RubisCO activity prevents photoheterotrophic growth due to the accumulation of toxic ribulose-1,5-bisphosphate (RuBP) (D. Wang, Y. Zhang, E. L. Pohlmann, J. Li, and G. P. Roberts, J. Bacteriol. 193:3293-3303, 2011, http://dx.doi.org/10.1128/JB.00265-11). Here, we confirm that RuBP accumulation can impede the growth of Rhodospirillum rubrum (Rs. rubrum) and Rhodopseudomonas palustris (Rp. palustris) RubisCO-deficient (ΔRubisCO) mutants under conditions where electron carrier oxidation is coupled to H2 production. However, we also demonstrate that Rs. rubrum and Rp. palustris Calvin cycle phosphoribulokinase mutants that cannot produce RuBP cannot grow photoheterotrophically on succinate unless an electron acceptor is provided or H2 production is permitted. Thus, the Calvin cycle is still needed to oxidize electron carriers even in the absence of toxic RuBP. Surprisingly, Calvin cycle mutants of Rs. rubrum, but not of Rp. palustris, grew photoheterotrophically on malate without electron acceptors or H2 production. The mechanism by which Rs. rubrum grows under these conditions remains to be elucidated.
Collapse
|
9
|
Regulatory twist and synergistic role of metabolic coinducer- and response regulator-mediated CbbR-cbbI interactions in Rhodopseudomonas palustris CGA010. J Bacteriol 2013; 195:1381-8. [PMID: 23292778 DOI: 10.1128/jb.02060-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris assimilates CO2 by the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway. Most genes required for a functional CBB pathway are clustered into the cbbI and cbbII operons, with the cbbI operon subject to control by a LysR transcriptional activator, CbbR, encoded by cbbR, which is divergently transcribed from the cbbLS genes (encoding form I RubisCO) of the cbbI operon. Juxtaposed between the genes encoding CbbR and CbbLS are genes that encode a three-protein two-component system (CbbRRS system) that functions to modify the ability of CbbR to regulate cbbLS expression. Previous studies indicated that the response regulators, as well as various coinducers (effectors), specifically influence CbbR-promoter interactions. In the current study, it was shown via several experimental approaches that the response regulators and coinducers act synergistically on CbbR to influence cbbLS transcription. Synergistic effects on the formation of specific CbbR-DNA complexes were quantified using surface plasmon resonance (SPR) procedures. Gel mobility shift and DNA footprint analyses further indicated structural changes in the DNA arising from the presence of response regulators and coinducer molecules binding to CbbR. Based on previous studies, and especially emphasized by the current investigation, it is clear that protein complexes influence promoter activity and the cbbLS transcription machinery.
Collapse
|
10
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
11
|
A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. J Biotechnol 2012; 159:162-71. [PMID: 22285639 DOI: 10.1016/j.jbiotec.2012.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/16/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
Bacterial genes whose enzymes are either assembled into complex multi-domain proteins or form biosynthetic pathways are frequently organized within large chromosomal clusters. The functional expression of clustered genes, however, remains challenging since it generally requires an expression system that facilitates the coordinated transcription of numerous genes irrespective of their natural promoters and terminators. Here, we report on the development of a novel expression system that is particularly suitable for the homologous expression of multiple genes organized in a contiguous cluster. The new expression toolkit consists of an Ω interposon cassette carrying a T7 RNA polymerase specific promoter which is designed for promoter tagging of clustered genes and a small set of broad-host-range plasmids providing the respective polymerase in different bacteria. The uptake hydrogenase gene locus of the photosynthetic non-sulfur purple bacterium Rhodobacter capsulatus which consists of 16 genes was used as an example to demonstrate functional expression only by T7 RNA polymerase but not by bacterial RNA polymerase. Our findings clearly indicate that due to its unique properties T7 RNA polymerase can be applied for overexpression of large and complex bacterial gene regions.
Collapse
|
12
|
Further unraveling the regulatory twist by elucidating metabolic coinducer-mediated CbbR-cbbI promoter interactions in Rhodopseudomonas palustris CGA010. J Bacteriol 2012; 194:1350-60. [PMID: 22247506 DOI: 10.1128/jb.06418-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the cbbLS genes encoding form I ribulose-1,5-bisphosphate (RuBP) carboxylase oxygenase (RubisCO) along with a divergently transcribed regulator gene, cbbR. Juxtaposed between cbbR and cbbLS are the cbbRRS genes, encoding an unusual three-protein two-component (CbbRRS) system that modulates the ability of CbbR to influence cbbLS expression. The nature of the metabolic signals that Rp. palustris CbbR perceives to regulate cbbLS transcription is not known. Thus, in this study, the CbbR binding region was first mapped within the cbbLS promoter by the use of gel mobility shift assays and DNase I footprinting. In addition, potential metabolic coinducers (metabolites) were tested for their ability to alter the cbbLS promoter binding properties of CbbR. Gel mobility shift assays and surface plasmon resonance analyses together indicated that biosynthetic intermediates such as RuBP, ATP, fructose 1,6-bisphosphate, and NADPH enhanced DNA binding by CbbR. These coinducers did not yield identical CbbR-dependent DNase I footprints, indicating that the coinducers caused significant changes in DNA structure. These in vitro studies suggest that cellular signals such as fluctuating metabolite concentrations are perceived by and transduced to the cbbLS promoter via the master regulator CbbR.
Collapse
|
13
|
Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach. PLoS One 2011; 6:e28329. [PMID: 22174789 PMCID: PMC3234253 DOI: 10.1371/journal.pone.0028329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background Rhodopseudomonas palustris (R. palustris) is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin–Benson–Bassham (CBB) cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. Methodology/Principal Findings By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM) but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC) strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. Conclusions/Significance Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth through both common and divergent metabolic mechanisms.
Collapse
|
14
|
|
15
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
16
|
Joshi GS, Bobst CE, Tabita FR. Unravelling the regulatory twist--regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s). Mol Microbiol 2011; 80:756-71. [PMID: 21362064 DOI: 10.1111/j.1365-2958.2011.07606.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Rhodopseudomonas palustris CGA010, the LysR type regulator, CbbR, specifically controls transcription of the cbbLS genes encoding form I RubisCO. Previous genetic and physiological studies had indicated that a unique two-component (CbbRRS) system influences CbbR-mediated cbbLS transcription under conditions where CO(2) is the sole carbon source. In this study, we have established direct protein-protein interactions between the response regulators of the CbbRRS system and CbbR, using a variety of techniques. The bacterial two-hybrid system established a specific interaction between CbbR and CbbRR1 (response regulator 1 of the CbbRRS system), confirmed in vitro by chemical cross-linking. In addition, both response regulators (CbbRR1 and CbbRR2) played distinct roles in influencing the CbbR-cbbLS promoter interactions in gel mobility shift assays. CbbRR1 increased the binding affinity of CbbR at the cbb(I) promoter three- to fivefold while CbbRR2 appeared to stabilize CbbR binding. Specific interactions were further supported by surface plasmon resonance (SPR) analyses. In total, the results suggested that both response regulators, with no discernible DNA-binding domains, must interact with CbbR to influence cbbLS expression. Thus the CbbRRS system provides an additional level of transcriptional control beyond CbbR alone, and appears to be significant for potentially fine-tuning cbbLS expression in Rps. palustris.
Collapse
Affiliation(s)
- Gauri S Joshi
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
17
|
Wang D, Zhang Y, Welch E, Li J, Roberts GP. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2010; 35:7377-7385. [PMID: 20652089 PMCID: PMC2905822 DOI: 10.1016/j.ijhydene.2010.04.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nitrogenase not only reduces atmospheric nitrogen to ammonia, but also reduces protons to hydrogen (H(2)). The nitrogenase system is the primary means of H(2) production under photosynthetic and nitrogen-limiting conditions in many photosynthetic bacteria, including Rhodospirillum rubrum. The efficiency of this biological H(2) production largely depends on the nitrogenase enzyme and the availability of ATP and electrons in the cell. Previous studies showed that blockage of the CO(2) fixation pathway in R. rubrum induced nitrogenase activity even in the presence of ammonium, presumably to remove excess reductant in the cell. We report here the re-characterization of cbbM mutants in R. rubrum to study the effect of Rubisco on H(2) production. Our newly constructed cbbM mutants grew poorly in malate medium under anaerobic conditions. However, the introduction of constitutively active NifA (NifA*), the transcriptional activator of the nitrogen fixation (nif) genes, allows cbbM mutants to dissipate the excess reductant through the nitrogenase system and improves their growth. Interestingly, we found that the deletion of cbbM alters the posttranslational regulation of nitrogenase activity, resulting in partially active nitrogenase in the presence of ammonium. The combination of mutations in nifA, draT and cbbM greatly increased H(2) production of R. rubrum, especially in the presence of excess of ammonium. Furthermore, these mutants are able to produce H(2) over a much longer time frame than the wild type, increasing the potential of these recombinant strains for the biological production of H(2).
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yaoping Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emily Welch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Functional prokaryotic RubisCO from an oceanic metagenomic library. Appl Environ Microbiol 2010; 76:2997-3003. [PMID: 20228113 DOI: 10.1128/aem.02661-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culture-independent studies have indicated that there is significant diversity in the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzymes used by marine, freshwater, and terrestrial autotrophic bacteria. Surprisingly, little is known about the catalytic properties of many environmentally significant RubisCO enzymes. Because one of the goals of RubisCO research is to somehow modify or select for RubisCO molecules with improved kinetic properties, a facile means to isolate functional and novel RubisCO molecules directly from the environment was developed. In this report, we describe the first example of functional RubisCO proteins obtained from genes cloned and characterized from metagenomic libraries derived from DNA isolated from environmental samples. Two form IA marine RubisCO genes were cloned, and each gene supported both photoheterotrophic and photoautotrophic growth of a RubisCO deletion strain of Rhodobacter capsulatus, strain SBI/II(-), indicating that catalytically active recombinant RubisCO was synthesized. The catalytic properties of the metagenomic RubisCO molecules were further characterized. These experiments demonstrated the feasibility of studying the functional diversity and enzymatic properties of RubisCO enzymes without first cultivating the host organisms. Further, this "proof of concept" experiment opens the way for development of a simple functional screen to examine the properties of diverse RubisCO genes isolated from any environment, and subsequent further bioselection may be possible if the growth conditions of complemented R. capsulatus strain SBI/II(-) are varied.
Collapse
|
19
|
Roles of RubisCO and the RubisCO-like protein in 5-methylthioadenosine metabolism in the Nonsulfur purple bacterium Rhodospirillum rubrum. J Bacteriol 2009; 192:1324-31. [PMID: 20038587 DOI: 10.1128/jb.01442-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the assimilation of atmospheric CO(2) into organic matter and is thus central to the existence of life on earth. The beginning of the 2000s was marked by the discovery of a new family of proteins, the RubisCO-like proteins (RLPs), which are structural homologs of RubisCO. RLPs are unable to catalyze CO(2) fixation. The RLPs from Chlorobaculum tepidum, Bacillus subtilis, Geobacillus kaustophilus, and Microcystis aeruginosa have been shown to participate in sulfur metabolism. Whereas the precise function of C. tepidum RLP is unknown, the B. subtilis, G. kaustophilus, and M. aeruginosa RLPs function as tautomerases/enolases in a methionine salvage pathway (MSP). Here, we show that the form II RubisCO enzyme from the nonsulfur purple bacterium Rhodospirillum rubrum is also able to function as an enolase in vivo as part of an MSP, but only under anaerobic conditions. However, unlike B. subtilis RLP, R. rubrum RLP does not catalyze the enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate. Instead, under aerobic growth conditions, R. rubrum RLP employs another intermediate of the MSP, 5-methylthioribulose-1-phosphate, as a substrate, resulting in the formation of different products. To further determine the interrelationship between RubisCOs and RLPs (and the potential integration of cellular carbon and sulfur metabolism), the functional roles of both RubisCO and RLP have been examined in vivo via the use of specific knockout strains and complementation studies of R. rubrum. The presence of functional, yet separate, MSPs in R. rubrum under both aerobic (chemoheterotrophic) and anaerobic (photoheterotrophic) growth conditions has not been observed previously in any organism. Moreover, the aerobic and anaerobic sulfur salvage pathways appear to be differentially controlled, with novel and previously undescribed steps apparent for sulfur salvage in this organism.
Collapse
|
20
|
Tourova TP, Spiridonova EM. Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 2009. [DOI: 10.1134/s0026893309050033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Satagopan S, Scott SS, Smith TG, Tabita FR. A Rubisco mutant that confers growth under a normally "inhibitory" oxygen concentration. Biochemistry 2009; 48:9076-83. [PMID: 19705820 DOI: 10.1021/bi9006385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) is a globally significant biocatalyst that facilitates the removal and sequestration of CO2 from the biosphere. Rubisco-catalyzed CO2 reduction thus provides virtually all of the organic carbon utilized by living organisms. Despite catalyzing the rate-limiting step of photosynthetic and chemoautotrophic CO2 assimilation, Rubisco is markedly inefficient as the competition between O2 and CO2 for the same substrate limits the ability of aerobic organisms to obtain maximum amounts of organic carbon for CO2-dependent growth. Random and site-directed mutagenesis procedures were coupled with genetic selection to identify an "oxygen-insensitive" mutant cyanobacterial (Synechococcus sp. strain PCC 6301) Rubisco that allowed for CO2-dependent growth of a host bacterium at an oxygen concentration that inhibited growth of the host containing wild-type Synechococcus Rubisco. The mutant substitution, A375V, was identified as an intragenic suppressor of D103V, a negative mutant enzyme incapable of supporting autotrophic growth. Ala-375 (Ala-378 of spinach Rubisco) is a conserved residue in all form I (plant-like) Rubiscos. Structure-function analyses indicate that the A375V substitution decreased the enzyme's oxygen sensitivity (and not CO2/O2 specificity), possibly by rearranging a network of interactions in a fairly conserved hydrophobic pocket near the active site. These studies point to the potential of engineering plants and other significant aerobic organisms to fix CO2 unfettered by the presence of O2.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | | | | | |
Collapse
|
22
|
Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol 2009; 191:4243-50. [PMID: 19376869 DOI: 10.1128/jb.01795-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO(2) or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO(2) in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.
Collapse
|
23
|
|
24
|
Mueller-Cajar O, Whitney SM. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. PHOTOSYNTHESIS RESEARCH 2008; 98:667-75. [PMID: 18626786 PMCID: PMC2758363 DOI: 10.1007/s11120-008-9324-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Spencer M. Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
| |
Collapse
|
25
|
Selao TT, Nordlund S, Norén A. Comparative Proteomic Studies in Rhodospirillum rubrum Grown under Different Nitrogen Conditions. J Proteome Res 2008; 7:3267-75. [DOI: 10.1021/pr700771u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiago T. Selao
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| |
Collapse
|
26
|
Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR. Development of a solar-powered microbial fuel cell. J Appl Microbiol 2007; 104:640-50. [PMID: 17927750 DOI: 10.1111/j.1365-2672.2007.03580.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To understand factors that impact solar-powered electricity generation by Rhodobacter sphaeroides in a single-chamber microbial fuel cell (MFC). METHODS AND RESULTS The MFC used submerged platinum-coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate-enhancing power production over ammonium. CONCLUSIONS Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m(-2) (2.9 W m(-3)). In the dark, power output was less than 0.5 mW m(-2) (0.008 W m(-3)). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. SIGNIFICANCE AND IMPACT OF THE STUDY We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one-chamber solar-driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two-chamber systems using photosynthetic bacteria.
Collapse
Affiliation(s)
- Y K Cho
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
27
|
Romagnoli S, Tabita FR. A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. J Bacteriol 2006; 188:2780-91. [PMID: 16585739 PMCID: PMC1446975 DOI: 10.1128/jb.188.8.2780-2791.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel two-component system has been identified in the cbb(I) region of the nonsulfur purple photosynthetic bacterium Rhodopseudomonas palustris. Genes encoding this system, here designated cbbRRS, are juxtaposed between the divergently transcribed transcription activator gene, cbbR, and the form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes, cbbLS. The three genes of the cbbRRS system represent a variation of the well-known two-component signal transduction systems, as there are a transmembrane hybrid sensor kinase and two response regulators, with no apparent DNA binding domain associated with any of the three proteins encoded by these genes. In this study, we showed that the membrane-bound full-length kinase undergoes autophosphorylation and transfers phosphate to both response regulators. A soluble, truncated version of the kinase was subsequently prepared and found to catalyze phosphorylation of response regulator 1 but not response regulator 2, implying that conformational changes and/or sequence-specific regions of the kinase are important for discriminating between the two response regulators. Analyses indicated that a complex network of control of gene expression must occur, with CbbR required for the expression of the cbbLS genes but dispensable for the synthesis of form II RubisCO (encoded by cbbM). The CbbRRS proteins specifically affected the activity and accumulation of form I RubisCO (CbbLS), as revealed by analyses of nonpolar, unmarked gene deletions. A tentative model of regulation suggested that changes in the phosphotransfer activity of the sensor kinase, possibly in response to a redox metabolic signal, cause modulation of the activity and synthesis of form I RubisCO.
Collapse
Affiliation(s)
- Simona Romagnoli
- Department of Microbiology, The Ohio State University, 484 West 12th Ave., Columbus, OH 43210-1292, USA
| | | |
Collapse
|
28
|
Dangel AW, Gibson JL, Janssen AP, Tabita FR. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 2005; 57:1397-414. [PMID: 16102008 DOI: 10.1111/j.1365-2958.2005.04783.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CbbR is a LysR-type transcriptional regulator (LTTR) that is required to activate transcription of the cbb operons, responsible for CO2 fixation, in Rhodobacter sphaeroides. LTTR proteins often require a co-inducer to regulate transcription. Previous studies suggested that ribulose 1,5-bisphosphate (RuBP) is a positive effector for CbbR function in this organism. In the current study, RuBP was found to increase the electrophoretic mobility of the CbbR/cbb(I) promoter complex. To define and analyse the co-inducer recognition region of CbbR, constitutively active mutant CbbR proteins were isolated. Under growth conditions that normally maintain transcriptionally inactive cbb operons, the mutant CbbR proteins activated transcription. Fourteen of the constitutively active mutants resulted from a single amino acid substitution. One mutant was derived from amino acid substitutions at two separate residues that appeared to act synergistically. Different mutant proteins showed both sensitivity and insensitivity to RuBP and residues that conferred constitutive transcriptional activity could be highlighted on a three-dimensional model, with several residues unique to CbbR shown to be at locations critical to LTTR function. Many of the constitutive residues clustered in or near two specific loops in the LTTR tertiary structure, corresponding to a proposed site of co-inducer binding.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
29
|
Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y. The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. MICROBIOLOGY-SGM 2005; 151:3615-3625. [PMID: 16272383 DOI: 10.1099/mic.0.28056-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogenovibrio marinus MH-110 possesses three different sets of genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): two form I (cbbLS-1 and cbbLS-2) and one form II (cbbM). We have previously shown that the expression of these RubisCO genes is dependent on the ambient CO2 concentration. LysR-type transcriptional regulators, designated CbbR1 and CbbRm, are encoded upstream of the cbbLS-1 and cbbM genes, respectively. In this study, we revealed by gel shift assay that CbbR1 and CbbRm bind with higher affinity to the promoter regions of cbbLS-1 and cbbM, respectively, and with lower affinity to the other RubisCO gene promoters. The expression patterns of the three RubisCOs in the cbbR1 and the cbbRm gene mutants showed that CbbR1 and CbbRm were required to activate the expression of cbbLS-1 and cbbM, respectively, and that neither CbbR1 nor CbbRm was required for the expression of cbbLS-2. The expression of cbbLS-1 was significantly enhanced under high-CO2 conditions in the cbbRm mutant, in which the expression of cbbM was decreased. Although cbbLS-2 was not expressed under high-CO2 conditions in the wild-type strain or the single cbbR mutants, the expression of cbbLS-2 was observed in the cbbR1 cbbRm double mutant, in which the expression of both cbbLS-1 and cbbM was decreased. These results indicate that there is an interactive regulation among the three RubisCO genes.
Collapse
Affiliation(s)
- Koichi Toyoda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
30
|
Atomi H. Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng 2005; 94:497-505. [PMID: 16233341 DOI: 10.1016/s1389-1723(02)80186-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 09/17/2002] [Indexed: 11/26/2022]
Abstract
This review focuses on the enzymes involved in two microbial carbon dioxide fixation pathways, the Calvin-Benson-Bassham cycle and the reductive tricarboxylic acid cycle. The function, structural features, and gene regulation of microbial ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), a key enzyme of the Calvin-Benson-Bassham cycle, is described. Some recent findings on Rubisco from archaea and Rubisco-like proteins are also outlined. In the final section, biochemical features of the key enzymes in the reductive tricarboxylic acid cycle are reviewed.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
31
|
Dubbs P, Dubbs JM, Tabita FR. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 2004; 186:8026-35. [PMID: 15547275 PMCID: PMC529060 DOI: 10.1128/jb.186.23.8026-8035.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter capsulatus, genes encoding enzymes of the Calvin-Benson-Bassham reductive pentose phosphate pathway are located in the cbb(I) and cbb(II) operons. Each operon contains a divergently transcribed LysR-type transcriptional activator (CbbR(I) and CbbR(II)) that regulates the expression of its cognate cbb promoter in response to an as yet unidentified effector molecule(s). Both CbbR(I) and CbbR(II) were purified, and the ability of a variety of potential effector molecules to induce changes in their DNA binding properties at their target promoters was assessed. The responses of CbbR(I) and CbbR(II) to potential effectors were not identical. In gel mobility shift assays, the affinity of both CbbR(I) and CbbR(II) for their target promoters was enhanced in the presence of ribulose-1,5-bisphosphate (RuBP), phosphoenolpyruvate, 3-phosphoglycerate, 2-phosphoglycolate. ATP, 2-phosphoglycerate, and KH(2)PO(4) were found to enhance only CbbR(I) binding, while fructose-1,6-bisphosphate enhanced the binding of only CbbR(II). The DNase I footprint of CbbR(I) was reduced in the presence of RuBP, while reductions in the CbbR(II) DNase I footprint were induced by fructose-1,6-bisphosphate, 3-phosphoglycerate, and KH(2)PO(4). The current in vitro results plus recent in vivo studies suggest that CbbR-mediated regulation of cbb transcription is controlled by multiple metabolic signals in R. capsulatus. This control reflects not only intracellular levels of Calvin-Benson-Bassham cycle metabolic intermediates but also the fixed (organic) carbon status and energy charge of the cell.
Collapse
Affiliation(s)
- Padungsri Dubbs
- Department of Microbiology, Mahidol University, Payathai, Thailand
| | | | | |
Collapse
|
32
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
33
|
Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 2004; 182:373-87. [PMID: 15338111 DOI: 10.1007/s00203-004-0716-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/14/2004] [Accepted: 07/19/2004] [Indexed: 11/28/2022]
Abstract
Magnetite-producing magnetotactic bacteria collected from the oxic-anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O3(2-)) as electron sources and O2 as electron acceptor or anaerobically with S2O3(2-) and N2O as electron acceptor, with bicarbonate (HCO3-)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O3(2-) to sulfate (SO4(2-)). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O6(2-)), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O3(2-) and radiolabeled 14C-HCO3- showed that cell C was derived from HCO3-/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin-Benson-Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic-anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.
Collapse
Affiliation(s)
- Dennis A Bazylinski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004; 68:263-79. [PMID: 15187184 PMCID: PMC419920 DOI: 10.1128/mmbr.68.2.263-279.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Grenoble, France
| | | | | | | |
Collapse
|
35
|
Smith SA, Tabita FR. Glycine 176 affects catalytic properties and stability of the Synechococcus sp. strain PCC6301 ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 2004; 279:25632-7. [PMID: 15067012 DOI: 10.1074/jbc.m401360200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously described system for biological selection of randomly mutagenized ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) employing the phototrophic bacterium Rhodobacter capsulatus was used to select a catalytically altered form of a cyanobacterial (Synechococcus sp. strain PCC6301) enzyme. This mutant Rubisco, in which conserved glycine 176 was replaced with an aspartate residue, was not able to support CO(2)-dependent growth of the host strain. Site-directed mutant proteins were also constructed, e.g. asparagine and alanine residues replaced the native glycine with the result that these mutant proteins either greatly reduced the ability of R. capsulatus to support growth or had little effect, respectively. Growth phenotypes were consistent with the Rubisco activity levels associated with these proteins, and this was also borne out with purified recombinant proteins. Despite being catalytically challenged, the G176D and G176N mutant proteins were found to exhibit a more favorable interaction with CO(2) than the wild type protein but exhibited a reduced affinity for the substrate ribulose 1,5-bisphosphate. The G176A enzyme differed little from the wild type protein in these properties. None of the mutants had CO(2)/O(2) specificities that differed markedly from the wild type. Further studies taken from the known structure of the Synechococcus Rubisco indicated that substitutions at Gly-176 affected associations between large subunits. Supporting experimental data included an unusual protein concentration-dependent effect on in vitro activity, differences in thermal stability relative to the wild type protein, and aberrant migration on nondenaturing polyacrylamide gels. From these results, it is apparent that residues not directly located within the active site but near large subunit interfaces can affect key kinetic properties of Rubisco. These results suggest that further bioselection protocols (using these proteins as starting material) might yield novel mutant forms of Rubisco that relate to key functional properties.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
36
|
Robert Tabita F. Research on Carbon Dioxide Fixation in Photosynthetic Microorganisms (1971-present). PHOTOSYNTHESIS RESEARCH 2004; 80:315-32. [PMID: 16328829 DOI: 10.1023/b:pres.0000030455.46192.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents my personal account of research on CO(2) fixation from when I began these studies as a postdoctoral student in the early 1970s. It traces interests in microbial ribulose bisphosphate carboxylase/oxygenase (Rubisco) and considers early breakthroughs on the isolation, characterization, and significance of this enzyme from nonsulfur purple photosynthetic bacteria and other phototrophic organisms. This article also develops a historical perspective as to how recent efforts may lead to an understanding of molecular mechanisms by which the synthesis of this enzyme and other proteins of the pathway are regulated at the molecular level. In addition, how these studies impinge on the interactive control of CO(2) fixation, along with nitrogen fixation and hydrogen metabolism, is also considered. Finally, CO(2)-fixation studies in green sulfur photosynthetic bacteria and the discovery of the rather surprising Rubisco-like protein are described.
Collapse
Affiliation(s)
- F Robert Tabita
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210-1292, USA,
| |
Collapse
|
37
|
Smith SA, Tabita FR. Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J Mol Biol 2003; 331:557-69. [PMID: 12899828 DOI: 10.1016/s0022-2836(03)00786-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A system for biological selection of randomly mutagenized ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) genes from the cyanobacterium Synechococcus PCC6301 was designed in which a Rubisco deletion mutant of the photosynthetic bacterium Rhodobacter capsulatus served as a host. Trans-complementation with the Synechococcus PCC6301 rbcLS genes enabled anaerobic photoautotrophic growth of the R.capsulatus deletion strain with 5% CO(2), but not with 1.5% CO(2) in the atmosphere, and this strain could not grow under aerobic chemoautotrophic conditions. Phenotypic differences between the R.capsulatus host strain complemented with the wild-type rbcLS genes and transconjugates carrying mutated genes were used to identify mutants that were able to complement to photoautotrophic growth with 1.5% CO(2). These "positive" mutant proteins were unaffected for any measured kinetic properties, with a single exception. A mutant with a valine substitution at phenylalanine 342 had an increased affinity for ribulose-1,5-bisphosphate. Mutants with changes in the affinity for CO(2) were isolated through negative selection, in which mutants incapable of complementing R.capsulatus to photoautotrophic growth with 5% CO(2) were identified. Mutations at aspartate 103 resulted in enzymes that were greatly affected for different kinetic parameters, including an increased K(m) for CO(2). This study demonstrated that random mutagenesis and bioselection procedures could be used to identify mutations that influence important properties of bacterial Rubisco; these residues would not have been identified by other methods.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
38
|
Finn MW, Tabita FR. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J Bacteriol 2003; 185:3049-59. [PMID: 12730164 PMCID: PMC154057 DOI: 10.1128/jb.185.10.3049-3059.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose 1,5 bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the biological reduction and assimilation of carbon dioxide gas to organic carbon; it is the key enzyme responsible for the bulk of organic matter found on earth. Until recently it was believed that there are only two forms of RubisCO, form I and form II. However, the recent completion of several genome-sequencing projects uncovered open reading frames resembling RubisCO in the third domain of life, the archaea. Previous work and homology comparisons suggest that these enzymes represent a third form of RubisCO, form III. While earlier work indicated that two structurally distinct recombinant archaeal RubisCO proteins catalyzed bona fide RubisCO reactions, it was not established that the rbcL genes of anaerobic archaea can be transcribed and translated to an active enzyme in the native organisms. In this report, it is shown not only that Methanococcus jannaschii, Archaeoglobus fulgidus, Methanosarcina acetivorans, and Methanosarcina barkeri possess open reading frames with the residues required for catalysis but also that the RubisCO protein from these archaea accumulates in an active form under normal growth conditions. In addition, the form III RubisCO gene (rbcL) from M. acetivorans was shown to complement RubisCO deletion strains of Rhodobacter capsulatus and Rhodobacter sphaeroides under both photoheterotrophic and photoautotrophic growth conditions. These studies thus indicate for the first time that archaeal form III RubisCO functions in a physiologically significant fashion to fix CO(2). Furthermore, recombinant M. jannaschii, M. acetivorans, and A. fulgidus RubisCO possess unique properties with respect to quaternary structure, temperature optima, and activity in the presence of molecular oxygen compared to the previously described Thermococcus kodakaraensis and halophile proteins.
Collapse
Affiliation(s)
- Michael W Finn
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
39
|
Tichi MA, Tabita FR. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus. J Bacteriol 2002; 184:1905-15. [PMID: 11889097 PMCID: PMC134932 DOI: 10.1128/jb.184.7.1905-1915.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various mutant strains were used to examine the regulation and metabolic control of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus. Previously, a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient strain (strain SBI/II) was found to show enhanced levels of cbb(I) and cbb(II) promoter activities during photoheterotrophic growth in the presence of dimethyl sulfoxide. With this strain as the starting point, additional mutations were made in genes encoding phosphoribulokinase and transketolase and in the gene encoding the LysR-type transcriptional activator, CbbR(II). These strains revealed that a product generated by phosphoribulokinase was involved in control of CbbR-mediated cbb gene expression in SBI/II. Additionally, heterologous expression experiments indicated that Rhodobacter sphaeroides CbbR responded to the same metabolic signal in R. capsulatus SBI/II and mutant strain backgrounds.
Collapse
Affiliation(s)
- Mary A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
40
|
|
41
|
Tichi MA, Meijer WG, Tabita FR. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. J Bacteriol 2001; 183:7285-94. [PMID: 11717288 PMCID: PMC95578 DOI: 10.1128/jb.183.24.7285-7294.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transposon mutant of Rhodobacter capsulatus, strain Mal7, that was incapable of photoautotrophic and chemoautotrophic growth and could not grow photoheterotrophically in the absence of an exogenous electron acceptor was isolated. The phenotype of strain Mal7 suggested that the mutation was in some gene(s) not previously shown to be involved in CO(2) fixation control. The site of transposition in strain Mal7 was identified and shown to be in the gene nuoF, which encodes one of the 14 subunits for NADH ubiquinone-oxidoreductase, or complex I. To confirm the role of complex I and nuoF for CO(2)-dependent growth, a site-directed nuoF mutant was constructed (strain SBC1) in wild-type strain SB1003. The complex I-deficient strains Mal7 and SBC1 exhibited identical phenotypes, and the pattern of CO(2) fixation control through the Calvin-Benson-Bassham pathway was the same for both strains. It addition, it was shown that electron transport through complex I led to differential control of the two major cbb operons of this organism. Complex I was further shown to be linked to the control of nitrogen metabolism during anaerobic photosynthetic growth of R. capsulatus.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
42
|
Tichi MA, Tabita FR. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 2001; 183:6344-54. [PMID: 11591679 PMCID: PMC100130 DOI: 10.1128/jb.183.21.6344-6354.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In nonsulfur purple bacteria, redox homeostasis is achieved by the coordinate control of various oxidation-reduction balancing mechanisms during phototrophic anaerobic respiration. In this study, the ability of Rhodobacter capsulatus to maintain a balanced intracellular oxidation-reduction potential was considered; in addition, interrelationships between the control of known redox-balancing systems, the Calvin-Benson-Bassham, dinitrogenase and dimethyl sulfoxide reductase systems, were probed in strains grown under both photoheterotrophic and photoautotrophic growth conditions. By using cbb(I) (cbb form I operon)-, cbb(II)-, nifH-, and dorC-reporter gene fusions, it was demonstrated that each redox-balancing system responds to specific metabolic circumstances under phototrophic growth conditions. In specific mutant strains of R. capsulatus, expression of both the Calvin-Benson-Bassham and dinitrogenase systems was influenced by dimethyl sulfoxide respiration. Under photoheterotrophic growth conditions, coordinate control of redox-balancing systems was further manifested in ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase deletion strains. These findings demonstrated the existence of interactive control mechanisms that govern the diverse means by which R. capsulatus maintains redox poise during photoheterotrophic and photoautotrophic growth.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
43
|
Atomi H, Ezaki S, Imanaka T. Ribulose-1,5-bisphosphate carboxylase/oxygenase from Thermococcus kodakaraensis KOD1. Methods Enzymol 2001; 331:353-65. [PMID: 11265476 DOI: 10.1016/s0076-6879(01)31070-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- H Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
44
|
Brassinga AK, Siam R, Marczynski GT. Conserved gene cluster at replication origins of the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii. J Bacteriol 2001; 183:1824-9. [PMID: 11160121 PMCID: PMC95075 DOI: 10.1128/jb.183.5.1824-1829.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 30-kb region surrounding the replication origin in Caulobacter crescentus was analyzed. Comparison to the genome sequence of another alpha-proteobacterium, Rickettsia prowazekii, revealed a conserved cluster of genes (RP001, hemE, hemH, and RP883) that overlaps the established origin of replication in C. crescentus and the putative origin of replication in R. prowazekii. The genes flanking this cluster differ between these two organisms. We therefore propose that this conserved gene cluster can be used to identify the origin of replication in other alpha-proteobacteria.
Collapse
Affiliation(s)
- A K Brassinga
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
45
|
Vichivanives P, Bird TH, Bauer CE, Robert Tabita F. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol 2000; 300:1079-99. [PMID: 10903856 DOI: 10.1006/jmbi.2000.3914] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cbb(I) and cbb(II) operons encode structural genes which are important for carbon dioxide fixation via the Calvin-Benson-Bassham reductive pentose phosphate pathway in Rhodobacter capsulatus. Each operon is regulated by cognate LysR-type transcriptional activators, CbbR(I) and CbbR(II), with the product of the cbbR(I) gene, CbbR(I), able to control its own transcription under some growth conditions. Furthermore, CbbR(I) may at least partially regulate the cbb(II) operon, with significant, yet regulated transcription of the cbb(II) operon occurring in the absence of any CbbR. These results suggested the importance of additional regulators. Thus, in addition to the rather specific control exerted by CbbR, a more globally significant regulatory system, the RegA-RegB (PrrA-PrrB) two-component system, was found to contribute to transcriptional regulation of each cbb operon. The regA and regB mutant strains were found to contain constitutive levels of form I and form II RubisCO, the major proteins encoded by the cbb(I) and cbb(II) operons, respectively. In addition, DNaseI footprint analyses indicated that RegA*, a constitutively active mutant form of RegA, binds specifically to cbb(I) and cbb(II) promoter-operator regions. CbbR(I), CbbR(II), and RegA binding loci were localized relative to transcription start sites, leading to a coherent picture of how each of these regulators interacts with specific promoter-operator sequences of the cbb operons.
Collapse
Affiliation(s)
- P Vichivanives
- Department of Microbiology and Plant Biotechnology Center, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
46
|
Miziorko HM. Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2000; 74:95-127. [PMID: 10800594 DOI: 10.1002/9780470123201.ch3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Phosphoribulokinase (PRK), an enzyme unique to the reductive pentose phosphate pathway of CO2 assimilation, exhibits distinctive contrasting properties when the proteins from eukaryotic and prokaryotic sources are compared. The eukaryotic PRKs are typically dimers of -39 kDa subunits while the prokaryotic PRKs are octamers of -32 kDa subunits. The enzymes from these two classes are regulated by different mechanisms. Thioredoxin of mediated thiol-disulfide exchange interconverts eukaryotic PRKs between reduced (active) and oxidized (inactive) forms. Allosteric effectors, including activator NADH and inhibitors AMP and phosphoenolpyruvate, regulate activity of prokaryotic PRK. The effector binding site has been identified in the high resolution structure recently elucidated for prokaryotic PRK and the7 apparatus for transmission of the allosteric stimulus has been identified. Additional contrasts between PRKs include marked differences in primary structure between eukaryotic and prokaryotic PRKs. Alignment of all available deduced PRK sequences indicates that less than 10% of the amino acid residues are invariant. In contrast to these differences, the mechanism for ribulose 1,5-biphosphate synthesis from ATP and ribulose 5-phosphate (Ru5P) appears to be the same for all PRKs. Consensus sequences associated with M++-ATP binding, identified in all PRK proteins, are closely juxtaposed to the residue proposed to function as general base catalyst. Sequence homology and mutagenesis approaches have suggested several residues that may potentially function in Ru5P binding. Not all of these proposed Ru5P binding residues are closely juxtaposed in the structure of unliganded PRK. Mechanistic approaches have been employed to investigate the amino acids which influence K(m Ru5P) and identify those amino acids most directly involved in Ru5P binding. PRK is one member of a family of phospho or sulfo transferase proteins which exhibit a nucleotide monophosphate kinase fold. Structure/function correlations elucidated for PRK suggest analogous assignments for other members of this family of proteins.
Collapse
Affiliation(s)
- H M Miziorko
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
47
|
Maier UG, Fraunholz M, Zauner S, Penny S, Douglas S. A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 2000; 17:576-83. [PMID: 10742049 DOI: 10.1093/oxfordjournals.molbev.a026337] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chloroplasts contain proteins that are encoded by different genetic systems, the plastid genome and the nuclear chromosomes. By comparing the gene content of plastid genomes of different taxa, some predictions about nuclear-encoded genes for plastid proteins are possible. However, early in evolution, many genes were transferred from the plastid to the cell nucleus and are therefore missing from all known plastid genomes and escape such predictions. By sequencing the miniaturized chromosomes of the nucleomorph of the cryptophyte Guillardia theta, as well as the plastid genome, we uncovered two genes encoding CbbX which are predicted to be involved in plastid function. Our findings suggest that (1) red-type plastid rbcLS genes evolved together with cbbX, which is related to cbbX genes of purple bacteria; (2) early in rhodoplast evolution, the cbbX gene was duplicated and transferred into the nucleus; (3) the plastid-encoded LysR transcriptional activator gene, rbcR, is homologous to rbcR and cbbR transcriptional activator genes of purple bacteria and cyanobacteria; and (4) the ancestral plastid probably harbored both types of form I RuBisCo.
Collapse
Affiliation(s)
- U G Maier
- Cell Biology and Applied Botany, Philipps-University Marburg, Marburg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Horken KM, Tabita FR. The "green" form I ribulose 1,5-bisphosphate carboxylase/oxygenase from the nonsulfur purple bacterium Rhodobacter capsulatus. J Bacteriol 1999; 181:3935-41. [PMID: 10383960 PMCID: PMC93882 DOI: 10.1128/jb.181.13.3935-3941.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of the Calvin-Benson-Bassham cycle may be divided into two broad phylogenetic groups, referred to as red-like and green-like, based on deduced large subunit amino acid sequences. Unlike the form I enzyme from the closely related organism Rhodobacter sphaeroides, the form I RubisCO from R. capsulatus is a member of the green-like group and closely resembles the enzyme from certain chemoautotrophic proteobacteria and cyanobacteria. As the enzymatic properties of this type of RubisCO have not been well studied in a system that offers facile genetic manipulation, we purified the R. capsulatus form I enzyme and determined its basic kinetic properties. The enzyme exhibited an extremely low substrate specificity factor, which is congruent with its previously determined sequence similarity to form I enzymes from chemoautotrophs and cyanobacteria. The enzymological results reported here are thus strongly supportive of the previously suggested horizontal gene transfer that most likely occurred between a green-like RubisCO-containing bacterium and a predecessor to R. capsulatus. Expression results from hybrid and chimeric enzyme plasmid constructs, made with large and small subunit genes from R. capsulatus and R. sphaeroides, also supported the unrelatedness of these two enzymes and were consistent with the recently proposed phylogenetic placement of R. capsulatus form I RubisCO. The R. capsulatus form I enzyme was found to be subject to a time-dependent fallover in activity and possessed a high affinity for CO2, unlike the closely similar cyanobacterial RubisCO, which does not exhibit fallover and possesses an extremely low affinity for CO2. These latter results suggest definite approaches to elucidate the molecular basis for fallover and CO2 affinity.
Collapse
Affiliation(s)
- K M Horken
- Department of Microbiology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|