1
|
Qin J, Qi X, Li Y, Tang Z, Zhang X, Ru S, Xiong JQ. Bisphenols can promote antibiotic resistance by inducing metabolic adaptations and natural transformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134149. [PMID: 38554512 DOI: 10.1016/j.jhazmat.2024.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.
Collapse
Affiliation(s)
- Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Qi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuyun Tang
- School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophiles 2021; 25:425-436. [PMID: 34542714 PMCID: PMC8578077 DOI: 10.1007/s00792-021-01242-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.
Collapse
|
4
|
Grüll MP, Mulligan ME, Lang AS. Small extracellular particles with big potential for horizontal gene transfer: membrane vesicles and gene transfer agents. FEMS Microbiol Lett 2019; 365:5067299. [PMID: 30085064 DOI: 10.1093/femsle/fny192] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
Bacteria are known to release different types of particles that serve various purposes such as the processing of metabolites, communication, and the transfer of genetic material. One of the most interesting aspects of the production of such particles is the biogenesis and trafficking of complex particles that can carry DNA, RNA, proteins or toxins into the surrounding environment to aid in bacterial survival or lead to gene transfer. Two important bacterial extracellular complexes are membrane vesicles and gene transfer agents. In this review, we will discuss the production, contents and functions of these two types of particles as related to their abilities to facilitate horizontal gene transfer.
Collapse
Affiliation(s)
| | - M E Mulligan
- Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada
| | | |
Collapse
|
5
|
Leong CG, Bloomfield RA, Boyd CA, Dornbusch AJ, Lieber L, Liu F, Owen A, Slay E, Lang KM, Lostroh CP. The role of core and accessory type IV pilus genes in natural transformation and twitching motility in the bacterium Acinetobacter baylyi. PLoS One 2017; 12:e0182139. [PMID: 28771515 PMCID: PMC5542475 DOI: 10.1371/journal.pone.0182139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/12/2017] [Indexed: 11/21/2022] Open
Abstract
Here we present an examination of type IV pilus genes associated with competence and twitching in the bacterium Acinetobacter baylyi (strain ADP1, BD413). We used bioinformatics to identify potential competence and twitching genes and their operons. We measured the competence and twitching phenotypes of the bioinformatically-identified genes. These results demonstrate that competence and twitching in A. baylyi both rely upon a core of the same type IV pilus proteins. The core includes the inner membrane assembly platform (PilC), a periplasmic assemblage connecting the inner membrane assembly platform to the secretin (ComM), a secretin (ComQ) and its associated pilotin (PilF) that assists with secretin assembly and localization, both cytoplasmic pilus retraction ATPases (PilU, PilT), and pilins (ComP, ComB, PilX). Proteins not needed for both competence and twitching are instead found to specialize in either of the two traits. The pilins are varied in their specialization with some required for either competence (FimT) and others for twitching (ComE). The protein that transports DNA across the inner membrane (ComA) specializes in competence, while signal transduction proteins (PilG, PilS, and PilR) specialize in twitching. Taken together our results suggest that the function of accessory proteins should not be based on homology alone. In addition the results suggest that in A. baylyi the mechanisms of natural transformation and twitching are mediated by the same set of core Type IV pilus proteins with distinct specialized proteins required for each phenotype. Finally, since competence requires multiple pilins as well as both pilus retraction motors PilU and PilT, this suggests that A. baylyi employs a pilus in natural transformation.
Collapse
Affiliation(s)
- Colleen G. Leong
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Rebecca A. Bloomfield
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Caroline A. Boyd
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Amber J. Dornbusch
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Leah Lieber
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Flora Liu
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Amie Owen
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Erin Slay
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Kristine M. Lang
- Department of Physics, Colorado College, Colorado Springs, Colorado, United States of America
| | - C. Phoebe Lostroh
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Emergence of a Competence-Reducing Filamentous Phage from the Genome of Acinetobacter baylyi ADP1. J Bacteriol 2016; 198:3209-3219. [PMID: 27645387 DOI: 10.1128/jb.00424-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023] Open
Abstract
Bacterial genomes commonly contain prophage sequences as a result of past infections with lysogenic phages. Many of these integrated viral sequences are believed to be cryptic, but prophage genes are sometimes coopted by the host, and some prophages may be reactivated to form infectious particles when cells are stressed or mutate. We found that a previously uncharacterized filamentous phage emerged from the genome of Acinetobacter baylyi ADP1 during a laboratory evolution experiment. This phage has a genetic organization similar to that of the Vibrio cholerae CTXϕ phage. The emergence of the ADP1 phage was associated with the evolution of reduced transformability in our experimental populations, so we named it the competence-reducing acinetobacter phage (CRAϕ). Knocking out ADP1 genes required for competence leads to resistance to CRAϕ infection. Although filamentous bacteriophages are known to target type IV pili, this is the first report of a phage that apparently uses a competence pilus as a receptor. A. baylyi may be especially susceptible to this route of infection because every cell is competent during normal growth, whereas competence is induced only under certain environmental conditions or in a subpopulation of cells in other bacterial species. It is possible that CRAϕ-like phages restrict horizontal gene transfer in nature by inhibiting the growth of naturally transformable strains. We also found that prophages with homology to CRAϕ exist in several strains of Acinetobacter baumannii These CRAϕ-like A. baumannii prophages encode toxins similar to CTXϕ that might contribute to the virulence of this opportunistic multidrug-resistant pathogen. IMPORTANCE We observed the emergence of a novel filamentous phage (CRAϕ) from the genome of Acinetobacter baylyi ADP1 during a long-term laboratory evolution experiment. CRAϕ is the first bacteriophage reported to require the molecular machinery involved in the uptake of environmental DNA for infection. Reactivation and evolution of CRAϕ reduced the potential for horizontal transfer of genes via natural transformation in our experiment. Risk of infection by similar phages may limit the expression and maintenance of bacterial competence in nature. The closest studied relative of CRAϕ is the Vibrio cholerae CTXϕ phage. Variants of CRAϕ are found in the genomes of Acinetobacter baumannii strains, and it is possible that phage-encoded toxins contribute to the virulence of this opportunistic multidrug-resistant pathogen.
Collapse
|
7
|
Genome instability mediates the loss of key traits by Acinetobacter baylyi ADP1 during laboratory evolution. J Bacteriol 2014; 197:872-81. [PMID: 25512307 DOI: 10.1128/jb.02263-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baylyi ADP1 has the potential to be a versatile bacterial host for synthetic biology because it is naturally transformable. To examine the genetic reliability of this desirable trait and to understand the potential stability of other engineered capabilities, we propagated ADP1 for 1,000 generations of growth in rich nutrient broth and analyzed the genetic changes that evolved by whole-genome sequencing. Substantially reduced transformability and increased cellular aggregation evolved during the experiment. New insertions of IS1236 transposable elements and IS1236-mediated deletions led to these phenotypes in most cases and were common overall among the selected mutations. We also observed a 49-kb deletion of a prophage region that removed an integration site, which has been used for genome engineering, from every evolved genome. The comparatively low rates of these three classes of mutations in lineages that were propagated with reduced selection for 7,500 generations indicate that they increase ADP1 fitness under common laboratory growth conditions. Our results suggest that eliminating transposable elements and other genetic failure modes that affect key organismal traits is essential for improving the reliability of metabolic engineering and genome editing in undomesticated microbial hosts, such as Acinetobacter baylyi ADP1.
Collapse
|
8
|
Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 2014; 80:3469-83. [PMID: 24657872 PMCID: PMC4018862 DOI: 10.1128/aem.04248-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) are continually released from a range of bacterial species. Numerous functions of OMVs, including the facilitation of horizontal gene transfer (HGT) processes, have been proposed. In this study, we investigated whether OMVs contribute to the transfer of plasmids between bacterial cells and species using Gram-negative Acinetobacter baylyi as a model system. OMVs were extracted from bacterial cultures and tested for the ability to vector gene transfer into populations of Escherichia coli and A. baylyi, including naturally transformation-deficient mutants of A. baylyi. Anti-double-stranded DNA (anti-dsDNA) antibodies were used to determine the movement of DNA into OMVs. We also determined how stress affected the level of vesiculation and the amount of DNA in vesicles. OMVs were further characterized by measuring particle size distribution (PSD) and zeta potential. Transmission electron microscopy (TEM) and immunogold labeling were performed using anti-fluorescein isothiocyanate (anti-FITC)-conjugated antibodies and anti-dsDNA antibodies to track the movement of FITC-labeled and DNA-containing OMVs. Exposure to OMVs isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. coli at transfer frequencies ranging from 10(-6) to 10(-8), with transfer efficiencies of approximately 10(3) and 10(2) per μg of vesicular DNA, respectively. Antibiotic stress was shown to affect the DNA content of OMVs as well as their hydrodynamic diameter and zeta potential. Morphological observations suggest that OMVs from A. baylyi interact with recipient cells in different ways, depending on the recipient species. Interestingly, the PSD measurements suggest that distinct size ranges of OMVs are released from A. baylyi.
Collapse
Affiliation(s)
- Shweta Fulsundar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, India
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Gøril E. Flaten
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Pål J. Johnsen
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | | | - Kaare M. Nielsen
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
- Genøk-Center for Biosafety, Research Park, Tromsø, Norway
| |
Collapse
|
9
|
An MFS Transporter-Like ORF from MDR Acinetobacter baumannii AIIMS 7 Is Associated with Adherence and Biofilm Formation on Biotic/Abiotic Surface. Int J Microbiol 2012; 2012:490647. [PMID: 22518144 PMCID: PMC3299490 DOI: 10.1155/2012/490647] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 11/27/2022] Open
Abstract
A major facilitator superfamily (MFS) transporter-like open reading frame (ORF) of 453 bp was identified in a pathogenic strain Acinetobacter baumannii AIIMS 7, and its association with adherence and biofilm formation was investigated. Reverse transcription PCR (RT-PCR) showed differential expression in surface-attached biofilm cells than nonadherent cells. In vitro translation showed synthesis of a ~17 kDa protein, further confirmed by cloning and heterologous expression in E. coli DH5α. Up to 2.1-, 3.1-, and 4.1- fold biofilm augmentation was observed on abiotic (polystyrene) and biotic (S. cerevisiae/HeLa) surface, respectively. Scanning electron microscopy (SEM) and gfp-tagged fluorescence microscopy revealed increased adherence to abiotic (glass) and biotic (S. cerevisiae) surface. Extracellular DNA(eDNA) was found significantly during active growth; due to probable involvement of the protein in DNA export, strong sequence homology with MFS transporter proteins, and presence of transmembrane helices. In summary, our findings show that the putative MFS transporter-like ORF (pmt) is associated with adherence, biofilm formation, and probable eDNA release in A. baumannii AIIMS 7.
Collapse
|
10
|
Averhoff B. Shuffling genes around in hot environments: the unique DNA transporter ofThermus thermophilus. FEMS Microbiol Rev 2009; 33:611-26. [DOI: 10.1111/j.1574-6976.2008.00160.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51:3471-84. [PMID: 17646423 PMCID: PMC2043292 DOI: 10.1128/aac.01464-06] [Citation(s) in RCA: 840] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Federico Perez
- Division of Infectious Diseases and HIV Medicine, University Hospitals, Case Medical Centers, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bacher JM, Metzgar D, de Crécy-Lagard V. Rapid evolution of diminished transformability in Acinetobacter baylyi. J Bacteriol 2006; 188:8534-42. [PMID: 17028281 PMCID: PMC1698229 DOI: 10.1128/jb.00846-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reason for genetic exchange remains a crucial question in evolutionary biology. Acinetobacter baylyi strain ADP1 is a highly competent and recombinogenic bacterium. We compared the parallel evolution of wild-type and engineered noncompetent lineages of A. baylyi in the laboratory. If transformability were to result in an evolutionary benefit, it was expected that competent lineages would adapt more rapidly than noncompetent lineages. Instead, regardless of competency, lineages adapted to the same extent under several laboratory conditions. Furthermore, competent lineages repeatedly evolved a much lower level of transformability. The loss of competency may be due to a selective advantage or the irreversible transfer of loss-of-function alleles of genes required for transformation within the competent population.
Collapse
Affiliation(s)
- Jamie M Bacher
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., BCC-379, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
13
|
Gohl O, Friedrich A, Hoppert M, Averhoff B. The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 2006; 72:1394-401. [PMID: 16461692 PMCID: PMC1392937 DOI: 10.1128/aem.72.2.1394-1401.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two structurally different appendages, thin and thick pili, are found in members of the genus Acinetobacter. The presence of pilus structures correlates with different phenotypes, such as adherence to surfaces, a trait not only observed in pathogenic Acinetobacter species, as well as motility. However, their distinct individual roles were unknown. To characterize the role of different pili in the physiology of Acinetobacter, we isolated the thin pili from the cell surface of Acinetobacter sp. strain BD413 (recently recognized as representative of Acinetobacter baylyi), a soil bacterium that rapidly takes up naked DNA from its environment. Electron microscopy revealed that the pilus has an external diameter of 2 to 3 nm for single filaments. The filaments are packed into right-handed bundles. The major protein constituting the pilus was purified, and the encoding gene, acuA, was cloned. AcuA was found to be weakly related to the structural subunit of F17 pili of Escherichia coli. Analyses of the acuA flanking DNA region led to the identification of three closely associated genes, acuD, acuC, and acuG, whose deduced proteins are similar to chaperone, usher, and adhesin of F17-related pili, respectively. Transcriptional analyses revealed that acuA expression is maximal in the late-stationary-growth phase. Mutation of acuA led to a loss of thin pili and concomitantly loss of adhesion to polystyrene and erythrocytes but not loss of competence. Therefore, thin pili of Acinetobacter sp. strain BD413 are suggested to be assembled by the chaperone/usher pathway and are involved in adherence to biotic and abiotic surfaces.
Collapse
Affiliation(s)
- Olivia Gohl
- Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
14
|
Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2:e7. [PMID: 16415984 PMCID: PMC1326220 DOI: 10.1371/journal.pgen.0020007] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 12/06/2005] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
- * To whom correspondence should be addressed. E-mail: (PEF); (JMC)
| | - David Vallenet
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Valérie Barbe
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Stéphane Audic
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Hiroyuki Ogata
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Laurent Poirel
- Département de Bactériologie-Virologie, Hôpital de Bicêtre, Le-Kremlin-Bicêtre, France
| | - Hervé Richet
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Catherine Robert
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Sophie Mangenot
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Chantal Abergel
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Patrice Nordmann
- Département de Bactériologie-Virologie, Hôpital de Bicêtre, Le-Kremlin-Bicêtre, France
| | - Jean Weissenbach
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Jean-Michel Claverie
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
- * To whom correspondence should be addressed. E-mail: (PEF); (JMC)
| |
Collapse
|
15
|
Lee JC, Koerten H, van den Broek P, Beekhuizen H, Wolterbeek R, van den Barselaar M, van der Reijden T, van der Meer J, van de Gevel J, Dijkshoorn L. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res Microbiol 2005; 157:360-6. [PMID: 16326077 DOI: 10.1016/j.resmic.2005.09.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is an important nosocomial pathogen, but the mechanisms contributing to its epidemicity and virulence are largely unknown. The organism is able to colonize skin and mucosal surfaces of the human host. Adherence of microorganisms to host cells is an important virulence factor as it is the initial step of the colonization process. In the present study, adherence of A. baumannii to human bronchial epithelial NCI-H(292) cells was examined by light and scanning electron microscopy. Thirty-seven strains were investigated including 18 from outbreaks, 16 not associated with outbreaks, and three for which an epidemic implication was unknown. Eight and 11 isolates belonged to European clone I and II, respectively. Two types of adherence were observed, dispersed adherence of bacteria to the cell, and adherence of clusters of bacteria at localized areas of the cells. Bacteria with dispersed adherence interacted with the epithelial cells through fimbriae, but were also entrapped by protrusions extending from the epithelial cells. Quantitative adherence varied considerably among strains but there was no significant correlation of the outbreak-associated strains with the percentage of infected cells. There was, however, a correlation between the clonal lineage and the percent of infected cells, with clone II being more adherent than clone I (P<0.05). Ten consecutive isolates from one outbreak were investigated to test whether adherence increased during passage among patients, but this appeared not to be the case. This study showed that A. baumannii adheres to human bronchial epithelial cells in vitro and that A. baumannii strains of clone II had a relatively high capacity for adhering to these cells.
Collapse
Affiliation(s)
- Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, #101, Dongin 2-ga, Jung-gu, Daegu 700-422, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Young DM, Parke D, Ornston LN. OPPORTUNITIES FOR GENETIC INVESTIGATION AFFORDED BYACINETOBACTER BAYLYI, A NUTRITIONALLY VERSATILE BACTERIAL SPECIES THAT IS HIGHLY COMPETENT FOR NATURAL TRANSFORMATION. Annu Rev Microbiol 2005; 59:519-51. [PMID: 16153178 DOI: 10.1146/annurev.micro.59.051905.105823] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic and physiological properties of Acinetobacter baylyi strain ADP1 make it an inviting subject for investigation of the properties underlying its nutritional versatility. The organism possesses a relatively small genome in which genes for most catabolic functions are clustered in several genetic islands that, unlike pathogenicity islands, give little evidence of horizontal transfer. Coupling mutagenic polymerase chain reaction to natural transformation provides insight into how structure influences function in transporters, transcriptional regulators, and enzymes. With appropriate selection, mutants in which such molecules have acquired novel function may be obtained. The extraordinary competence of A. baylyi for natural transformation and the ease with which it expresses heterologous genes make it a promising platform for construction of novel metabolic systems. Steps toward this goal should take into account the complexity of existing pathways in which transmembrane trafficking plays a significant role.
Collapse
Affiliation(s)
- David M Young
- 1Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
17
|
Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marlière P, Cohen GN, Médigue C. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 2004; 32:5766-79. [PMID: 15514110 PMCID: PMC528795 DOI: 10.1093/nar/gkh910] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major 'islands of catabolic diversity', now an apparent 'archipelago of catabolic diversity', within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism.
Collapse
Affiliation(s)
- Valérie Barbe
- Genoscope and CNRS-UMR8030, 2 rue Gaston Crémieux, 91057 Evry, Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Friedrich A, Rumszauer J, Henne A, Averhoff B. Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 2003; 69:3695-700. [PMID: 12839734 PMCID: PMC165207 DOI: 10.1128/aem.69.7.3695-3700.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Deltakat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.
Collapse
Affiliation(s)
- Alexandra Friedrich
- Bereich Genetik und Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
19
|
Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B. Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 2002; 68:745-55. [PMID: 11823215 PMCID: PMC126729 DOI: 10.1128/aem.68.2.745-755.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.
Collapse
Affiliation(s)
- Alexandra Friedrich
- Institut für Genetik und Mikrobiologie, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, D-80638 Münich, Germany
| | | | | | | | | |
Collapse
|
20
|
Friedrich A, Hartsch T, Averhoff B. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 2001; 67:3140-8. [PMID: 11425734 PMCID: PMC92993 DOI: 10.1128/aem.67.7.3140-3148.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent transcriptional regulation of the recently identified pilin-like factors of the transformation machinery. This finding strongly suggests that comA is part of a competence regulon. Examination of the genome sequence of T. thermophilus HB27 led to detection of a comA/comEC-like open reading frame (ORF) which is flanked by an ORF whose product shows significant similarities to the Bacillus subtilis competence protein ComEA. To examine whether these two ORFs, designated comEC and comEA, are implicated in natural transformation of T. thermophilus HB27, both were disrupted by using a thermostable kanamycin resistance marker. Natural transformation in comEC mutants was reduced 1,000-fold, whereas in comEA mutants the natural transformation phenotype was completely eliminated. These results strongly suggest that both genes, comEC and comEA, are required for natural transformation in T. thermophilus HB27. Several transmembrane alpha-helices are predicted based on the amino acid sequences of ComA in Acinetobacter sp. strain BD413 and ComEC in T. thermophilus HB27, which suggests that ComA and ComEC are located in the inner membrane and function in DNA transport through the cytoplasmic membrane.
Collapse
Affiliation(s)
- A Friedrich
- Department of Genetics and Microbiology, Ludwig Maximilians University, 80638 Munich, Germany
| | | | | |
Collapse
|
21
|
Porstendörfer D, Gohl O, Mayer F, Averhoff B. ComP, a pilin-like protein essential for natural competence in Acinetobacter sp. Strain BD413: regulation, modification, and cellular localization. J Bacteriol 2000; 182:3673-80. [PMID: 10850981 PMCID: PMC94537 DOI: 10.1128/jb.182.13.3673-3680.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified a pilin-like competence factor, ComP, which is essential for natural transformation of the gram-negative soil bacterium Acinetobacter sp. strain BD413. Here we demonstrate that transcription and synthesis of the pilin-like competence factor ComP are maximal in the late stationary growth phase, whereas competence is induced immediately after inoculation of a stationary-phase culture into fresh medium. Western blot analyses revealed three forms of ComP, one with an apparent molecular mass of 15 kDa, which correlates with the molecular mass deduced from the DNA sequence, one 20-kDa form, which was found to be glycosylated, and one 23-kDa form. The glycosylation of ComP was not required for its function in DNA binding and uptake. The 20-kDa form was present in the cytoplasmic membrane, the periplasm, and the outer membrane, whereas the 23-kDa form was located in the outer membrane and might be due to a further modification. Immunological data suggest that ComP is not a subunit of the pilus structures. Possible functions of ComP in the DNA transformation machinery of Acinetobacter sp. strain BD413 are discussed.
Collapse
Affiliation(s)
- D Porstendörfer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W. Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J Bacteriol 2000; 182:2184-90. [PMID: 10735861 PMCID: PMC111267 DOI: 10.1128/jb.182.8.2184-2190.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.
Collapse
Affiliation(s)
- S Graupner
- AG Genetik, Fachbereich Biologie, Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Natural competence is widespread among bacterial species. The mechanism of DNA uptake in both gram-positive and gram-negative bacteria is reviewed. The transformation pathways are discussed, with attention to the fate of donor DNA as it is processed by the competent cell. The proteins involved in mediating various steps in these pathways are described, and models for the transformation mechanisms are presented. Uptake of DNA across the inner membrane is probably similar in gram-positive and gram-negative bacteria, and at least some of the required proteins are orthologs. The initial transformation steps differ, as expected, from the presence of an outer membrane only in the gram-negative organisms. The similarity of certain essential competence proteins to those required for the assembly of type-4 pili and for type-2 protein secretion is discussed. Finally several hypotheses for the biological role of transformation are presented and evaluated.
Collapse
Affiliation(s)
- D Dubnau
- Public Health Research Institute, New York, NY 10016, USA.
| |
Collapse
|
24
|
Busch S, Rosenplänter C, Averhoff B. Identification and characterization of ComE and ComF, two novel pilin-like competence factors involved in natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 1999; 65:4568-74. [PMID: 10508090 PMCID: PMC91608 DOI: 10.1128/aem.65.10.4568-4574.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the high level of competence for natural transformation of Acinetobacter sp. strain BD413 has been the subject of numerous studies, only two competence genes, comC and comP, have been identified to date. By chromosomal walking analysis we found two overlapping open reading frames, designated comE and comF, starting 61 bp downstream of comC. comE and comF are expressed as stable proteins in Escherichia coli, thus proving that they are indeed coding regions, but expression was successful only with 5'-deleted genes. ComE and ComF are similar to pilins and pilin-like components. Both genes were mutated, and the phenotypes of the mutants were analyzed. Natural transformation in comF mutants is 1,000-fold reduced, whereas comE mutants exhibit 10-fold-reduced transformation frequencies. This is clear evidence that comE and comF are involved in natural transformation. However, ComE and ComF are specific for DNA translocation, since comE and comF defects affected neither piliation nor lipase secretion. These results suggest that the type IV pili, the general protein secretion pathway, and the DNA translocation machinery in Acinetobacter sp. strain BD413 are evolutionary related but functionally distinct systems.
Collapse
Affiliation(s)
- S Busch
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
25
|
Wolfgang M, van Putten JP, Hayes SF, Koomey M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 1999; 31:1345-57. [PMID: 10200956 DOI: 10.1046/j.1365-2958.1999.01269.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of type IV pili (Tfp) by Neisseria gonorrhoeae has been shown to be essential for natural genetic transformation at the level of sequence-specific uptake of DNA. All previously characterized mutants defective in this step of transformation either lack Tfp or are altered in the expression of Tfp-associated properties, such as twitching motility, autoagglutination and the ability to bind to human epithelial cells. To examine the basis for this relationship, we identified potential genes encoding polypeptides sharing structural similarities to PilE, the Tfp subunit, within the N. gonorrhoeae genome sequence database. We found that disruption of one such gene, designated comP (for competence-associated prepilin), leads to a severe defect in the capacity to take up DNA in a sequence-specific manner, but does not alter Tfp biogenesis or expression of the Tfp-associated properties of auto-agglutination, twitching motility and human epithelial cell adherence. Indirect evidence based on immunodetection suggests that ComP is expressed at very low levels relative to that of PilE. The process of DNA uptake in gonococci, therefore, is now known to require the expression of at least three distinct components: Tfp, the recently identified PilT protein and ComP.
Collapse
Affiliation(s)
- M Wolfgang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | |
Collapse
|