1
|
Wang H, Xiao H, Feng B, Lan Y, Fung CW, Zhang H, Yan G, Lian C, Zhong Z, Li J, Wang M, Wu AR, Li C, Qian PY. Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm. SCIENCE ADVANCES 2024; 10:eadn3053. [PMID: 39047091 PMCID: PMC11268408 DOI: 10.1126/sciadv.adn3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao, China
| | - Hongxiu Xiao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Buhan Feng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Cheuk Wang Fung
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huan Zhang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Lian
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Zhaoshan Zhong
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Jing Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Minxiao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Angela Ruohao Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chaolun Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Science, Guanzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
2
|
Zhang J, Liu G, Carvajal AI, Wilson RH, Cai Z, Li Y. Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO 2 capture. BIORESOUR BIOPROCESS 2021; 8:86. [PMID: 38650243 PMCID: PMC10992382 DOI: 10.1186/s40643-021-00439-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key CO2-fixing enzyme in photosynthesis, is notorious for its low carboxylation. We report a highly active and assembly-competent Form II Rubisco from the endosymbiont of a deep-sea tubeworm Riftia pachyptila (RPE Rubisco), which shows a 50.5% higher carboxylation efficiency than that of a high functioning Rubisco from Synechococcus sp. PCC7002 (7002 Rubisco). It is a simpler hexamer with three pairs of large subunit homodimers around a central threefold symmetry axis. Compared with 7002 Rubisco, it showed a 3.6-fold higher carbon capture efficiency in vivo using a designed CO2 capture model. The simple structure, high carboxylation efficiency, easy heterologous soluble expression/assembly make RPE Rubisco a ready-to-deploy enzyme for CO2 capture that does not require complex co-expression of chaperones. The chemosynthetic CO2 fixation machinery of chemolithoautotrophs, CO2-fixing endosymbionts, may be more efficient than previously realized with great potential for next-generation microbial CO2 sequestration platforms.
Collapse
Affiliation(s)
- Junli Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alonso I Carvajal
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Robert H Wilson
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 2011; 9:719-738. [PMID: 21673885 PMCID: PMC3111178 DOI: 10.3390/md9050719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 03/20/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.
Collapse
|
4
|
|
5
|
Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution. Symbiosis 2009. [DOI: 10.1007/bf03179972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, Lapidus A. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 2009; 10:351. [PMID: 19650930 PMCID: PMC2907700 DOI: 10.1186/1471-2164-10-351] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 08/03/2009] [Indexed: 12/24/2022] Open
Abstract
Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC) genes (responsible for fumarate addition to toluene) and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH) are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Conclusion Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species. Examples of recent gene duplication events in signaling as well as dioxygenase clusters are present, indicating selective gene family expansion as a relatively recent event in D. aromatica's evolutionary history. Gene families that constitute metabolic cycles presumed to create D. aromatica's environmental 'foot-print' indicate a high level of diversification between its predicted capabilities and those of its close relatives, A. aromaticum str EbN1 and Azoarcus BH72.
Collapse
|
7
|
Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N. Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 2008; 10:3237-54. [PMID: 18707616 DOI: 10.1111/j.1462-2920.2008.01712.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Siboglinid tubeworms do not have a mouth or gut and live in obligate associations with bacterial endosymbionts. Little is currently known about the phylogeny of frenulate and moniliferan siboglinids and their symbionts. In this study, we investigated the symbioses of two co-occurring siboglinid species from a methane emitting mud volcano in the Arctic Ocean (Haakon Mosby Mud Volcano, HMMV): Oligobrachia haakonmosbiensis (Frenulata) and Sclerolinum contortum (Monilifera). Comparative sequence analysis of the host-specific 18S and the symbiont-specific 16S rRNA genes of S. contortum showed that the close phylogenetic relationship of this host to vestimentiferan siboglinids was mirrored in the close relationship of its symbionts to the sulfur-oxidizing gammaproteobacterial symbionts of vestimentiferans. A similar congruence between host and symbiont phylogeny was observed in O. haakonmosbiensis: both this host and its symbionts were most closely related to the frenulate siboglinid O. mashikoi and its gammaproteobacterial symbiont. The symbiont sequences from O. haakonmosbiensis and O. mashikoi formed a clade unaffiliated with known methane- or sulfur-oxidizing bacteria. Fluorescence in situ hybridization indicated that the dominant bacterial phylotypes originated from endosymbionts residing inside the host trophosome. In both S. contortum and O. haakonmosbiensis, characteristic genes for autotrophy (cbbLM) and sulfur oxidation (aprA) were present, while genes diagnostic for methanotrophy were not detected. The molecular data suggest that both HMMV tubeworm species harbour chemoautotrophic sulfur-oxidizing symbionts. In S. contortum, average stable carbon isotope values of fatty acids and cholesterol of -43 per thousand were highly negative for a sulfur oxidizing symbiosis, but can be explained by a (13)C-depleted CO(2) source at HMMV. In O. haakonmosbiensis, stable carbon isotope values of fatty acids and cholesterol of -70 per thousand are difficult to reconcile with our current knowledge of isotope signatures for chemoautotrophic processes.
Collapse
Affiliation(s)
- Tina Lösekann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Charles R Fisher
- Department of Biology, Pennsylvania State University, University Park, PA 16801, USA.
| | | |
Collapse
|
9
|
Elsaied HE, Kimura H, Naganuma T. Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems. Extremophiles 2006; 11:191-202. [PMID: 17024516 DOI: 10.1007/s00792-006-0025-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 08/15/2006] [Indexed: 11/27/2022]
Abstract
We studied the diversity of all forms of the RuBisCO large subunit-encoding gene cbbL in three RuBisCO uncharacterized hydrothermal vent communities. This diversity included the archaeal cbbL and the forms IC and ID, which have not previously been studied in the deep-sea environment, in addition to the forms IA, IB and II. Vent plume sites were Fryer and Pika in the Mariana arc and the Suiyo Seamount, Izu-Bonin, Japan. The cbbL forms were PCR amplified from plume bulk microbial DNA and then cloned and sequenced. Archaeal cbbL was detected in the Mariana samples only. Both forms IA and II were amplified from all samples, while the form IC was amplified only from the Pika and Suiyo samples. Only the Suiyo sample showed amplification of the form ID. The form IB was not recorded in any sample. Based on rarefaction analysis, nucleotide diversity and average pairwise difference, the archaeal cbbL was the most diverse form in Mariana samples, while the bacterial form IA was the most diverse form in the Suiyo sample. Also, the Pika sample harbored the highest diversity of cbbL phylogenetic lineages. Based on pairwise reciprocal library comparisons, the Fryer and Pika archaeal cbbL libraries showed the most significant difference, while Pika and Suiyo showed the highest similarity for forms IA and II libraries. This suggested that the Fryer supported the most divergent sequences. All archaeal cbbL sequences formed unique phylogenetic lineages within the branches of anaerobic thermophilic archaea of the genera Pyrococcus, Archaeoglobus, and Methanococcus. The other cbbL forms formed novel phylogenetic clusters distinct from any recorded previously in other deep-sea habitats. This is the first evidence for the diversity of archaeal cbbL in environmental samples.
Collapse
Affiliation(s)
- Hosam Easa Elsaied
- Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi Tsukuba, Ibaraki, 305-8566, Japan
| | | | | |
Collapse
|
10
|
Elsaied HE, Kaneko R, Naganuma T. Molecular characterization of a deep-sea methanotrophic mussel symbiont that carries a RuBisCO gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:511-20. [PMID: 16761196 DOI: 10.1007/s10126-005-6135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 03/15/2006] [Indexed: 05/10/2023]
Abstract
In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears the RuBisCO cbbL gene relevant to autotrophic CO(2) fixation.
Collapse
Affiliation(s)
- Hosam Easa Elsaied
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
11
|
Minic Z, Serre V, Hervé G. [Adaptation of organisms to extreme conditions of deep-sea hydrothermal vents]. C R Biol 2006; 329:527-40. [PMID: 16797459 DOI: 10.1016/j.crvi.2006.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 02/08/2006] [Indexed: 11/22/2022]
Abstract
The deep-sea hydrothermal vents are located along the volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pression), chemical toxicity, and absence of photosynthesis. However, life exists in these particular environments. The primary producers of energy and organic molecules in these biotopes are chimiolithoautotrophic bacteria. Many animals species live in intimate and complex symbiosis with these sulfo-oxidizing and methanogene bacteria. These symbioses imply a strategy of nutrition and a specific metabolic organization involving numerous interactions and metabolic exchanges, between partners. The organisms of these ecosystems have developed different adaptive strategies. In these environments many microorganisms are adapted to high temperatures. Moreover to survive in these environments, living organisms have developed various strategies to protect themselves against toxic molecules such as H2S and heavy metals.
Collapse
Affiliation(s)
- Zoran Minic
- Laboratoire de biochimie des signaux régulateurs cellulaires et moléculaires, FRE 2621, CNRS, université Pierre-et-Marie-Curie (Paris-6), 96, bd Raspail, 75006 Paris, France.
| | | | | |
Collapse
|
12
|
Tolli J, King GM. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 2006; 71:8411-8. [PMID: 16332829 PMCID: PMC1317390 DOI: 10.1128/aem.71.12.8411-8418.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obligate lithotrophs (e.g., ammonia oxidizers) and facultative lithotrophs (e.g., CO and hydrogen oxidizers) collectively comprise a phylogenetically diverse functional group that contributes significantly to carbon and nitrogen cycles in soils and plays important roles in trace gas dynamics (e.g., carbon monoxide and nitrous and nitric oxides) that affect tropospheric chemistry and radiative forcing. In spite of their diverse physiologies, facultative and obligate lithotrophs typically possess the Calvin-Benson-Bassham cycle enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisCO). In an effort designed to understand the structure of lithotrophic communities in soil, genomic DNA extracts from surface (0 to 2 cm) and subsurface (5 to 7 cm) soils have been obtained from two sites in a Georgia agroecosystem (peanut and cotton plots) and an unmanaged pine stand (>50 years old). The extracts have been used in PCR amplifications of the cbbL gene for the rubisCO large subunit protein. cbbL PCR products were cloned, sequenced, and subjected to phylogenetic and statistical analyses. Numerous novel lineages affiliated with the form IC clade (one of four form I rubisCO clades), which is typified by facultative lithotrophs, comprised lithotrophic communities from all soils. One of the form IC clone sequences clustered with a form IC clade of ammonia-oxidizing Nitrosospira. Distinct assemblages were obtained from each of the sites and from surface and subsurface soils. The results suggest that lithotrophic populations respond differentially to plant type and land use, perhaps forming characteristic associations. The paucity of clone sequences attributed to ammonia-oxidizing bacteria indicates that even though ammonia oxidation occurs in the various soils, the relevant populations are small compared to those of facultative lithotrophs.
Collapse
Affiliation(s)
- J Tolli
- Darling Marine Center, University of Maine, Walpole, ME 04573, USA
| | | |
Collapse
|
13
|
Abstract
Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
Collapse
Affiliation(s)
- Jo Handelsman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Stewart FJ, Cavanaugh CM. Symbiosis of Thioautotrophic Bacteria with Riftia pachyptila. MOLECULAR BASIS OF SYMBIOSIS 2005; 41:197-225. [PMID: 16623395 DOI: 10.1007/3-540-28221-1_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
15
|
Campbell BJ, Cary SC. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 2004; 70:6282-9. [PMID: 15466576 PMCID: PMC522104 DOI: 10.1128/aem.70.10.6282-6289.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of hydrothermal vents more than 25 years ago, the Calvin-Bassham-Benson (Calvin) cycle has been considered the principal carbon fixation pathway in this microbe-based ecosystem. However, on the basis of recent molecular data of cultured free-living and noncultured episymbiotic members of the epsilon subdivision of Proteobacteria and earlier carbon isotope data of primary consumers, an alternative autotrophic pathway may predominate. Here, genetic and culture-based approaches demonstrated the abundance of reverse tricarboxylic acid cycle genes compared to the abundance of Calvin cycle genes in microbial communities from two geographically distinct deep-sea hydrothermal vents. PCR with degenerate primers for three key genes in the reverse tricarboxylic acid cycle and form I and form II of ribulose 1,5-bisphosphate carboxylase/oxygenase (Calvin cycle marker gene) were utilized to demonstrate the abundance of the reverse tricarboxylic acid cycle genes in diverse vent samples. These genes were also expressed in at least one chimney sample. Diversity, similarity matrix, and phylogenetic analyses of cloned samples and amplified gene products from autotrophic enrichment cultures suggest that the majority of autotrophs that utilize the reverse tricarboxylic acid cycle are members of the epsilon subdivision of Proteobacteria. These results parallel the results of previously published molecular surveys of 16S rRNA genes, demonstrating the dominance of members of the epsilon subdivision of Proteobacteria in free-living hydrothermal vent communities. Members of the epsilon subdivision of Proteobacteria are also ubiquitous in many other microaerophilic to anaerobic sulfidic environments, such as the deep subsurface. Therefore, the reverse tricarboxylic acid cycle may be a major autotrophic pathway in these environments and significantly contribute to global autotrophic processes.
Collapse
Affiliation(s)
- Barbara J Campbell
- College of Marine Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA.
| | | |
Collapse
|
16
|
Minic Z, Hervé G. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont. ACTA ACUST UNITED AC 2004; 271:3093-102. [PMID: 15265029 DOI: 10.1111/j.1432-1033.2004.04248.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Riftia pachyptila (Vestimentifera) is a giant tubeworm living around the volcanic deep-sea vents of the East Pacific Rise. This animal is devoid of a digestive tract and lives in an intimate symbiosis with a sulfur-oxidizing chemoautotrophic bacterium. This bacterial endosymbiont is localized in the cells of a richly vascularized organ of the worm: the trophosome. These organisms are adapted to their extreme environment and take advantage of the particular composition of the mixed volcanic and sea waters to extract and assimilate inorganic metabolites, especially carbon, nitrogen, oxygen and sulfur. The high molecular mass hemoglobin of the worm is the transporter for both oxygen and sulfide. This last compound is delivered to the bacterium which possesses the sulfur oxidizing respiratory system, which produces the metabolic energy for the two partners. CO2 is also delivered to the bacterium where it enters the Calvin-Benson cycle. Some of the resulting small carbonated organic molecules are thus provided to the worm for its own metabolism. As far as nitrogen assimilation is concerned, NH3 can be used by the two partners but nitrate can be used only by the bacterium. This very intimate symbiosis applies also to the organization of metabolic pathways such as those of pyrimidine nucleotides and arginine. In particular, the worm lacks the first three enzymes of the de novo pyrimidine biosynthetic pathways as well as some enzymes involved in the biosynthesis of polyamines. The bacterium lacks the enzymes of the pyrimidine salvage pathway. This symbiotic organization constitutes a very interesting system to study the molecular and metabolic basis of biological adaptation.
Collapse
Affiliation(s)
- Zoran Minic
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, CNRS, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
17
|
Nanba K, King GM, Dunfield K. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 2004; 70:2245-53. [PMID: 15066819 PMCID: PMC383153 DOI: 10.1128/aem.70.4.2245-2253.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.
Collapse
Affiliation(s)
- K Nanba
- Laboratory of Aquatic Biology and Environmental Science, Graduate School of Agricultural Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
18
|
Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 2004; 182:373-87. [PMID: 15338111 DOI: 10.1007/s00203-004-0716-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/14/2004] [Accepted: 07/19/2004] [Indexed: 11/28/2022]
Abstract
Magnetite-producing magnetotactic bacteria collected from the oxic-anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O3(2-)) as electron sources and O2 as electron acceptor or anaerobically with S2O3(2-) and N2O as electron acceptor, with bicarbonate (HCO3-)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O3(2-) to sulfate (SO4(2-)). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O6(2-)), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O3(2-) and radiolabeled 14C-HCO3- showed that cell C was derived from HCO3-/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin-Benson-Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic-anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.
Collapse
Affiliation(s)
- Dennis A Bazylinski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Giri BJ, Bano N, Hollibaugh JT. Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 2004; 70:3443-8. [PMID: 15184142 PMCID: PMC427752 DOI: 10.1128/aem.70.6.3443-3448.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Partial sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (EC 4.1.1.39) genes were retrieved from samples taken along a redox gradient in alkaline, hypersaline Mono Lake, Calif. The form I gene (cbbL) was found in all samples, whereas form II (cbbM) was not retrieved from any of the samples. None of the RuBisCO sequences we obtained were closely related (nucleotide similarity, <90%) to sequences in the database. Some could be attributed to organisms isolated from the lake (Cyanobium) or appearing in enrichment cultures. Most (52%) of the sequences fell into in one clade, containing sequences that were identical to sequences retrieved from an enrichment culture grown with nitrate and sulfide, and another clade contained sequences identical to those retrieved from an arsenate-reducing, sulfide-oxidizing enrichment.
Collapse
Affiliation(s)
- Bruno J Giri
- Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA
| | | | | |
Collapse
|
20
|
Schwedock J, Harmer TL, Scott KM, Hektor HJ, Seitz AP, Fontana MC, Distel DL, Cavanaugh CM. Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO. Arch Microbiol 2004; 182:18-29. [PMID: 15316720 DOI: 10.1007/s00203-004-0689-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, approximately 3 micromol min(-1) mg protein (-1), and a KCO2 of 40.3 microM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3' region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3' region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.
Collapse
Affiliation(s)
- Julie Schwedock
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Campbell BJ, Stein JL, Cary SC. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 2003; 69:5070-8. [PMID: 12957888 PMCID: PMC194926 DOI: 10.1128/aem.69.9.5070-5078.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deep-sea polychaete Alvinella pompejana colonizes tubes on the sides of black smoker chimneys along the East Pacific Rise. A diverse, yet phylogenetically constrained episymbiotic community is obligately associated with its dorsal surface. The morphologically and phylogenetically distinct dominant episymbionts have not yet been cultured, and there are no clearly defined roles for these bacteria in this symbiosis. A large insert fosmid library was screened for the presence of the two dominant phylotypes. Two fosmids, 35.2 and 38 kb, containing phylotype-specific 16S ribosomal DNA sequences were fully sequenced. Each fosmid had a gene encoding ATP citrate lyase, a key enzyme in the reverse tricarboxylic acid (rTCA) cycle, a CO(2) fixation pathway. A selection of episymbiont communities from various geographic locations and vent sites were screened for the presence, diversity, and expression (via reverse transcription-PCR) of the ATP citrate lyase gene. Our results indicate that the ATP citrate lyase gene is not only a consistent presence in these episymbiont communities but is also expressed. Phylogenetically distinct forms of ATP citrate lyase were also found associated with and expressed by bacteria extracted from the tubes of A. pompejana. Utilizing PCR with degenerate primers based on a second key enzyme in the rTCA cycle, 2-oxoglutarate:acceptor oxidoreductase, we also demonstrated the persistent presence and expression of this gene in the episymbiont community. Our results suggest that members of both the episymbiont and the surrounding free-living communities display a chemolithoautotrophic form of growth and therefore contribute fixed carbon to other organisms in the vent community.
Collapse
Affiliation(s)
- Barbara J Campbell
- College of Marine Studies, University of Delaware, Lewes, Delaware 19958, USA.
| | | | | |
Collapse
|
22
|
Scott KM. A delta13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO(2) gradients at the host-symbiont interface. Environ Microbiol 2003; 5:424-32. [PMID: 12713468 DOI: 10.1046/j.1462-2920.2003.00416.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chemoautotrophic symbiosis Riftia pachyptila has extremely 13C-enriched delta13C values. Neither isotopic discrimination by the RubisCO enzyme of their bacterial endosymbionts, nor the delta13C value of CO2 at their hydrothermal vent habitat, suffice to explain biomass delta13C values in this organism, which range from - 9 to - 16 per thousand. However, these 13C-enriched delta13C values are consistent with the presence of 13C-enriched CO2 within the symbiont cytoplasm. Such a 13C-enriched pool of CO2 is expected when the rate of CO2 fixation by RubisCO, which fixes 12CO2 more rapidly than 13CO2, approaches the rate of exchange between intracellular and extracellular CO2 pools. Rapid CO2 fixation rates will also generate concentration gradients between these two pools. In order to estimate the size of these concentration gradients, an equation was derived, which describes the delta13C of tubeworm biomass in terms of the size of the CO2 gradient between the hydrothermal vent environment and the symbiont cytoplasm. Using mass balance equations for CO2 exchange and fixation by the symbionts and the tubeworm host, this model predicts that a CO2 concentration gradient of up to 17-fold between the symbiont cytoplasm and the environment is sufficient to explain even the most 13C-enriched R. pachyptila biomass. This model illustrates how both physical and enzymatic factors can act to influence the delta13C of intracellular CO2, which, in turn, highlights the danger of assigning a carbon fixation pathway to an autotroph based solely on its biomass delta13C value.
Collapse
Affiliation(s)
- Kathleen M Scott
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA.
| |
Collapse
|
23
|
Elsaied H, Kimura H, Naganuma T. Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1947-1957. [PMID: 12055314 DOI: 10.1099/00221287-148-6-1947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To better understand the contribution of micro-organisms to the primary production in the deep-sea gutless tubeworm Lamellibrachia sp., the 16S-rDNA-based phylogenetic data would be complemented by knowledge of the genes that encode the enzymes relevant to chemoautotrophic carbon fixation, such as D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO; EC 4.1.1.39). To phylogenetically characterize the autotrophic endosymbiosis within the trophosome of the tubeworm Lamellibrachia sp., bulk trophosomal DNA was extracted and analysed based on the 16S-rRNA- and RuBisCO-encoding genes. The 16S-rRNA- and RuBisCO-encoding genes were amplified by PCR, cloned and sequenced. For the 16S rDNA, a total of 50 clones were randomly selected and analysed directly by sequencing. Only one operational taxonomic unit resulted from the 16S rDNA sequence analysis. This may indicate the occurrence of one endosymbiotic bacterial species within the trophosome of the Lamellibrachia sp. used in this study. Phylogenetic analysis of the 16S rDNA showed that the Lamellibrachia sp. endosymbiont was closely related to the genus Rhodobacter, a member of the alpha-Protebacteria. For the RuBisCO genes, only the form II gene (cbbM) was amplified by PCR. A total of 50 cbbM clones were sequenced, and these were grouped into two operational RuBisCO units (ORUs) based on their deduced amino acid sequences. The cbbM ORUs showed high amino acid identities with those recorded from the ambient sediment bacteria. To confirm the results of sequence analysis, the localization of the symbiont-specific 16S rRNA and cbbM sequences in the Lamellibrachia sp. trophosome was visualized by in situ hybridization (ISH), using specific probes. Two types of cells, coccoid and filamentous, were observed at the peripheries of the trophosome lobules. Both the symbiont-specific 16S rDNA and cbbM probes hybridized at the same sites coincident with the location of the coccoid cells, whereas the filamentous cells showed no cbbM-specific signals. The RuBisCO form I gene (cbbL) was neither amplified by PCR nor detected by ISH. This is the first demonstration of chemoautotrophic symbiosis in the deep-sea gutless tubeworm, based on sequence data and in situ localization of both the 16S-rRNA- and RuBisCO-encoding genes.
Collapse
Affiliation(s)
- Hosam Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| | - Hiroyuki Kimura
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| | - Takeshi Naganuma
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| |
Collapse
|
24
|
Terazono K, Hayashi NR, Igarashi Y. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol Lett 2001; 198:151-7. [PMID: 11430407 DOI: 10.1111/j.1574-6968.2001.tb10635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cbbR encoding the LysR-type transcriptional regulator is located downstream of cbbLSQOYA and this gene is located upstream of cbbFPT in divergent transcription. The two promoter regions with LysR-binding sites are located in the cbbL upstream region and in the cbbR-cbbF intergenic region. Electrophoretic mobility shift assays using a cell extract of Escherichia coli harboring a plasmid containing cbbR and the DNA fragments of promoter regions indicated that CbbR binds in both regions. NADPH caused differences in the complex of CbbR and DNA.
Collapse
Affiliation(s)
- K Terazono
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
25
|
Elsaied H, Naganuma T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 2001; 67:1751-65. [PMID: 11282630 PMCID: PMC92794 DOI: 10.1128/aem.67.4.1751-1765.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea.
Collapse
Affiliation(s)
- H Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | | |
Collapse
|
26
|
Abstract
Molecular phylogenetic studies reveal that many endosymbioses between bacteria and invertebrate hosts result from ancient infections followed by strict vertical transmission within host lineages. Endosymbionts display a distinctive constellation of genetic properties including AT-biased base composition, accelerated sequence evolution, and, at least sometimes, small genome size; these features suggest increased genetic drift. Molecular genetic characterization also has revealed adaptive, host-beneficial traits such as amplification of genes underlying nutrient provision.
Collapse
Affiliation(s)
- N A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
27
|
Baker SH, Jin S, Aldrich HC, Howard GT, Shively JM. Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J Bacteriol 1998; 180:4133-9. [PMID: 9696760 PMCID: PMC107408 DOI: 10.1128/jb.180.16.4133-4139.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been previously established that Thiobacillus neapolitanus fixes CO2 by using a form I ribulose bisphosphate carboxylase/oxygenase (RuBisCO), that much of the enzyme is sequestered into carboxysomes, and that the genes for the enzyme, cbbL and cbbS, are part of a putative carboxysome operon. In the present study, cbbL and cbbS were cloned and sequenced. Analysis of RNA showed that cbbL and cbbS are cotranscribed on a message approximately 2,000 nucleotides in size. The insertion of a kanamycin resistance cartridge into cbbL resulted in a premature termination of transcription; a polar mutant was generated. The mutant is able to fix CO2, but requires a CO2 supplement for growth. Separation of cellular proteins from both the wild type and the mutant on sucrose gradients and subsequent analysis of the RuBisCO activity in the collected fractions showed that the mutant assimilates CO2 by using a form II RuBisCO. This was confirmed by immunoblot analysis using antibodies raised against form I and form II RuBisCOs. The mutant does not possess carboxysomes. Smaller, empty inclusions are present, but biochemical analysis indicates that if they are carboxysome related, they are not functional, i.e., do not contain RuBisCO. Northern analysis showed that some of the shell components of the carboxysome are produced, which may explain the presence of these inclusions in the mutant.
Collapse
Affiliation(s)
- S H Baker
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|