1
|
The novel EHEC gene asa overlaps the TEGT transporter gene in antisense and is regulated by NaCl and growth phase. Sci Rep 2018; 8:17875. [PMID: 30552341 PMCID: PMC6294744 DOI: 10.1038/s41598-018-35756-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 12/02/2022] Open
Abstract
Only a few overlapping gene pairs are known in the best-analyzed bacterial model organism Escherichia coli. Automatic annotation programs usually annotate only one out of six reading frames at a locus, allowing only small overlaps between protein-coding sequences. However, both RNAseq and RIBOseq show signals corresponding to non-trivially overlapping reading frames in antisense to annotated genes, which may constitute protein-coding genes. The transcription and translation of the novel 264 nt gene asa, which overlaps in antisense to a putative TEGT (Testis-Enhanced Gene Transfer) transporter gene is detected in pathogenic E. coli, but not in two apathogenic E. coli strains. The gene in E. coli O157:H7 (EHEC) was further analyzed. An overexpression phenotype was identified in two stress conditions, i.e. excess in salt or arginine. For this, EHEC overexpressing asa was grown competitively against EHEC with a translationally arrested asa mutant gene. RT-qPCR revealed conditional expression dependent on growth phase, sodium chloride, and arginine. Two potential promoters were computationally identified and experimentally verified by reporter gene expression and determination of the transcription start site. The protein Asa was verified by Western blot. Close homologues of asa have not been found in protein databases, but bioinformatic analyses showed that it may be membrane associated, having a largely disordered structure.
Collapse
|
2
|
Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Wecko R, Simon S, Scherer S, Neuhaus K. A novel short L-arginine responsive protein-coding gene (laoB) antiparallel overlapping to a CadC-like transcriptional regulator in Escherichia coli O157:H7 Sakai originated by overprinting. BMC Evol Biol 2018; 18:21. [PMID: 29433444 PMCID: PMC5810103 DOI: 10.1186/s12862-018-1134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Due to the DNA triplet code, it is possible that the sequences of two or more protein-coding genes overlap to a large degree. However, such non-trivial overlaps are usually excluded by genome annotation pipelines and, thus, only a few overlapping gene pairs have been described in bacteria. In contrast, transcriptome and translatome sequencing reveals many signals originated from the antisense strand of annotated genes, of which we analyzed an example gene pair in more detail. Results A small open reading frame of Escherichia coli O157:H7 strain Sakai (EHEC), designated laoB (L-arginine responsive overlapping gene), is embedded in reading frame −2 in the antisense strand of ECs5115, encoding a CadC-like transcriptional regulator. This overlapping gene shows evidence of transcription and translation in Luria-Bertani (LB) and brain-heart infusion (BHI) medium based on RNA sequencing (RNAseq) and ribosomal-footprint sequencing (RIBOseq). The transcriptional start site is 289 base pairs (bp) upstream of the start codon and transcription termination is 155 bp downstream of the stop codon. Overexpression of LaoB fused to an enhanced green fluorescent protein (EGFP) reporter was possible. The sequence upstream of the transcriptional start site displayed strong promoter activity under different conditions, whereas promoter activity was significantly decreased in the presence of L-arginine. A strand-specific translationally arrested mutant of laoB provided a significant growth advantage in competitive growth experiments in the presence of L-arginine compared to the wild type, which returned to wild type level after complementation of laoB in trans. A phylostratigraphic analysis indicated that the novel gene is restricted to the Escherichia/Shigella clade and might have originated recently by overprinting leading to the expression of part of the antisense strand of ECs5115. Conclusions Here, we present evidence of a novel small protein-coding gene laoB encoded in the antisense frame −2 of the annotated gene ECs5115. Clearly, laoB is evolutionarily young and it originated in the Escherichia/Shigella clade by overprinting, a process which may cause the de novo evolution of bacterial genes like laoB. Electronic supplementary material The online version of this article (10.1186/s12862-018-1134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Hücker
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,Fraunhofer ITEM-R, Am Biopark 9, 93053, Regensburg, Germany
| | - Sonja Vanderhaeghen
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Isabel Abellan-Schneyder
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,Core Facility Microbiome/NGS, ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Romy Wecko
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Svenja Simon
- Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL - Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
3
|
Rosenberg A, Sinai L, Smith Y, Ben-Yehuda S. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level. PLoS One 2012; 7:e41921. [PMID: 22848659 PMCID: PMC3405057 DOI: 10.1371/journal.pone.0041921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis) as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University- Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, Monroe M, Nicora CD, Lipton MS, Levy SB. Proteomic detection of non-annotated protein-coding genes in Pseudomonas fluorescens Pf0-1. PLoS One 2009; 4:e8455. [PMID: 20041161 PMCID: PMC2794547 DOI: 10.1371/journal.pone.0008455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
Collapse
Affiliation(s)
- Wook Kim
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mark W. Silby
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sam O. Purvine
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Julie S. Nicoll
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kim K. Hixson
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Monroe
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rasmussen S, Nielsen HB, Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 2009; 73:1043-57. [PMID: 19682248 PMCID: PMC2784878 DOI: 10.1111/j.1365-2958.2009.06830.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2009] [Indexed: 12/29/2022]
Abstract
The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome-wide expression during mid-exponential growth on rich (LB) and minimal (M9) medium. The identified TARs account for 77.3% of the genes as they are currently annotated and additionally we find 84 putative non-coding RNAs (ncRNAs) and 127 antisense transcripts. One ncRNA, ncr22, is predicted to act as a translational control on cstA and an antisense transcript was observed opposite the housekeeping sigma factor sigA. Through this work we have discovered a long conserved 3' untranslated region (UTR) in a group of membrane-associated genes that is predicted to fold into a large and highly stable secondary structure. One of the genes having this tail is efeN, which encodes a target of the twin-arginine translocase (Tat) protein translocation system.
Collapse
Affiliation(s)
- Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark2800 Lyngby, Denmark
| | - Henrik Bjørn Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark2800 Lyngby, Denmark
| | - Hanne Jarmer
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark2800 Lyngby, Denmark
| |
Collapse
|
6
|
Veloso F, Riadi G, Aliaga D, Lieph R, Holmes DS. Large-scale, multi-genome analysis of alternate open reading frames in bacteria and archaea. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:91-105. [PMID: 15805780 DOI: 10.1089/omi.2005.9.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Analysis of over 300,000 annotated genes in 105 bacterial and archaeal genomes reveals an unexpectedly high frequency of large (>300 nucleotides) alternate open reading frames (ORFs). Especially notable is the very high frequency of alternate ORFs in frames +3 and -1 (where the annotated gene is defined as frame +1). The occurrence of alternate ORFs is correlated with genomic G+C content and is strongly influenced by synonymous codon usage bias. The frequency of alternate ORFs in frame -1 is also influenced by the occurrence of codons encoding leucine and serine in frame +1. Although some alternate ORFs have been shown to encode proteins, many others are probably not expressed because they lack appropriate signals for transcription and translation. These latter can be mis-annotated by automatic gene finding programs leading to errors in public databases. Especially prone to mis-annotation is frame -1, because it exhibits a potential codon usage and theoretical capacity to encode proteins with an amino acid composition most similar to real genes. Some alternate ORFs are conserved across bacterial or archaeal species, and can give rise to misannotated "conserved hypothetical" genes, while others are unique to a genome and are misidentified as "hypothetical orphan" genes, contributing significantly to the orphan gene paradox.
Collapse
Affiliation(s)
- Felipe Veloso
- Laboratory and Bioinformatics and Genome Biology, Andrés Bello University and Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | |
Collapse
|
7
|
Winkler WC. Metabolic monitoring by bacterial mRNAs. Arch Microbiol 2005; 183:151-9. [PMID: 15750802 DOI: 10.1007/s00203-005-0758-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/05/2005] [Accepted: 01/12/2005] [Indexed: 02/04/2023]
Abstract
There is growing appreciation for diversity in the strategies that bacteria utilize in regulating gene expression. Bacteria must be able to respond in different ways to different stresses and thus require unique regulatory solutions for the physiological challenges they encounter. Recent data indicate that bacteria commonly employ a variety of posttranscriptional regulatory mechanisms to coordinate expression of their genes. In many instances, RNA structures embedded at the 5' ends of mRNAs are utilized to sense particular metabolic cues and regulate the encoded genes. These RNA elements are likely to range in structural sophistication, from short sequences recognized by RNA-binding proteins to complex shapes that fold into high-affinity receptors for small organic molecules. Enough examples of RNA-mediated genetic strategies have been found that it is becoming useful to view this overall mode of regulatory control at a genomic level. Eventually, a complete picture of bacterial gene regulation within a single bacterium, from control at transcription initiation to control of mRNA stability, will emerge. But for now, this article seeks to provide a brief overview of the known categories of RNA-mediated genetic mechanisms within the bacterium Bacillus subtilis, with the expectation that it is representative of bacteria as a whole.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, Room L1.404 , University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|