1
|
Novel DNA Binding and Regulatory Activities for σ 54 (RpoN) in Salmonella enterica Serovar Typhimurium 14028s. J Bacteriol 2017; 199:JB.00816-16. [PMID: 28373272 DOI: 10.1128/jb.00816-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
The variable sigma (σ) subunit of the bacterial RNA polymerase (RNAP) holoenzyme, which is responsible for promoter specificity and open complex formation, plays a strategic role in the response to environmental changes. Salmonella enterica serovar Typhimurium utilizes the housekeeping σ70 and five alternative sigma factors, including σ54 The σ54-RNAP differs from other σ-RNAP holoenzymes in that it forms a stable closed complex with the promoter and requires ATP hydrolysis by an activated cognate bacterial enhancer binding protein (bEBP) to transition to an open complex and initiate transcription. In S. Typhimurium, σ54-dependent promoters normally respond to one of 13 different bEBPs, each of which is activated under a specific growth condition. Here, we utilized a constitutively active, promiscuous bEBP to perform a genome-wide identification of σ54-RNAP DNA binding sites and the transcriptome of the σ54 regulon of S. Typhimurium. The position and context of many of the identified σ54 RNAP DNA binding sites suggest regulatory roles for σ54-RNAP that connect the σ54 regulon to regulons of other σ factors to provide a dynamic response to rapidly changing environmental conditions.IMPORTANCE The alternative sigma factor σ54 (RpoN) is required for expression of genes involved in processes with significance in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The characterization of the σ54 regulon of the versatile pathogen S. Typhimurium has expanded our understanding of the scope of the σ54 regulon and how it links to other σ regulons within the complex regulatory network for gene expression in bacteria.
Collapse
|
2
|
Samuels DJ, Frye JG, Porwollik S, McClelland M, Mrázek J, Hoover TR, Karls AC. Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the σ⁵⁴ (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genomics 2013; 14:602. [PMID: 24007446 PMCID: PMC3844500 DOI: 10.1186/1471-2164-14-602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP—the AAA+ ATPase domain of DctD from Sinorhizobium meliloti—to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. Results The AAA+ ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+ ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. Conclusion Since the DctD AAA+ ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.
Collapse
Affiliation(s)
- David J Samuels
- Department of Microbiology, University of Georgia, 30602, Athens, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Xu H, Kelly MT, Nixon BT, Hoover TR. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Mol Microbiol 2004; 54:32-44. [PMID: 15458403 DOI: 10.1111/j.1365-2958.2004.04246.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sinorhizobium meliloti DctD is an activator of sigma(54)-RNA polymerase holoenzyme and member of the AAA+ superfamily of ATPases. DctD uses energy released from ATP hydrolysis to stimulate the isomerization of a closed promoter complex to an open complex. DctD binds to upstream activation sequences (UAS) and contacts the closed complex through DNA looping to activate transcription, but the UAS is not essential for activation if DctD is expressed at higher than normal levels. Introduction of specific substitutions within or near the conserved ESELFG motif in the C3 region of a truncated, constitutively active form of DctD produced several mutant forms of the protein that had increased dependence on the UAS for activation. Removing the DNA-binding domain from one UAS-dependent mutant and from one activation-deficient mutant significantly increased transcriptional activation, indicating that the DNA-binding domain interfered with the activities of these mutant proteins. A UAS-dependent mutant with a P315L substitution in the C6 region was identified from a genetic screen. Alanine scanning mutagenesis of conserved amino acid residues around Pro-315 produced two additional UAS-dependent mutants as well as several mutants that failed to activate transcription but retained ATPase activity. In contrast to the two mutant proteins with substitutions in the C3 region, removal of the DNA-binding domain from the mutant proteins with substitutions in the C6 region did not stimulate their activity. The residues in the C6 region that were altered are in a probable hinge region between the alpha/beta and alpha-helical subdomains of the AAA+ domain. The alpha-helical subdomain contains the sensor II helix that has been implicated in other AAA+ proteins as sensing changes in the nucleotide during the hydrolysis cycle. Substitutions in the hinge region may have abolished nucleotide sensing by interfering with subdomain interactions, altering the relative orientation of the sensor II helix or interfering with oligomerization of the protein.
Collapse
Affiliation(s)
- Hao Xu
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
4
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
5
|
Xu H, Gu B, Nixon BT, Hoover TR. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator. J Bacteriol 2004; 186:3499-507. [PMID: 15150237 PMCID: PMC415754 DOI: 10.1128/jb.186.11.3499-3507.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activators of sigma54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open complex between the promoter and RNA polymerase. These activators are modular, consisting of an N-terminal regulatory domain, a C-terminal DNA-binding domain, and a central activation domain belonging to the AAA+ superfamily of ATPases. The AAA+ domain of Sinorhizobium meliloti C4-dicarboxylic acid transport protein D (DctD) is sufficient to activate transcription. Deletion analysis of the 3' end of dctD identified the minimal functional C-terminal boundary of the AAA+ domain of DctD as being located between Gly-381 and Ala-384. Histidine-tagged versions of the DctD AAA+ domain were purified and characterized. The DctD AAA+ domain was significantly more soluble than DctD(Delta(1-142)), a truncated DctD protein consisting of the AAA+ and DNA-binding domains. In addition, the DctD AAA+ domain was more homogeneous than DctD(Delta(1-142)) when analyzed by native gel electrophoresis, migrating predominantly as a single high-molecular-weight species, while DctD(Delta(1-142)) displayed multiple species. The DctD AAA+ domain, but not DctD(Delta(1-142)), formed a stable complex with sigma54 in the presence of the ATP transition state analogue ADP-aluminum fluoride. The DctD AAA+ domain activated transcription in vitro, but many of the transcripts appeared to terminate prematurely, suggesting that the DctD AAA+ domain interfered with transcription elongation. Thus, the DNA-binding domain of DctD appears to have roles in controlling the oligomerization of the AAA+ domain and modulating interactions with sigma54 in addition to its role in recognition of upstream activation sequences.
Collapse
Affiliation(s)
- Hao Xu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
6
|
Vickerman MM, Wang M, Baker LJ. An amino acid change near the carboxyl terminus of the Streptococcus gordonii regulatory protein Rgg affects its abilities to bind DNA and influence expression of the glucosyltransferase gene gtfG. MICROBIOLOGY (READING, ENGLAND) 2003; 149:399-406. [PMID: 12624202 DOI: 10.1099/mic.0.25983-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Streptococcus gordonii glucosyltransferase structural gene, gtfG, is located immediately downstream from its positive transcriptional regulatory determinant, rgg. Recent genetic studies have indicated that the 3' end of rgg is involved either directly as a binding site or indirectly, e.g. by playing a role in secondary structure, in the interaction of Rgg with the gtfG promoter. A previously identified spontaneous mutant with a point mutation near the 3' end of rgg had only approximately 25% of the parental level of glucosyltransferase activity. To determine if this decreased activity was due to a change in the DNA binding site of trans-acting Rgg, or due to a change in the Rgg protein itself, complementation analyses and DNA-binding studies were performed. In Rgg-deficient strains, the chromosomal rgg point mutation did not influence the ability of plasmid-borne rgg to increase glucosyltransferase expression. However, plasmids carrying parental rgg were able to increase glucosyltransferase activity and expression of a gtfG promoter fusion to a greater extent than plasmids carrying the mutant allele, indicating that the mutant Rgg protein had decreased activity. The ability of NH(2)-terminal (hexahistidine) tagged proteins to bind to a 107 bp dsDNA fragment corresponding to the region immediately upstream of gtfG was demonstrated by surface plasmon resonance. Despite their differences in activity, both mutant and parental recombinant Rgg proteins bound to this dsDNA, albeit with different strengths. These studies provide insights into functional domains of S. gordonii Rgg which influence glucosyltransferase expression, and may have implications for Rgg-like regulatory proteins in related bacteria.
Collapse
Affiliation(s)
- M M Vickerman
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Oral Surgery and Hospital Dentistry, School of Dentistry, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - M Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - L J Baker
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
7
|
Wang L, Gralla JD. Roles for the C-terminal region of sigma 54 in transcriptional silencing and DNA binding. J Biol Chem 2001; 276:8979-86. [PMID: 11124262 DOI: 10.1074/jbc.m009587200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twenty-one conserved positively charged and aromatic amino acids between residues 331 and 462 of sigma 54 were changed to alanine, and the mutant proteins were studied by transcription, band shift analysis, and footprinting in vitro. A small segment corresponding to the rpoN box was found to be most important for binding duplex DNA. Two amino acids, 52 residues apart, were found to be critical for maintaining transcriptional silencing in the absence of activator. These two activator bypass mutants and several other mutants failed to bind the type of fork junction DNA thought to be required to maintain silencing. The two bypass mutants showed a binding pattern to DNA probes that was unique, both in comparison to other C-terminal mutants and to previously known N-terminal bypass mutants. On this basis, a model is proposed for the role of the C terminus and the N terminus of sigma 54 in enhancer-dependent transcription.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
8
|
Pitt M, Gallegos MT, Buck M. Single amino acid substitution mutants of Klebsiella pneumoniae sigma(54) defective in transcription. Nucleic Acids Res 2000; 28:4419-27. [PMID: 11071928 PMCID: PMC113868 DOI: 10.1093/nar/28.22.4419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription initiation by the sigma(54) RNA polymerase requires specialised activators and their associated nucleoside triphosphate hydrolysis. To explore the roles of sigma(54) in initiation we used random mutagenesis of rpoN and an in vivo activity screen to isolate functionally altered sigma(54) proteins. Five defective mutants, each with a different single amino acid substitution, were obtained. Three failed in transcription after forming a closed complex. One such mutant mapped to regulatory Region I of sigma(54), the other two to Region III. The Region I mutant allowed transcription independently of activator and showed reduced activator-dependent sigma(54) isomerisation. The two Region III mutants displayed altered behaviour in a sigma(54) isomerisation assay and one failed to stably bind early melted DNA as the holoenzyme; they may contribute to a communication pathway linking changes in sigma to open complex formation. Two further Region III mutants showed gross defects in overall DNA binding. For one, sufficient residual DNA binding activity remained to allow us to demonstrate that other activities were largely unaffected. Changes in DNA binding preferences and core polymerase-dependent properties were evident amongst the mutants.
Collapse
Affiliation(s)
- M Pitt
- Department of Biology, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
9
|
Kelly MT, Ferguson JA, Hoover TR. Transcription initiation-defective forms of sigma(54) that differ in ability To function with a heteroduplex DNA template. J Bacteriol 2000; 182:6503-8. [PMID: 11053397 PMCID: PMC94799 DOI: 10.1128/jb.182.22.6503-6508.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by sigma(54)-RNA polymerase holoenzyme requires an activator that catalyzes isomerization of the closed promoter complex to an open complex. We examined mutant forms of Salmonella enterica serovar Typhimurium sigma(54) that were defective in transcription initiation but retained core RNA polymerase- and promoter-binding activities. Four of the mutant proteins allowed activator-independent transcription from a heteroduplex DNA template. One of these mutant proteins, L124P V148A, had substitutions in a sequence that had not been shown previously to participate in the prevention of activator-independent transcription. The remaining mutants did not allow efficient activator-independent transcription from the heteroduplex DNA template and had substitutions within a conserved 20-amino-acid segment (Leu-179 to Leu-199), suggesting a role for this sequence in transcription initiation.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
10
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Kelly MT, Hoover TR. The amino terminus of Salmonella enterica serovar Typhimurium sigma(54) is required for interactions with an enhancer-binding protein and binding to fork junction DNA. J Bacteriol 2000; 182:513-7. [PMID: 10629201 PMCID: PMC94304 DOI: 10.1128/jb.182.2.513-517.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation by the sigma(54)-RNA polymerase holoenzyme requires an enhancer-binding protein that is thought to contact sigma(54) to activate transcription. To identify potential enhancer-binding protein contact sites in sigma(54), we compared the abilities of wild-type and truncated forms of Salmonella enterica serovar Typhimurium sigma(54) to interact with the enhancer-binding protein DctD in a chemical cross-linking assay. Removal of two regions in the amino-terminal portion of sigma(54), residues 57 to 105 and residues 144 to 179, prevented cross-linking, but removal of either region alone did not. In addition, deletion of 56 amino-terminal residues of sigma(54) (region I) reduced the affinity of the protein for a fork junction DNA probe.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
12
|
Wang L, Guo Y, Gralla JD. Regulation of sigma 54-dependent transcription by core promoter sequences: role of -12 region nucleotides. J Bacteriol 1999; 181:7558-65. [PMID: 10601214 PMCID: PMC94214 DOI: 10.1128/jb.181.24.7558-7565.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetranucleotide core recognition sequence (TTGC) of the sigma 54 promoter -12 recognition element was altered by random substitution. The resulting promoter mutants were characterized in vivo and in vitro. Deregulated promoters were identified, implying that this core element can mediate the response to enhancer-binding proteins. These promoters had in common a substitution at position -12 (consensus C), indicating its importance for keeping basal transcription in check. In another screen, nonfunctional promoters were identified. Their analysis indicated that positions -13 (consensus G) and -15 (consensus T) are important to maintain minimal promoter function. In vitro studies showed that the -13 and -15 positions contribute to closed-complex formation, whereas the -12 position has a stronger effect on recognition of the fork junction intermediate created during open-complex formation. Overall the data indicate that the -12 region core contains specific subsequences that direct the diverse RNA polymerase interactions required both to produce RNA and to restrict this RNA synthesis in the absence of activation.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|