1
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
2
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Dean N, Jones R, DaSilva J, Chionchio G, Ng H. The Mnn10/Anp1-dependent N-linked outer chain glycan is dispensable for Candida albicans cell wall integrity. Genetics 2022; 221:6554200. [PMID: 35333306 PMCID: PMC9071539 DOI: 10.1093/genetics/iyac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans cell wall glycoproteins, and in particular their mannose-rich glycans, are important for maintaining cellular integrity as well as host recognition, adhesion, and immunomodulation. The asparagine (N)-linked mannose outer chain of these glycoproteins is produced by Golgi mannosyltransferases (MTases). The outer chain is composed of a linear backbone of ∼50 α1,6-linked mannoses, which acts as a scaffold for addition of ∼150 or more mannoses in other linkages. Here, we describe the characterization of C. albicans OCH1, MNN9, VAN1, ANP1, MNN10, and MNN11, which encode the conserved Golgi MTases that sequentially catalyze the α1,6 mannose outer chain backbone. Candida albicans och1Δ/Δ, mnn9Δ/Δ, and van1Δ/Δ mutants block the earliest steps of backbone synthesis and like their Saccharomyces cerevisiae counterparts, have severe cell wall and growth phenotypes. Unexpectedly, and in stark contrast to S. cerevisiae, loss of Anp1, Mnn10, or Mnn11, which together synthesize most of the backbone, have no obvious deleterious phenotypes. These mutants were unaffected in cell morphology, growth, drug sensitivities, hyphal formation, and macrophage recognition. Analyses of secreted glycosylation reporters demonstrated that anp1Δ/Δ, mnn10Δ/Δ, and mnn11Δ/Δ strains accumulate glycoproteins with severely truncated N-glycan chains. This hypo-mannosylation did not elicit increased chitin deposition in the cell wall, which in other yeast and fungi is a key compensatory response to cell wall integrity breaches. Thus, C. albicans has evolved an alternate mechanism to adapt to cell wall weakness when N-linked mannan levels are reduced.
Collapse
Affiliation(s)
- Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Corresponding author: Department of Biochemistry and Cell Biology, Life Sciences Bldg Room 310, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Rachel Jones
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Gregory Chionchio
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Henry Ng
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
5
|
Role of Protein Glycosylation in Interactions of Medically Relevant Fungi with the Host. J Fungi (Basel) 2021; 7:jof7100875. [PMID: 34682296 PMCID: PMC8541085 DOI: 10.3390/jof7100875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023] Open
Abstract
Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host–immune interaction in medically relevant fungal species.
Collapse
|
6
|
Ohashi T, Tanaka T, Tanaka N, Takegawa K. SpMnn9p and SpAnp1p form a protein complex involved in mannan synthesis in the fission yeast Schizosaccharomyces pombe. J Biosci Bioeng 2020; 130:335-340. [DOI: 10.1016/j.jbiosc.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
|
7
|
Khoury ZH, Vila T, Puthran TR, Sultan AS, Montelongo-Jauregui D, Melo MAS, Jabra-Rizk MA. The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Front Microbiol 2020; 11:307. [PMID: 32256460 PMCID: PMC7093027 DOI: 10.3389/fmicb.2020.00307] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
The oral cavity is a complex environment harboring diverse microbial species that often co-exist within biofilms formed on oral surfaces. Within a biofilm, inter-species interactions can be synergistic in that the presence of one organism generates a niche for another enhancing colonization. Among these species are the opportunistic fungal pathogen Candida albicans and the bacterial species Streptococcus mutans, the etiologic agents of oral candidiasis and dental caries, respectively. Recent studies have reported enhanced prevalence of C. albicans in children with caries indicating potential clinical implications for this fungal-bacterial interaction. In this study, we aimed to specifically elucidate the role of C. albicans-derived polysaccharide biofilm matrix components in augmenting S. mutans colonization and mixed biofilm formation. Comparative evaluations of single and mixed species biofilms demonstrated significantly enhanced S. mutans retention in mixed biofilms with C. albicans. Further, S. mutans single species biofilms were enhanced upon exogenous supplementation with purified matrix material derived from C. albicans biofilms. Similarly, growth in C. albicans cell-free spent biofilm culture media enhanced S. mutans single species biofilm formation, however, the observed increase in S. mutans biofilms was significantly affected upon enzymatic digestion of polysaccharides in spent media, identifying C. albicans secreted polysaccharides as a key factor in mediating mixed biofilm formation. The enhanced S. mutans biofilms mediated by the various C. albicans effectors was also demonstrated using confocal laser scanning microscopy. Importantly, a clinically relevant mouse model of oral co-infection was adapted to demonstrate the C. albicans-mediated enhanced S. mutans colonization in a host. Analyses of harvested tissue and scanning electron microscopy demonstrated significantly higher S. mutans retention on teeth and tongues of co-infected mice compared to mice infected only with S. mutans. Collectively, the findings from this study strongly indicate that the secretion of polysacharides from C. albicans in the oral environment may impact the development of S. mutans biofilms, ultimately increasing dental caries and, therefore, Candida oral colonization should be considered as a factor in evaluating the risk of caries.
Collapse
Affiliation(s)
- Zaid H Khoury
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Taissa Vila
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Taanya R Puthran
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Mary Anne S Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio 2019; 10:mBio.01179-19. [PMID: 31213561 PMCID: PMC6581863 DOI: 10.1128/mbio.01179-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms. Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.
Collapse
|
9
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
10
|
Henry C, Fontaine T, Heddergott C, Robinet P, Aimanianda V, Beau R, Beauvais A, Mouyna I, Prevost MC, Fekkar A, Zhao Y, Perlin D, Latgé JP. Biosynthesis of cell wall mannan in the conidium and the mycelium ofAspergillusfumigatus. Cell Microbiol 2016; 18:1881-1891. [DOI: 10.1111/cmi.12665] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Henry
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | - Thierry Fontaine
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | | | - Pauline Robinet
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | | | - Remi Beau
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | - Anne Beauvais
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | - Isabelle Mouyna
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| | | | - Arnaud Fekkar
- Service de Parasitologie Mycologie; Hôpital de La Pitié-Salpêtrière; Paris France
| | - Yanan Zhao
- Public Health Research Institute, New Jersey Medical School, Rutgers; The State University of New Jersey; Newark New Jersey USA
| | - David Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers; The State University of New Jersey; Newark New Jersey USA
| | - Jean-Paul Latgé
- Département de Mycologie; Unité des Aspergillus; Paris Cedex France
| |
Collapse
|
11
|
Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix. mBio 2016; 7:mBio.01365-16. [PMID: 27729510 PMCID: PMC5061872 DOI: 10.1128/mbio.01365-16] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. The fungus Candida albicans and the bacterium Staphylococcus aureus are important microbial pathogens responsible for the majority of infections in hospitalized patients and are often coisolated from a host. In this study, we demonstrated that when grown together, the fungus provides the bacterium with enhanced tolerance to antimicrobial drugs. This process was mediated by polysaccharides secreted by the fungal cell into the environment. The biofilm matrix formed by these polysaccharides prevented penetration by the drugs and provided the bacteria with protection. Importantly, we show that by inhibiting the production of the fungal polysaccharides, a specific antifungal agent indirectly sensitized the bacteria to antimicrobials. Understanding the therapeutic implications of the interactions between these two diverse microbial species will aid in overcoming the limitations of current therapies and in defining new targets for treating complex polymicrobial infections.
Collapse
|
12
|
Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. PLoS Pathog 2016; 12:e1005617. [PMID: 27144456 PMCID: PMC4856274 DOI: 10.1371/journal.ppat.1005617] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. Mannan plays a crucial role in cell wall structure and virulence of the opportunistic pathogen Candida albicans. Both the invasive ability of the pathogen and the host defense against the pathogen contribute to the outcome of invasive infection. In the present study, we identified a novel α-1,6-mannosyltransferase, which was responsible for cell wall α-1,6-mannose backbone extension in C. albicans. We determined that α-1,6-mannose backbone is necessary for the pathogenesis of C. albicans due to its ability to shield β-(1,3)-glucan from the host Dectin-1 recognition and Th1/Th7 response. Our study highlights a novel strategy to enhance the host immune response towards C. albicans.
Collapse
|
13
|
Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532:64-8. [PMID: 27027296 PMCID: PMC4851236 DOI: 10.1038/nature17625] [Citation(s) in RCA: 614] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/26/2016] [Indexed: 01/23/2023]
Abstract
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Collapse
|
14
|
Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. EUKARYOTIC CELL 2015; 14:1165-72. [PMID: 26453650 PMCID: PMC4664879 DOI: 10.1128/ec.00142-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.
Collapse
|
15
|
Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans. Int J Microbiol 2014; 2014:267497. [PMID: 25104959 PMCID: PMC4106090 DOI: 10.1155/2014/267497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection.
Collapse
|
16
|
Hall RA, Gow NAR. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol 2013; 90:1147-61. [PMID: 24125554 PMCID: PMC4112839 DOI: 10.1111/mmi.12426] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
Abstract
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.
Collapse
Affiliation(s)
- Rebecca A Hall
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Aberdeen, AB252ZD, UK
| | | |
Collapse
|
17
|
Striebeck A, Robinson DA, Schüttelkopf AW, van Aalten DMF. Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. Open Biol 2013; 3:130022. [PMID: 24026536 PMCID: PMC3787745 DOI: 10.1098/rsob.130022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fungal cell possesses an essential carbohydrate cell wall. The outer layer, mannan, is formed by mannoproteins carrying highly mannosylated O- and N-linked glycans. Yeast mannan biosynthesis is initiated by a Golgi-located complex (M-Pol I) of two GT-62 mannosyltransferases, Mnn9p and Van1p, that are conserved in fungal pathogens. Saccharomyces cerevisiae and Candida albicans mnn9 knockouts show an aberrant cell wall and increased antibiotic sensitivity, suggesting the enzyme is a potential drug target. Here, we present the structure of ScMnn9 in complex with GDP and Mn2+, defining the fold and catalytic machinery of the GT-62 family. Compared with distantly related GT-78/GT-15 enzymes, ScMnn9 carries an unusual extension. Using a novel enzyme assay and site-directed mutagenesis, we identify conserved amino acids essential for ScMnn9 ‘priming’ α-1,6-mannosyltransferase activity. Strikingly, both the presence of the ScMnn9 protein and its product, but not ScMnn9 catalytic activity, are required to activate subsequent ScVan1 processive α-1,6-mannosyltransferase activity in the M-Pol I complex. These results reveal the molecular basis of mannan synthesis and will aid development of inhibitors targeting this process.
Collapse
Affiliation(s)
- Alexander Striebeck
- Division of Molecular Microbiology, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
18
|
Bates S, Hall RA, Cheetham J, Netea MG, MacCallum DM, Brown AJP, Odds FC, Gow NAR. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Res Notes 2013; 6:294. [PMID: 23886038 PMCID: PMC3750861 DOI: 10.1186/1756-0500-6-294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
Background The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance of mannan in the host-pathogen interaction, immune recognition and virulence. Here we report the first analysis of the MNN1 gene family, which contains six members predicted to act as α-1,3 mannosyltransferases in the terminal stages of glycosylation. Findings We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitro and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model. Conclusion Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence.
Collapse
Affiliation(s)
- Steven Bates
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hall RA, Bates S, Lenardon MD, MacCallum DM, Wagener J, Lowman DW, Kruppa MD, Williams DL, Odds FC, Brown AJP, Gow NAR. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog 2013; 9:e1003276. [PMID: 23633946 PMCID: PMC3636026 DOI: 10.1371/journal.ppat.1003276] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Steven Bates
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Megan D. Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Jeanette Wagener
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Douglas W. Lowman
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- AppRidge International, LLC, Telford, Tennessee, United States of America
| | - Michael D. Kruppa
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - David L. Williams
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Frank C. Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
20
|
Shahana S, Mora-Montes HM, Castillo L, Bohovych I, Sheth CC, Odds FC, Gow NAR, Brown AJP. Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genet Biol 2013; 56:107-15. [PMID: 23608318 PMCID: PMC3705205 DOI: 10.1016/j.fgb.2013.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 11/27/2022]
Abstract
Reporters for dissection of N-glycosylation in Candida albicans. Detection of glycosylation at the single site on epitope-tagged reporter. Reporter faithfully reflects glycosylation defects in cell wall mutants.
A large proportion of Candida albicans cell surface proteins are decorated post-translationally by glycosylation. Indeed N-glycosylation is critical for cell wall biogenesis in this major fungal pathogen and for its interactions with host cells. A detailed understanding of N-glycosylation will yield deeper insights into host-pathogen interactions. However, the analysis of N-glycosylation is extremely challenging because of the complexity and heterogeneity of these structures. Therefore, in an attempt to reduce this complexity and facilitate the analysis of N-glycosylation, we have developed new synthetic C. albicans reporters that carry a single N-linked glycosylation site derived from Saccharomyces cerevisiae Suc2. These glycosylation reporters, which carry C. albicans Hex1 or Sap2 signal sequences plus carboxy-terminal FLAG3 and His6 tags, were expressed in C. albicans from the ACT1 promoter. The reporter proteins were successfully secreted and hyperglycosylated by C. albicans cells, and their outer chain glycosylation was dependent on Och1 and Pmr1, which are required for N-mannan synthesis, but not on Mnt1 and Mnt2 which are only required for O-mannosylation. These reporters are useful tools for the experimental dissection of N-glycosylation and other related processes in C. albicans, such as secretion.
Collapse
Affiliation(s)
- Shahida Shahana
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. EUKARYOTIC CELL 2012; 12:254-64. [PMID: 23243062 DOI: 10.1128/ec.00278-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human fungal pathogen Candida albicans can grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress. Quantitative mass spectrometry of the wall proteome using (15)N metabolically labeled wall proteins as internal standards revealed that at 42°C the levels of the β-glucan transglycosylases Phr1 and Phr2, the predicted chitin transglycosylases Crh11 and Utr2, and the wall maintenance protein Ecm33 increased. Consistent with our previous results for fluconazole stress, this suggests that a wall-remodeling response is mounted to relieve wall stress. Thermal stress as well as different wall and membrane stressors led to an increased phosphorylation of the mitogen-activated protein (MAP) kinase Mkc1, suggesting activation of the cell wall integrity (CWI) pathway. Furthermore, all wall and membrane stresses tested resulted in diminished cell separation. This was accompanied by decreased secretion of the major chitinase Cht3 and the endoglucanase Eng1 into the medium. Consistent with this, cht3 cells showed a similar phenotype. When treated with exogenous chitinase, cell clusters both from stressed cells and mutant strains were dispersed, underlining the importance of Cht3 for cell separation. We propose that surface stresses lead to a conserved cell wall remodeling response that is mainly governed by Mkc1 and is characterized by chitin reinforcement of the wall and the expression of remedial wall remodeling enzymes.
Collapse
|
22
|
Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 2011; 79:4902-11. [PMID: 21930756 DOI: 10.1128/iai.05591-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral epithelial cells discriminate between the yeast and hyphal forms of Candida albicans via the mitogen-activated protein kinase (MAPK) signaling pathway. This occurs through phosphorylation of the MAPK phosphatase MKP1 and activation of the c-Fos transcription factor by the hyphal form. Given that fungal cell wall polysaccharides are critical in host recognition and immune activation in myeloid cells, we sought to determine whether β-glucan and N- or O-glycosylation was important in activating the MAPK/MKP1/c-Fos hypha-mediated response mechanism and proinflammatory cytokines in oral epithelial cells. Using a series of β-glucan and N- and O-mannan mutants, we found that N-mannosylation (via Δoch1 and Δpmr1 mutants) and O-mannosylation (via Δpmt1 and Δmnt1 Δmnt2 mutants), but not phosphomannan (via a Δmnn4 mutant) or β-1,2 mannosylation (via Δbmt1 to Δbmt6 mutants), were required for MKP1/c-Fos activation, proinflammatory cytokine production, and cell damage induction. However, the N- and O-mannan mutants showed reduced adhesion or lack of initial hypha formation at 2 h, resulting in little MKP1/c-Fos activation, or restricted hypha formation/pseudohyphal formation at 24 h, resulting in minimal proinflammatory cytokine production and cell damage. Further, the α-1,6-mannose backbone of the N-linked outer chain (corresponding to a Δmnn9 mutant) may be required for epithelial adhesion, while the α-1,2-mannose component of phospholipomannan (corresponding to a Δmit1 mutant) may contribute to epithelial cell damage. β-Glucan appeared to play no role in adhesion, epithelial activation, or cell damage. In summary, N- and O-mannosylation defects affect the ability of C. albicans to induce proinflammatory cytokines and damage in oral epithelial cells, but this may be due to indirect effects on fungal pathogenicity rather than mannose residues being direct activators of the MAPK/MKP1/c-Fos hypha-mediated immune response.
Collapse
|
23
|
Ernst JF, Pla J. Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 2011; 301:378-83. [PMID: 21555242 DOI: 10.1016/j.ijmm.2011.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In fungi, the cell wall is a scaffold, an armor and an environmental gate. Sugar polymers including protein-O- or N-linked glycosyl chains or polysaccharides such as glucan or chitin are essential components to maintain cell wall functions. We describe mechanisms in the human fungal pathogen Candida albicans, by which the integrity of glycostructures are sensed and regulated. The results stress the importance of membrane sensors and MAP kinase pathways in the maintenance of cell wall structure and function.
Collapse
Affiliation(s)
- Joachim F Ernst
- Institut für Mikrobiologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1/26.12, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
24
|
Mora-Montes HM, Bates S, Netea MG, Castillo L, Brand A, Buurman ET, Díaz-Jiménez DF, Jan Kullberg B, Brown AJP, Odds FC, Gow NAR. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J Biol Chem 2010; 285:12087-95. [PMID: 20164191 PMCID: PMC2852947 DOI: 10.1074/jbc.m109.081513] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida albicans MNT1/KRE2 mannosyl transferase family is represented by five members. We showed previously that Mnt1 and Mnt2 are involved in O-linked mannosylation and are required for virulence. Here, the role of C. albicans MNT3, MNT4, and MNT5 was determined by generating single and multiple MnTDelta null mutants and by functional complementation experiments in Saccharomyces cerevisiae. CaMnt3, CaMnt4, and CaMnt5 did not participate in O-linked mannosylation, but CaMnt3 and CaMnt5 had redundant activities in phosphomannosylation and were responsible for attachment of approximately half of the phosphomannan attached to N-linked mannans. CaMnt4 and CaMnt5 participated in N-mannan branching. Deletion of CaMNT3, CaMNT4, and CaMNT5 affected the growth rate and virulence of C. albicans, affected the recognition of the yeast by human monocytes and cytokine stimulation, and led to increased cell wall chitin content and exposure of beta-glucan at the cell wall surface. Therefore, the MNT1/KRE2 gene family participates in three types of protein mannosylation in C. albicans, and these modifications play vital roles in fungal cell wall structure and cell surface recognition by the innate immune system.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NA, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2010; 4:1167-83. [PMID: 19895219 DOI: 10.2217/fmb.09.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candidiasis is a significant cause of invasive human mycosis with associated mortality rates that are equivalent to, or worse than, those cited for most cases of bacterial septicemia. As a result, considerable efforts are being made to understand how the fungus invades host cells and to identify new targets for fungal chemotherapy. This has led to an increasing interest in Candida glycobiology, with an emphasis on the identification of enzymes essential for glycoprotein and adhesion metabolism, and the role of N- and O-linked glycans in host recognition and virulence. Here, we refer to studies dealing with the identification and characterization of enzymes such as dolichol phosphate mannose synthase, dolichol phosphate glucose synthase and processing glycosidases and synthesis, structure and recognition of mannans and discuss recent findings in the context of Candida albicans pathogenesis.
Collapse
|
26
|
Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN. Conserved processes and lineage-specific proteins in fungal cell wall evolution. EUKARYOTIC CELL 2007; 6:2269-77. [PMID: 17951517 PMCID: PMC2168262 DOI: 10.1128/ec.00044-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 10/03/2007] [Indexed: 11/20/2022]
Abstract
The cell wall is a defining organelle that differentiates fungi from its sister clades in the opisthokont superkingdom. With a sensitive technique to align low-complexity protein sequences, we have identified 187 cell wall-related proteins in Saccharomyces cerevisiae and determined the presence or absence of homologs in 17 other fungal genomes. There were both conserved and lineage-specific cell wall proteins, and the degree of conservation was strongly correlated with protein function. Some functional classes were poorly conserved and lineage specific: adhesins, structural wall glycoprotein components, and unannotated open reading frames. These proteins are primarily those that are constituents of the walls themselves. On the other hand, glycosyl hydrolases and transferases, proteases, lipases, proteins in the glycosyl phosphatidyl-inositol-protein synthesis pathway, and chaperones were strongly conserved. Many of these proteins are also conserved in other eukaryotes and are associated with wall synthesis in plants. This gene conservation, along with known similarities in wall architecture, implies that the basic architecture of fungal walls is ancestral to the divergence of the ascomycetes and basidiomycetes. The contrasting lineage specificity of wall resident proteins implies diversification. Therefore, fungal cell walls consist of rapidly diversifying proteins that are assembled by the products of an ancestral and conserved set of genes.
Collapse
Affiliation(s)
- Juan E Coronado
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
27
|
Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. EUKARYOTIC CELL 2007; 6:2184-93. [PMID: 17933909 PMCID: PMC2168260 DOI: 10.1128/ec.00350-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) N-glycan is processed by alpha-glucosidases I and II and alpha1,2-mannosidase to generate Man(8)GlcNAc(2). This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. In Saccharomyces cerevisiae, CWH41, ROT2, and MNS1 encode for alpha-glucosidase I, alpha-glucosidase II catalytic subunit, and alpha1,2-mannosidase, respectively. We disrupted the C. albicans CWH41, ROT2, and MNS1 homologs to determine the importance of N-oligosaccharide processing on the N-glycan outer-chain elongation and the host-fungus interaction. Yeast cells of Cacwh41Delta, Carot2Delta, and Camns1Delta null mutants tended to aggregate, displayed reduced growth rates, had a lower content of cell wall phosphomannan and other changes in cell wall composition, underglycosylated beta-N-acetylhexosaminidase, and had a constitutively activated PKC-Mkc1 cell wall integrity pathway. They were also attenuated in virulence in a murine model of systemic infection and stimulated an altered pro- and anti-inflammatory cytokine profile from human monocytes. Therefore, N-oligosaccharide processing by ER glycosidases is required for cell wall integrity and for host-fungus interactions.
Collapse
|
28
|
Bai C, Xu XL, Chan FY, Lee RTH, Wang Y. MNN5 encodes an iron-regulated alpha-1,2-mannosyltransferase important for protein glycosylation, cell wall integrity, morphogenesis, and virulence in Candida albicans. EUKARYOTIC CELL 2006; 5:238-47. [PMID: 16467465 PMCID: PMC1405895 DOI: 10.1128/ec.5.2.238-247.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell walls of microbial pathogens mediate physical interactions with host cells and hence play a key role in infection. Mannosyltransferases have been shown to determine the cell wall properties and virulence of the pathogenic fungus Candida albicans. We previously identified a C. albicans alpha-1,2-mannosyltransferase, Mnn5, for its novel ability to enhance iron usage in Saccharomyces cerevisiae. Here we have studied the enzymatic properties of purified Mnn5 and characterized its function in its natural host. Mnn5 catalyzes the transfer of mannose to both alpha-1,2- and alpha-1,6-mannobiose, and this activity requires Mn2+ as a cofactor and is regulated by the Fe2+ concentration. An mnn5Delta mutant showed a lowered ability to extend O-linked, and possibly also N-linked, mannans, hypersensitivity to cell wall-damaging agents, and a reduction of cell wall mannosylphosphate content, phenotypes typical of many fungal mannosyltransferase mutants. The mnn5Delta mutant also exhibited some unique defects, such as impaired hyphal growth on solid media and attenuated virulence in mice. An unanticipated phenotype was the mnn5Delta mutant's resistance to killing by the iron-chelating protein lactoferrin, rendering it the first protein found that mediates lactoferrin killing of C. albicans. In summary, MNN5 deletion impairs a wide range of cellular events, most likely due to its broad substrate specificity. Of particular interest was the observed role of iron in regulating the enzymatic activity, suggesting an underlying relationship between Mnn5 activity and cellular iron homeostasis.
Collapse
Affiliation(s)
- Chen Bai
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
29
|
Abstract
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
30
|
Singleton DR, Masuoka J, Hazen KC. Surface hydrophobicity changes of two Candida albicans serotype B mnn4delta mutants. EUKARYOTIC CELL 2005; 4:639-48. [PMID: 15821124 PMCID: PMC1087808 DOI: 10.1128/ec.4.4.639-648.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of beta-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a beta-1,2-mannose acid-labile moiety, but only serotype A strains contain additional beta-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4delta-deficient derivative has no detectable phosphate-linked beta-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4delta mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.
Collapse
Affiliation(s)
- David R Singleton
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908-0904, USA.
| | | | | |
Collapse
|
31
|
Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJP, Odds FC, Gow NAR. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 2005; 280:23408-15. [PMID: 15843378 DOI: 10.1074/jbc.m502162200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell surface of Candida albicans is the immediate point of contact with the host. The outer layer of the cell wall is enriched in highly glycosylated mannoproteins that are implicated in many aspects of the host-fungus interaction. Glycosylation of cell wall proteins is initiated in the endoplasmic reticulum and then elaborated in the Golgi as the protein passes through the secretory pathway. Golgi-bound mannosyltransferases require Mn(2+) as an essential cofactor. In Saccharomyces cerevisiae, the P-type ATPase Pmr1p transports Ca(2+) and Mn(2+) ions into the Golgi. To determine the effect of a gross defect in glycosylation on host-fungus interactions of C. albicans, we disrupted the PMR1 homolog, CaPMR1. This mutation would simultaneously inhibit many Golgi-located, Mn(2+)-dependent mannosyltransferases. The Capmr1Delta null mutant was viable in vitro and had no growth defect even on media containing low Ca(2+)/Mn(2+) ion concentrations. However, cells grown in these media progressively lost viability upon entering stationary phase. Phosphomannan was almost completely absent, and O-mannan was severely truncated in the null mutant. A defect in N-linked outer chain glycosylation was also apparent, demonstrated by the underglycosylation of surface acid phosphatase. Consistent with the glycosylation defect, the null mutant had a weakened cell wall, exemplified by hypersensitivity to Calcofluor white, Congo red, and hygromycin B and constitutive activation of the cell integrity pathway. In a murine model of systemic infection, the null mutant was severely attenuated in virulence. These results demonstrate the importance of glycosylation for cell wall structure and virulence of C. albicans.
Collapse
Affiliation(s)
- Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wills EA, Redinbo MR, Perfect JR, Poeta MD. New potential targets for antifungal development. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.3.265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Galán A, Casanova M, Murgui A, MacCallum DM, Odds FC, Gow NAR, Martínez JP. The Candida albicans pH-regulated KER1 gene encodes a lysine/glutamic-acid-rich plasma-membrane protein that is involved in cell aggregation. Microbiology (Reading) 2004; 150:2641-2651. [PMID: 15289560 DOI: 10.1099/mic.0.26339-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoscreening of aCandida albicanscDNA library with a polyclonal germ-tube-specific antibody (pAb anti-gt) resulted in the isolation of a gene encoding a lysine/glutamic-acid-rich protein, which was consequently designatedKER1. The nucleotide and deduced amino acid sequences of this gene displayed no significant homology with any other known sequence.KER1encodes a 134 kDa lysine (14·5 %)/glutamic acid (16·7 %) protein (Ker1p) that contains two potential transmembrane segments.KER1was expressed in a pH-conditional manner, with maximal expression at alkaline pH and lower expression at pH 4·0, and was regulated byRIM101. A Δker1/Δker1null mutant grew normally but was hyperflocculant under germ-tube-inducing conditions, yet this behaviour was also observed in stationary-phase cells grown under other incubation conditions. Western blotting analysis of different subcellular fractions, using as a probe a monospecific polyclonal antibody raised against a highly antigenic domain of Ker1p (pAb anti-Ker1p), revealed the presence of a 134 kDa band in the purified plasma-membrane fraction from the wild-type strain that was absent in the homologous preparation from Δker1/Δker1mutant. The pattern of cell-wall protein and mannoprotein species released by digestion withβ-glucanases, reactive towards pAbs anti-gt and anti-Ker1p, as well as against concanavalin A, was also different in the Δker1/Δker1mutant. Mutant strains also displayed an increased cell-surface hydrophobicity and sensitivity to Congo red and Calcofluor white. Overall, these findings indicate that the mutant strain was affected in cell-wall composition and/or structure. The fact that theker1mutant had attenuated virulence in systemic mouse infections suggests that this surface protein is also important in host–fungus interactions.
Collapse
Affiliation(s)
- Amparo Galán
- Departamento de Microbiologia y Ecologia, Facultad de Farmacia, Universitat de València, Spain
| | - Manuel Casanova
- Departamento de Microbiologia y Ecologia, Facultad de Farmacia, Universitat de València, Spain
| | - Amelia Murgui
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Spain
| | - Donna M MacCallum
- Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Frank C Odds
- Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A R Gow
- Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - José P Martínez
- Departamento de Microbiologia y Ecologia, Facultad de Farmacia, Universitat de València, Spain
| |
Collapse
|
34
|
Barnay-Verdier S, Boisramé A, Beckerich JM. Identification and characterization of two α-1,6-mannosyltransferases, Anl1p and Och1p, in the yeast Yarrowia lipolytica. Microbiology (Reading) 2004; 150:2185-2195. [PMID: 15256561 DOI: 10.1099/mic.0.26887-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the identification and characterization of theYarrowia lipolyticahomologues ofSaccharomyces cerevisiaeα-1,6-mannosyltransferases Anp1p and Och1p, designated YlAnl1p and YlOch1p, are described. In order to confirm the function of theY. lipolyticaproteins, including the previously isolated YlMnn9p, in theN-glycosylation pathway, a phenotypic analysis of the disrupted strains ΔYlmnn9, ΔYlanl1, ΔYloch1, ΔYlanl1ΔYlmnn9and ΔYlmnn9ΔYloch1was performed. Disruption of theYlMNN9,YlANL1andYlOCH1genes caused an increased sensitivity to SDS, compatible with a glycosylation defect, and to Calcofluor White, characteristic of cell-wall defects. Moreover, Western-blot analysis of a heterologous glycosylated protein confirmed a direct role of YlMnn9p and YlAnl1p in theN-glycosylation process. These mutant strains, ΔYlmnn9, ΔYlanl1, ΔYloch1, ΔYlanl1ΔYlmnn9and ΔYlmnn9ΔYloch1may thus be used to establish a model for theY. lipolyticaN-linked glycosylation pathway.
Collapse
Affiliation(s)
- Stéphanie Barnay-Verdier
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS-Institut National Agronomique Paris-Grignon-INRA, 78850 Thiverval-Grignon, France
| | - Anita Boisramé
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS-Institut National Agronomique Paris-Grignon-INRA, 78850 Thiverval-Grignon, France
| | - Jean-Marie Beckerich
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS-Institut National Agronomique Paris-Grignon-INRA, 78850 Thiverval-Grignon, France
| |
Collapse
|
35
|
Kruppa M, Jabra-Rizk MA, Meiller TF, Calderone R. The histidine kinases of Candida albicans: regulation of cell wall mannan biosynthesis. FEMS Yeast Res 2004; 4:409-16. [PMID: 14734021 DOI: 10.1016/s1567-1356(03)00201-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previously, we have used both biochemical and immunological approaches to determine that the two-component, histidine kinase Chk1p regulates cell wall biosynthesis in Candida albicans. These data were obtained by comparing wild-type cells to a strain of C. albicans deleted in CHK1. The dysregulation of cell wall biosynthesis in the mutant reduces its adherence to human esophageal tissue and results in avirulence. In the current study, we used transmission immune electron microscopy (IEM) to visualize the cell surface of both wild-type (CAF2) and the chk1 mutant (CHK21). IEM was performed using two IgM monoclonal antibodies to either an acid-stable mannan epitope (Mab B6) or to an acid-labile mannan epitope (Mab B6.1). We observed that the cell surface of the CHK21 mutant was more reactive than wild-type cells with Mab B6, while the reactivity of Mab B6.1 was similar for both CAF2 and CHK21. These observations correlate with previous data on the Western blotting of mutant and wild-type cells using the same monoclonal antibodies, i.e., greater activity with Mab B6 than with Mab B6.1. In addition to CHK1, two other histidine kinases (SLN1 and NIK1) have been described in C. albicans. Mutants in both sln1Delta and nik1Delta were compared by Western blotting using Mab B6 and Mab B6.1. Reactivity of each mutant to Mab B6 was similar to that observed with the chk1 mutant; on the other hand, the mannoprotein profiles obtained with Mab B6.1 in all mutants were similar to wild-type cells. We also compared the expression of 29 genes involved in mannan synthesis by reverse transcription-polymerase chain reaction (RT-PCR) and found that expression of a subset of six genes (ALG2, ALG6, ALG8, MNT3, PMT6, KRT2) was upregulated in all histidine kinase mutants, while increased expression of ALG7 was only observed in the sln1 and nik1 mutants, MNN1 was upregulated in the chk1 and nik1 mutants, and MNN4 was upregulated in the nik1Delta. Our data indicate that each of the C. albicans HK proteins may regulate similar functions in cell wall biosynthesis. This activity could be achieved in either a common or parallel, redundant signal transduction pathway(s).
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
36
|
Kruppa M, Goins T, Cutler JE, Lowman D, Williams D, Chauhan N, Menon V, Singh P, Li D, Calderone R. The role of the Candida albicans histidine kinase [CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 2003; 3:289-99. [PMID: 12689636 DOI: 10.1111/j.1567-1364.2003.tb00170.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a gene-reconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acid-stable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of beta-eliminated (O-linked), acid-hydrolyzed (acid-labile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the beta-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jaafar L, León M, Zueco J. Isolation of the MNN9 gene of Yarrowia lipolytica (YlMNN9) and phenotype analysis of a mutant ylmnn9 Delta strain. Yeast 2003; 20:633-44. [PMID: 12734801 DOI: 10.1002/yea.990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this work we describe the isolation of the Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN9 gene, which we have named YlMNN9, and the phenotype analysis of a Y. lipolytica strain containing the disrupted YlMNN9 allele. YlMNN9 was cloned using degenerate consensus oligonucleotides to generate specific probes that were in turn used to screen mini-gene libraries. The gene is defined by a 1014 bp ORF predicted to encode a protein 337 amino acids long that shares significant homology with the Mnn9ps of S. cerevisiae, Candida albicans and Hansenula polymorpha, including a putative N-terminal transmembrane domain. Disruption of YlMNN9 leads to phenotypes such as resistance to sodium orthovanadate and sensitivity to hygromycin B, compatible with a glycosylation defect, and hypersensitivity to Calcofluor white, Congo red or zymolyase, characteristic of cell wall defects. Analysis of cell wall proteins present in beta-mercaptoethanol and zymolyase extracts showed significant differences between the parental and the ylmnn9 Delta strain. These results suggest that, as has been the case with the mnn9 strain of S. cerevisiae, the ylmnn9 Delta strain we present in this work, could be used to study the cell wall proteins of Y. lipolytica and how they are organized into the cell wall.
Collapse
Affiliation(s)
- Lahcen Jaafar
- Unidad de Microbiología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andres Estelles s/n, 46100-Burjassot, Valencia, Spain
| | | | | |
Collapse
|
38
|
Stolz J, Munro S. The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 2002; 277:44801-8. [PMID: 12235155 DOI: 10.1074/jbc.m208023200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae processes N-linked glycans in the Golgi apparatus in two different ways. Whereas most of the proteins of internal membranes receive a simple core-type structure, a long branched polymer termed mannan is attached to the glycans of many of the proteins destined for the cell wall. The first step in mannan synthesis is the initiation and extension of an alpha-1,6-linked polymannose backbone. This requires the sequential action of two enzyme complexes, mannan polymerases (M-Pol) I and II. M-Pol I contains the proteins Mnn9p and Van1p, although the stoichiometry and individual contributions to enzyme action are unclear. We report here that the two proteins are each present as a single copy in the complex. Both proteins contain a DXD motif found in the active site of many glycosyltransferases, and mutations in this motif in Mnn9p or Van1p reveal that both proteins contribute to mannose polymerization. However, the effects of these mutations on both the in vivo and in vitro activity are distinct, suggesting that the two proteins may have different roles in the complex. Finally, we show that a simple glycoprotein based on hen egg lysozyme can be used as a substrate for modification by purified M-Pol I in vitro.
Collapse
Affiliation(s)
- Jurgen Stolz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
39
|
Monteoliva L, Matas ML, Gil C, Nombela C, Pla J. Large-scale identification of putative exported proteins in Candida albicans by genetic selection. EUKARYOTIC CELL 2002; 1:514-25. [PMID: 12456000 PMCID: PMC117995 DOI: 10.1128/ec.1.4.514-525.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- L Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C. The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. EUKARYOTIC CELL 2002; 1:420-31. [PMID: 12455990 PMCID: PMC118022 DOI: 10.1128/ec.1.3.420-431.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by beta-1,3-glucanases. Our results show that the C. albicans organism contains beta-mannose at their nonreducing end, differing from S. cerevisiae, which has only alpha-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.
Collapse
Affiliation(s)
- Ana B Herrero
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
41
|
Nishikawa A, Poster JB, Jigami Y, Dean N. Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol 2002; 184:29-42. [PMID: 11741841 PMCID: PMC134776 DOI: 10.1128/jb.184.1.29-42.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Accepted: 09/25/2001] [Indexed: 12/31/2022] Open
Abstract
Cell surface mannan is implicated in almost every aspect of pathogenicity of Candida albicans. In Saccharomyces cerevisiae, the Vrg4 protein acts as a master regulator of mannan synthesis through its role in substrate provision. The substrate for mannosylation of proteins and lipids in the Golgi apparatus is GDP-mannose, whose lumenal transport is catalyzed by Vrg4p. This nucleotide sugar is synthesized in the cytoplasm by pathways that are highly conserved in all eukaryotes, but its lumenal transport (and hence Golgi apparatus-specific mannosylation) is a fungus-specific process. To begin to study the role of Golgi mannosylation in C. albicans, we isolated the CaVRG4 gene and analyzed the effects of loss of its function. CaVRG4 encodes a functional homologue of the S. cerevisiae GDP-mannose transporter. CaVrg4p localized to punctate spots within the cytoplasm of C. albicans in a pattern reminiscent of localization of Vrg4p in the Golgi apparatus in S. cerevisiae. Like partial loss of ScVRG4 function, partial loss of CaVRG4 function resulted in mannosylation defects, which in turn led to a number of cell wall-associated phenotypes. While heterozygotes displayed no growth phenotypes, a hemizygous strain, containing a single copy of CaVRG4 under control of the methionine-repressible MET3 promoter, did not grow in the presence of methionine and cysteine, demonstrating that CaVRG4 is essential for viability. Mutant Candida vrg4 strains were defective in hyphal formation but exhibited a constitutive polarized mode of pseudohyphal growth. Because the VRG4 gene is essential for yeast viability but does not have a mammalian homologue, it is a particularly attractive target for development of antifungal therapies.
Collapse
Affiliation(s)
- Akiko Nishikawa
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
42
|
Navarro-García F, Sánchez M, Nombela C, Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001; 25:245-68. [PMID: 11250036 DOI: 10.1111/j.1574-6976.2001.tb00577.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In recent years, the incidence of fungal infections has been rising all over the world. Although the amount of research in the field of pathogenic fungi has also increased, there is still a need for the identification of reliable determinants of virulence. In this review, we focus on identified Candida albicans genes whose deletant strains have been tested in experimental virulence assays. We discuss the putative relationship of these genes to virulence and also outline the use of new different systems to examine the precise effect in virulence of different genes.
Collapse
Affiliation(s)
- F Navarro-García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Kim SY, Sohn JH, Kang HA, Yoo SK, Pyun YR, Choi ES. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae MNN9 gene. Yeast 2001; 18:455-61. [PMID: 11255253 DOI: 10.1002/yea.699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene homologous to Saccharomyces cerevisiae MNN9 has been cloned and characterized in the methylotrophic yeast Hansenula polymorpha. This gene was cloned from a H. polymorpha genomic DNA library using the S. cerevisiae MNN9 gene as a probe. The H. polymorpha MNN9 homologue (HpMNN9) contained a 1062 bp open reading frame encoding a predicted protein of 354 amino acids. The deduced amino acid sequence showed 58% and 51% identity, respectively, with the S. cerevisiae and Candida albicans Mnn9 proteins. Disruption of HpMNN9 leads to phenotypic effects suggestive of cell wall defects, including detergent sensitivity and hygromycin B sensitivity. The hygromycin B sensitivity of S. cerevisiae mnn9 null mutant was complemented in the presence of the HpMNN9 gene. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession No. AF264786.
Collapse
Affiliation(s)
- S Y Kim
- Division of Life Sciences, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Klis FM, Groot PD, Hellingwerf K. Molecular organization of the cell wall ofCandida albicans. Med Mycol 2001. [DOI: 10.1080/mmy.39.1.1.8-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|