1
|
Itaya M. <i>Bacillus subtilis</i> 168 as a unique platform enabling synthesis and dissemination of genomes. J GEN APPL MICROBIOL 2022; 68:45-53. [DOI: 10.2323/jgam.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mitsuhiro Itaya
- Graduate School of Science and Technology, Shinshu University
| |
Collapse
|
2
|
Itaya M, Sato M, Hasegawa M, Kono N, Tomita M, Kaneko S. Far rapid synthesis of giant DNA in the Bacillus subtilis genome by a conjugation transfer system. Sci Rep 2018; 8:8792. [PMID: 29884789 PMCID: PMC5993740 DOI: 10.1038/s41598-018-26987-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
Bacillus subtilis offers a platform for giant DNA synthesis, which is mediated by the connection of overlapping DNA segments called domino DNA, in the cloning locus of the host. The domino method was successfully used to produce DNA fragments as large as 3500 kbp. However, domino DNA is limited to <100 kbp because of size restrictions regarding the transformation (TF) of B. subtilis competent cells. A novel conjugal transfer (CT) method was designed to eliminate the TF size limit. The CT method enables rapid and efficient domino reactions in addition to the transfer of giant DNA molecules of up to 875 kbp to another B. subtilis genome within 4 hours. The combined use of the TF and CT should enable significantly rapid giant DNA production.
Collapse
Affiliation(s)
- Mitsuhiro Itaya
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka-shi, Yamagata, 997-0017, Japan.
| | - Mitsuru Sato
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka-shi, Yamagata, 997-0017, Japan
| | - Miki Hasegawa
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka-shi, Yamagata, 997-0017, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka-shi, Yamagata, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka-shi, Yamagata, 997-0017, Japan
| | - Shinya Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan
| |
Collapse
|
3
|
Itaya M, Hasegawa M, Tomita M, Sato M. The first high frequency of recombination-like conjugal transfer from an integrated origin of transfer sequence in Bacillus subtilis 168. Biosci Biotechnol Biochem 2018; 82:356-362. [PMID: 29316866 DOI: 10.1080/09168451.2017.1422970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacillus subtilis 168 was developed as a genome vector to manipulate large DNA fragments. The system is based on the inherent natural transformation (TF) activity. However, DNA size transferred by TF is limited up to approximately 100 kb. A conjugal transfer system capable of transferring DNA fragments considerably larger than those transferred by TF was developed. A well-defined oriT110 sequence and a cognate relaxase gene from the pUB110 plasmid were inserted into the xkdE gene of the B. subtilis genome. Transfer of antibiotic resistance markers distant from the oriT110 locus to the recipient B. subtilis occurred only in the presence of pLS20, a helper plasmid that provides a type IV secretion system. Marker transmission was consistent with the orientation of oriT110 and required a recA-proficient recipient. The first conjugal transfer system of genomic DNA should provide a valuable alternative genetic tool for editing the B. subtilis genome.
Collapse
Affiliation(s)
- Mitsuhiro Itaya
- a Institute for Advanced Biosciences , Keio University , Tsuruoka-shi, Japan
| | - Miki Hasegawa
- a Institute for Advanced Biosciences , Keio University , Tsuruoka-shi, Japan
| | - Masaru Tomita
- a Institute for Advanced Biosciences , Keio University , Tsuruoka-shi, Japan
| | - Mitsuru Sato
- a Institute for Advanced Biosciences , Keio University , Tsuruoka-shi, Japan
| |
Collapse
|
4
|
Shi Z, Wedd AG, Gras SL. Parallel in vivo DNA assembly by recombination: experimental demonstration and theoretical approaches. PLoS One 2013; 8:e56854. [PMID: 23468883 PMCID: PMC3585241 DOI: 10.1371/journal.pone.0056854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
The development of synthetic biology requires rapid batch construction of large gene networks from combinations of smaller units. Despite the availability of computational predictions for well-characterized enzymes, the optimization of most synthetic biology projects requires combinational constructions and tests. A new building-brick-style parallel DNA assembly framework for simple and flexible batch construction is presented here. It is based on robust recombination steps and allows a variety of DNA assembly techniques to be organized for complex constructions (with or without scars). The assembly of five DNA fragments into a host genome was performed as an experimental demonstration.
Collapse
Affiliation(s)
- Zhenyu Shi
- School of Chemistry, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
5
|
Itaya M. Tools for Genome Synthesis. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
6
|
Kaneko S, Itaya M. Stable Extracellular DNA: A Novel Substrate for Genetic Engineering that Mimics Horizontal Gene Transfer in Nature. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-12617-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Brigulla M, Wackernagel W. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 2010; 86:1027-41. [DOI: 10.1007/s00253-010-2489-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/18/2009] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|
8
|
Kaneko S, Itaya M. Designed horizontal transfer of stable giant DNA released from Escherichia coli. J Biochem 2010; 147:819-22. [PMID: 20145021 DOI: 10.1093/jb/mvq012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA in the environment is a source to mediate horizontal gene transfer (HGT). Present molecular cloning methods are based on this HGT principle. However, DNA in the extracellular environment, particularly with high molecular-weight, is thought to be prone to shearing or digestion by nucleases. Here we discovered that extracellular plasmid DNA released from lysed Escherichia coli remained intact and stable. Furthermore, it was demonstrated that plasmids up to 100 kb in size were taken up by co-present competent Bacillus subtilis cells. The detailed kinetics of the process together with sensitivity to added DNase I indicated that plasmid DNA released from lysed E. coli into the culture medium was stable enough for quantitative efficacy in the transformation of B. subtilis. Our results will be useful for the development of methods to transfer giant DNAs from general host E. coli without their biochemical purification.
Collapse
Affiliation(s)
- Shinya Kaneko
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | |
Collapse
|
9
|
Yonemura I, Nakada K, Sato A, Hayashi JI, Fujita K, Kaneko S, Itaya M. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene 2007; 391:171-7. [PMID: 17317040 DOI: 10.1016/j.gene.2006.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/07/2006] [Accepted: 12/12/2006] [Indexed: 11/15/2022]
Abstract
The complete mouse mitochondrial genome (16.3 kb) was directly cloned into a Bacillus subtilis genome (BGM) vector. Two DNA segments of 2.06 and 2.14 kb that flank the internal 12 kb of the mitochondrial DNA (mtDNA) were subcloned into an Escherichia coli plasmid. Subsequent integration of the plasmid at the cloning locus of the BGM vector yielded a derivative specific for the targeted cloning of the internal 12-kb mtDNA region. The BGM vector took up mtDNA purified from mouse liver and integrated it by homologous recombination at the two preinstalled mtDNA-flanking sequences. The complete cloned mtDNA in the BGM vector was converted to a covalently closed circular (ccc) plasmid form via gene conversion in B. subtilis. The mtDNA carried on this plasmid was then isolated and transferred to E. coli. DNA sequence fidelity and stability through the BGM vector-mediated cloning process were confirmed.
Collapse
Affiliation(s)
- Izuru Yonemura
- Graduate School of Life and Environmental Sciences, Institute of Biological Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu S, Endo K, Ara K, Ozaki K, Ogasawara N. The accurate replacement of long genome region more than several hundreds kilobases in Bacillus subtilis. Genes Genet Syst 2007; 82:9-19. [PMID: 17396016 DOI: 10.1266/ggs.82.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Competent cell transformation with DNA obtained by the gentle lysis of protoplasts (LP transformation) was used to replace a large genomic region in this study. Discontinuity was detected in the replacement of the donor region tested, probably due to multiple crossover events involving a single donor genome fragment. To overcome discontinuous replacement, we inverted the genomic region to be replaced in the donor used for LP transformation. The replaced region in the transformant was identified to have a continuous genomic region originating from the donor genome. Furthermore, the genome region to be replaced was inverted in the recipient, and the same region and the flanking 10 kb region of both ends was inverted in the donor genome. LP transformation was conducted with the two inversion mutants and it is possible to restrict homologous recombination to the 10 kb flanking regions. Using this method, the 99 kb yxjG-yxbA region, the 249 kb pbpG-yxbA region and the 602 kb yvfT-yxbA region were suggested to be replaced continuously and accurately.
Collapse
Affiliation(s)
- Shenghao Liu
- Biological Science Laboratories, Kao Corporation
| | | | | | | | | |
Collapse
|
11
|
Kaneko S, Akioka M, Tsuge K, Itaya M. DNA Shuttling Between Plasmid Vectors and a Genome Vector: Systematic Conversion and Preservation of DNA Libraries Using the Bacillus subtilis Genome (BGM) Vector. J Mol Biol 2005; 349:1036-44. [PMID: 15913652 DOI: 10.1016/j.jmb.2005.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B.subtilis. Rapid and stable shuttling between Escherichiacoli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources.
Collapse
Affiliation(s)
- Shinya Kaneko
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
12
|
Tomita S, Tsuge K, Kikuchi Y, Itaya M. Targeted isolation of a designated region of the Bacillus subtilis genome by recombinational transfer. Appl Environ Microbiol 2004; 70:2508-13. [PMID: 15066851 PMCID: PMC383163 DOI: 10.1128/aem.70.4.2508-2513.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method for positional cloning of the Bacillus subtilis genome was developed. The method requires a set of two small DNA fragments that flank the region to be copied. A 38-kb segment that carries genes ppsABCDE encoding five enzymes for antibiotic plipastatin synthesis and another genome locus as large as 100 kb including one essential gene were examined for positional cloning. The positional cloning vector for ppsABCDE was constructed using a B. subtilis low-copy-number plasmid that faithfully copied the precise length of the 38-kb DNA in vivo via the recombinational transfer system of this bacterium. Structure of the copied DNA was confirmed by restriction enzyme analyses. Furthermore, the unaltered structure of the 38-kb DNA was demonstrated by complementation of a ppsABCDE deletion mutant.
Collapse
Affiliation(s)
- Satoshi Tomita
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | | | | | | |
Collapse
|
13
|
Kaneko S, Tsuge K, Takeuchi T, Itaya M. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector. Nucleic Acids Res 2003; 31:e112. [PMID: 12954788 PMCID: PMC203338 DOI: 10.1093/nar/gng114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasmid by a recombinational transfer method developed for B.subtilis. DNA manipulation previously considered difficult is argued with respect to DNA size and accuracy.
Collapse
Affiliation(s)
- Shinya Kaneko
- Mitsubishi Kagaku Institute of Life Science, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
14
|
Tsuge K, Itaya M. Recombinational transfer of 100-kilobase genomic DNA to plasmid in Bacillus subtilis 168. J Bacteriol 2001; 183:5453-8. [PMID: 11514534 PMCID: PMC95433 DOI: 10.1128/jb.183.18.5453-5458.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transformation of Bacillus subtilis by a plasmid requires a circular multimeric form. In contrast, linearized plasmids can be circularized only when homologous sequences are present in the host genome. A recombinational transfer system was constructed with this intrinsic B. subtilis recombinational repair pathway. The vector, pGETS103, a derivative of the theta-type replicating plasmid pTB19 of thermophilic Bacillus, had the full length of Escherichia coli plasmid pBR322. A multimeric form of pGETS103 yielded tetracycline-resistant transformants of B. subtilis. In contrast, linearized pGETS103 gave tetracycline-resistant transformants only when the recipient strain had the pBR322 sequence in the genome. The efficiency and fidelity of the recombinational transfer of DNAs of up to 90 kb are demonstrated.
Collapse
Affiliation(s)
- K Tsuge
- Mitsubishi Kasei Institute of Life Sciences, Machida-Shi, Tokyo 194-8511, Japan
| | | |
Collapse
|