1
|
Brkljacic J, Wittler B, Lindsey BE, Ganeshan VD, Sovic MG, Niehaus J, Ajibola W, Bachle SM, Fehér T, Somers DE. Frequency, composition and mobility of Escherichia coli-derived transposable elements in holdings of plasmid repositories. Microb Biotechnol 2022; 15:455-468. [PMID: 34875147 PMCID: PMC8867978 DOI: 10.1111/1751-7915.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.
Collapse
Affiliation(s)
| | - Bettina Wittler
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Present address:
Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | - Michael G. Sovic
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
| | | | - Walliyulahi Ajibola
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
- Doctoral School in BiologyUniversity of SzegedSzegedHungary
| | | | - Tamás Fehér
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
| | - David E. Somers
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Humayun MZ, Zhang Z, Butcher AM, Moshayedi A, Saier MH. Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. PLoS One 2017; 12:e0180156. [PMID: 28666002 PMCID: PMC5493358 DOI: 10.1371/journal.pone.0180156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022] Open
Abstract
Insertion sequence elements (IS elements) are proposed to play major roles in shaping the genetic and phenotypic landscapes of prokaryotic cells. Recent evidence has raised the possibility that environmental stress conditions increase IS hopping into new sites, and often such hopping has the phenotypic effect of relieving the stress. Although stress-induced targeted mutations have been reported for a number of E. coli genes, the glpFK (glycerol utilization) and the cryptic bglGFB (β-glucoside utilization) systems are among the best characterized where the effects of IS insertion-mediated gene activation are well-characterized at the molecular level. In the glpFK system, starvation of cells incapable of utilizing glycerol leads to an IS5 insertion event that activates the glpFK operon, and enables glycerol utilization. In the case of the cryptic bglGFB operon, insertion of IS5 (and other IS elements) into a specific region in the bglG upstream sequence has the effect of activating the operon in both growing cells, and in starving cells. However, a major unanswered question in the glpFK system, the bgl system, as well as other examples, has been why the insertion events are promoted at specific locations, and how the specific stress condition (glycerol starvation for example) can be mechanistically linked to enhanced insertion at a specific locus. In this paper, we show that a specific DNA structural feature (superhelical stress-induced duplex destabilization, SIDD) is associated with "stress-induced" IS5 insertion in the glpFK, bglGFB, flhDC, fucAO and nfsB systems. We propose a speculative mechanistic model that links specific environmental conditions to the unmasking of an insertional hotspot in the glpFK system. We demonstrate that experimentally altering the predicted stability of a SIDD element in the nfsB gene significantly impacts IS5 insertion at its hotspot.
Collapse
Affiliation(s)
- M. Zafri Humayun
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers—New Jersey Medical School, Newark, NJ, United States of America
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Anna M. Butcher
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Aref Moshayedi
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Abstract
The classical experiments of Luria and Delbrück showed convincingly that mutations exist before selection and do not contribute to the creation of mutations when selection is lethal. In contrast, when nonlethal selections are used,measuring mutation rates and separating the effects of mutation and selection are difficult and require methods to fully exclude growth after selection has been applied. Although many claims of stress-induced mutagenesis have been made, it is difficult to exclude the influence of growth under nonlethal selection conditions in accounting for the observed increases in mutant frequency. Instead, for many of the studied experimental systems the increase in mutant frequency can be explainedbetter by the ability of selection to detect small differences in growth rate caused by common small effect mutations. A verycommon mutant class,found in response to many different types of selective regimensin which increased gene dosage can resolve the problem, is gene amplification. In the well-studiedlac system of Cairns and Foster, the apparent increase in Lac+revertants can be explained by high-level amplification of the lac operon and the increased probability for a reversion mutation to occur in any one of the amplified copies. The associated increase in general mutation rate observed in revertant cells in that system is an artifact caused by the coincidental co-amplification of the nearby dinB gene (encoding the error-prone DNA polymerase IV) on the particular plasmid used for these experiments. Apart from the lac system, similar gene amplification processes have been described for adaptation to toxic drugs, growth in host cells, and various nutrient limitations.
Collapse
|
4
|
Fehér T, Karcagi I, Blattner FR, Pósfai G. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol 2012; 5:466-76. [PMID: 21910851 PMCID: PMC3815324 DOI: 10.1111/j.1751-7915.2011.00292.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages, the historic model organisms facilitating the initiation of molecular biology, are still important candidates of numerous useful or promising biotechnological applications. Development of generally applicable, simple and rapid techniques for their genetic engineering is therefore a validated goal. In this article, we report the use of bacteriophage recombineering with electroporated DNA (BRED), for the first time in a coliphage. With the help of BRED, we removed a copy of mobile element IS1, shown to be active, from the genome of P1vir, a coliphage frequently used in genome engineering procedures. The engineered, IS-free coliphage, P1virdeltaIS, displayed normal plaque morphology, phage titre, burst size and capacity for generalized transduction. When performing head-to-head competition experiments, P1vir could not outperform P1virdeltaIS, further indicating that the specific copy of IS1 plays no direct role in lytic replication. Overall, P1virdeltaIS provides a genome engineering vehicle free of IS contamination, and BRED is likely to serve as a generally applicable tool for engineering bacteriophage genomes in a wide range of taxa.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | |
Collapse
|
5
|
Chou HH, Marx CJ. Optimization of gene expression through divergent mutational paths. Cell Rep 2012; 1:133-40. [PMID: 22832162 DOI: 10.1016/j.celrep.2011.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
Adaptation under similar selective pressure often leads to comparable phenotypes. A longstanding question is whether such phenotypic repeatability entails similar (parallelism) or different genotypic changes (convergence). To better understand this, we characterized mutations that optimized expression of a plasmid-borne metabolic pathway during laboratory evolution of a bacterium. Expressing these pathway genes was essential for growth but came with substantial costs. Starting from overexpression, replicate populations founded by this bacterium all evolved to reduce expression. Despite this phenotypic repetitiveness, the underlying mutational spectrum was highly diverse. Analysis of these plasmid mutations identified three distinct means to modulate gene expression: (1) reducing the gene copy number, (2) lowering transcript stability, and (3) integration of the pathway-bearing plasmid into the host genome. Our study revealed diverse molecular changes beneath convergence to a simple phenotype. This complex genotype-phenotype mapping presents a challenge to inferring genetic evolution based solely on phenotypic changes.
Collapse
Affiliation(s)
- Hsin-Hung Chou
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
6
|
Gordo I, Perfeito L, Sousa A. Fitness effects of mutations in bacteria. J Mol Microbiol Biotechnol 2012; 21:20-35. [PMID: 22248540 DOI: 10.1159/000332747] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutation is the primary source of variation in any organism. Without it, natural selection cannot operate and organisms cannot adapt to novel environments. Mutation is also generally a source of defect: many mutations are not neutral but cause fitness decreases in the organisms where they arise. In bacteria, another important source of variation is horizontal gene transfer. This source of variation can also cause beneficial or deleterious effects. Determining the distribution of fitness effects of mutations in different environments and genetic backgrounds is an active research field. In bacteria, knowledge of these distributions is key for understanding important traits. For example, for determining the dynamics of microorganisms with a high genomic mutation rate (mutators), and for understanding the evolution of antibiotic resistance, and the emergence of pathogenic traits. All of these characteristics are extremely relevant for human health both at the individual and population levels. Experimental evolution has been a valuable tool to address these questions. Here, we review some of the important findings of mutation effects in bacteria revealed through laboratory experiments.
Collapse
Affiliation(s)
- Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
7
|
Zhang Z, Saier MH. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol 2012; 21:59-70. [PMID: 22248543 DOI: 10.1159/000333108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposons, mobile genetic elements that can hop from one chromosomal location to another, are known to be both beneficial and deleterious to the cell that bears them. Their value in accelerating evolutionary adaptation is well recognized. We herein summarize published research dealing with these elements and then move on to review our own research efforts which focus on a small transposon that can induce mutations under the control of host factors in a process that phenotypically and mechanistically conforms to the definition of 'directed mutation'. Directed mutations occur at higher frequencies when they are beneficial, being induced by the stress condition that they relieve. Here, we review evidence for transposon-mediated directed mutation in Escherichia coli. Deletion mutants in the crp gene can not grow on glycerol (Glp(-)); however, these cells mutate specifically to efficient glycerol utilization (Glp(+)) at rates that are greatly enhanced by the presence of glycerol or the loss of the glycerol repressor (GlpR). These rates are greatly depressed by glucose or by glpR overexpression. Of the four tandem GlpR-binding sites (O1-O4) in the control region of the glpFK operon, O4 (downstream) specifically controls glpFK expression while O1 (upstream) controls mutation rate. Mutation is due to insertion of the small transposon IS5 into a specific site just upstream of the glpFK promoter. Mutational control by the glycerol regulon repressor GlpR is independent of the selection and assay procedures, and IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish the principle of transposon-mediated directed mutation, identify a protein responsible for its regulation, and define essential aspects of the mechanism.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
8
|
Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats. J Mol Evol 2011; 72:398-412. [DOI: 10.1007/s00239-011-9439-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
9
|
Umenhoffer K, Fehér T, Balikó G, Ayaydin F, Pósfai J, Blattner FR, Pósfai G. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Fact 2010; 9:38. [PMID: 20492662 PMCID: PMC2891674 DOI: 10.1186/1475-2859-9-38] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/21/2010] [Indexed: 12/15/2022] Open
Abstract
Background Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential. Results We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones. Conclusions Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.
Collapse
Affiliation(s)
- Kinga Umenhoffer
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 62 Temesvari krt, H6726 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
A career of following unplanned observations has serendipitously led to a deep appreciation of the capacity that bacterial cells have for restructuring their genomes in a biologically responsive manner. Routine characterization of spontaneous mutations in the gal operon guided the discovery that bacteria transpose DNA segments into new genome sites. A failed project to fuse lambda sequences to a lacZ reporter ultimately made it possible to demonstrate how readily Escherichia coli generated rearrangements necessary for in vivo cloning of chromosomal fragments into phage genomes. Thinking about the molecular mechanism of IS1 and phage Mu transposition unexpectedly clarified how transposable elements mediate large-scale rearrangements of the bacterial genome. Following up on lab lore about long delays needed to obtain Mu-mediated lacZ protein fusions revealed a striking connection between physiological stress and activation of DNA rearrangement functions. Examining the fate of Mudlac DNA in sectored colonies showed that these same functions are subject to developmental control, like controlling elements in maize. All these experiences confirmed Barbara McClintock's view that cells frequently respond to stimuli by restructuring their genomes and provided novel insights into the natural genetic engineering processes involved in evolution.
Collapse
|
11
|
Abstract
Directed mutation is a proposed process that allows mutations to occur at higher frequencies when they are beneficial. Until now, the existence of such a process has been controversial. Here we describe a novel mechanism of directed mutation mediated by the transposon, IS5 in Escherichia coli. crp deletion mutants mutate specifically to glycerol utilization (Glp(+)) at rates that are enhanced by glycerol or the loss of the glycerol repressor (GlpR), depressed by glucose or glpR overexpression, and RecA-independent. Of the four tandem GlpR binding sites (O1-O4) upstream of the glpFK operon, O4 specifically controls glpFK expression while O1 primarily controls mutation rate in a process mediated by IS5 hopping to a specific site on the E. coli chromosome upstream of the glpFK promoter. IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish an example of transposon-mediated directed mutation, identify the protein responsible and define the mechanism involved.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
12
|
Jerman I, Ružič R, Krašovec R, Škarja M, Mogilnicki L. Electrical Transfer of Molecule Information into Water, Its Storage, and Bioeffects on Plants and Bacteria. Electromagn Biol Med 2009. [DOI: 10.1080/15368370500381620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth. Genetics 2008; 180:431-43. [PMID: 18757947 DOI: 10.1534/genetics.108.091330] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial evolution experiments offer a powerful approach for coupling changes in complex phenotypes, including fitness and its components, with specific mutations. Here we investigate mutations substituted in 15 lines of Escherichia coli that evolved for 1000 generations under freeze-thaw-growth (FTG) conditions. To investigate the genetic basis of their improvements, we screened many of the lines for mutations involving insertion sequence (IS) elements and identified two genes where multiple lines had similar mutations. Three lines had IS150 insertions in cls, which encodes cardiolipin synthase, and 8 lines had IS150 insertions in the uspA-uspB intergenic region, encoding two universal stress proteins. Another line had an 11-bp deletion mutation in the cls gene. Strain reconstructions and competitions demonstrated that this deletion is beneficial under the FTG regime in its evolved genetic background. Further experiments showed that this cls mutation helps maintain membrane fluidity after freezing and thawing and improves freeze-thaw (FT) survival. Reconstruction of isogenic strains also showed that the IS150 insertions in uspA/B are beneficial under the FTG regime. The evolved insertions reduce uspB transcription and increase both FT survival and recovery, but the physiological mechanism for this fitness improvement remains unknown.
Collapse
|
14
|
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:807-819. [PMID: 18053935 DOI: 10.1016/j.shpsc.2007.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Forty years' experience as a bacterial geneticist has taught me that bacteria possess many cognitive, computational and evolutionary capabilities unimaginable in the first six decades of the twentieth century. Analysis of cellular processes such as metabolism, regulation of protein synthesis, and DNA repair established that bacteria continually monitor their external and internal environments and compute functional outputs based on information provided by their sensory apparatus. Studies of genetic recombination, lysogeny, antibiotic resistance and my own work on transposable elements revealed multiple widespread bacterial systems for mobilizing and engineering DNA molecules. Examination of colony development and organization led me to appreciate how extensive multicellular collaboration is among the majority of bacterial species. Contemporary research in many laboratories on cell-cell signaling, symbiosis and pathogenesis show that bacteria utilise sophisticated mechanisms for intercellular communication and even have the ability to commandeer the basic cell biology of 'higher' plants and animals to meet their own needs. This remarkable series of observations requires us to revise basic ideas about biological information processing and recognise that even the smallest cells are sentient beings.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th Street, Chicago IL 60637, USA.
| |
Collapse
|
15
|
Abstract
It has recently become clear that the classical notion of the random nature of mutation does not hold for the distribution of mutations among genes: most collections of mutants contain more isolates with two or more mutations than predicted by the mutant frequency on the assumption of a random distribution of mutations. Excesses of multiples are seen in a wide range of organisms, including riboviruses, DNA viruses, prokaryotes, yeasts, and higher eukaryotic cell lines and tissues. In addition, such excesses are produced by DNA polymerases in vitro. These "multiples" appear to be generated by transient, localized hypermutation rather than by heritable mutator mutations. The components of multiples are sometimes scattered at random and sometimes display an excess of smaller distances between mutations. As yet, almost nothing is known about the mechanisms that generate multiples, but such mutations have the capacity to accelerate those evolutionary pathways that require multiple mutations where the individual mutations are neutral or deleterious. Examples that impinge on human health may include carcinogenesis and the adaptation of microbial pathogens as they move between individual hosts.
Collapse
Affiliation(s)
- John W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233, USA.
| |
Collapse
|
16
|
Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 2007; 42:399-435. [PMID: 17917874 PMCID: PMC3319127 DOI: 10.1080/10409230701648502] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
17
|
de Visser JAGM, Akkermans ADL, Hoekstra RF, de Vos WM. Insertion-sequence-mediated mutations isolated during adaptation to growth and starvation in Lactococcus lactis. Genetics 2005; 168:1145-57. [PMID: 15579676 PMCID: PMC1448763 DOI: 10.1534/genetics.104.032136] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the activity of three multicopy insertion sequence (IS) elements in 12 populations of Lactococcus lactis IL1403 that evolved in the laboratory for 1000 generations under various environmental conditions (growth or starvation and shaken or stationary). Using RFLP analysis of single-clone representatives of each population, nine IS-mediated mutations were detected across all environmental conditions and all involving IS981. When it was assumed that these mutations were neutral, their frequency was higher under shaken than under stationary conditions, possibly due to oxygen stress. We characterized seven of the nine mutations at the molecular level and studied their population dynamics where possible. Two were simple insertions into new positions and the other five were recombinational deletions (of <1->10 kb) among existing and new copies of IS981; in all but one case these mutations disrupted gene functions. The best candidate beneficial mutations were two deletions of which similar versions were detected in two populations each. One of these two parallel deletions, affecting a gene involved in bacteriophage resistance, showed intermediate rearrangements and may also have resulted from increased local transposition rates.
Collapse
Affiliation(s)
- J Arjan G M de Visser
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Shi B, Xia X. Genetic variation in clones of Pseudomonas pseudoalcaligenes after ten months of selection in different thermal environments in the laboratory. Curr Microbiol 2005; 50:238-45. [PMID: 15886916 DOI: 10.1007/s00284-004-4449-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/08/2004] [Indexed: 11/29/2022]
Abstract
The random amplification of polymorphic DNA (RAPD) method was used to examine genetic variation in experimental clones of Pseudomonas pseudoalcaligenes in two experimental groups, as well as their common ancestor. Six clones derived from a single colony of P. pseudoalcaligenes were cultured in two different thermal regimes for 10 months. Three clones in the Control group were cultured at constant temperature of 35 degrees C and another three clones in the High Temperature (HT) group were propagated at incremental temperature ranging from 41 to 47 degrees C for 10 months. A total of 45 RAPD primers generated 146 polymorphic markers. Analysis of molecular variance (AMOVA) revealed mild (11%) but significant (P < 0.001) genetic difference between the Control and the HT clones. Phylogenetic analysis based on pairwise genetic distances showed that the HT clones were more divergent from the ancestor and from each other than the Control clones, implying that the HT clones of P. pseudoalcaligenes may have evolved faster than the Control clones.
Collapse
Affiliation(s)
- Bihong Shi
- Department of Ecology & Biodiversity, University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
19
|
Hall BG. Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol 2004; 22:792-802. [PMID: 15590907 DOI: 10.1093/molbev/msi066] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A biologically realistic method was used to simulate evolutionary trees. The method uses a real DNA coding sequence as the starting point, simulates mutation according to the mutational spectrum of Escherichia coli-including base substitutions, insertions, and deletions-and separates the processes of mutation and selection. Trees of 8, 16, 32, and 64 taxa were simulated with average branch lengths of 50, 100, 150, 200, and 250 changes per branch. The resulting sequences were aligned with ClustalX, and trees were estimated by Neighbor Joining, Parsimony, Maximum Likelihood, and Bayesian methods from both DNA sequences and the corresponding protein sequences. The estimated trees were compared with the true trees, and both topological and branch length accuracies were scored. Over the variety of conditions tested, Bayesian trees estimated from DNA sequences that had been aligned according to the alignment of the corresponding protein sequences were the most accurate, followed by Maximum Likelihood trees estimated from DNA sequences and Parsimony trees estimated from protein sequences.
Collapse
Affiliation(s)
- Barry G Hall
- Biology Department, University of Rochester, USA.
| |
Collapse
|
20
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct signatures for mutator sensitivity of lacZ reversions and for the spectrum of lacI/lacO forward mutations on the chromosome of nondividing Escherichia coli. Genetics 2004; 166:681-92. [PMID: 15020459 PMCID: PMC1470738 DOI: 10.1534/genetics.166.2.681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to "instantaneous gratification" models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
|
21
|
Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 2004; 155:319-27. [PMID: 15207863 DOI: 10.1016/j.resmic.2003.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
We review the intersection between two areas of microbial evolution that were research foci of Michel Blot. One focus is the behavior of insertion sequence (IS) elements, including their role in promoting the evolutionary adaptation of their hosts. The other focus is experimental evolution, an approach that allows the dynamics of genomic and phenotypic change to be observed in the laboratory. This review shows that IS elements are useful as markers for detecting genomic change over experimental time scales and, moreover, that IS elements generate some of the beneficial mutations that increase organismal fitness.
Collapse
Affiliation(s)
- Dominique Schneider
- Laboratoire Adaptation et Pathogénie des Microorganismes, CNRS UMR5163, Université Joseph Fourier, 38041 Grenoble Cedex 9, France.
| | | |
Collapse
|
22
|
Amzallag GN. Adaptive changes in bacteria: a consequence of nonlinear transitions in chromosome topology? J Theor Biol 2004; 229:361-9. [PMID: 15234203 DOI: 10.1016/j.jtbi.2004.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 01/11/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Adaptive changes in bacteria are generally considered to result from random mutations selected by the environment. This interpretation is challenged by the non-randomness of genomic changes observed following ageing or starvation in bacterial colonies. A theory of adaptive targeting of sequences for enzymes involved in DNA transactions is proposed here. It is assumed that the sudden leakage of cAMP consecutive to starvation induces a rapid drop in the ATP/ADP ratio that inactivates the homeostasis in control of the level of DNA supercoiling. This phase change enables the emergence of local modifications in chromosome topology in relation to the missing metabolites, a first stage in expression of an adaptive status in which DNA transactions are induced. The nonlinear perspective proposed here is homologous to that already suggested for adaptation of pluricellular organisms during their development. In both cases, phases of robustness in regulation networks for genetic expression are interspaced by critical periods of breakdown of the homeostatic regulations during which, through isolation of nodes from a whole network, specific changes with adaptive value may locally occur.
Collapse
Affiliation(s)
- G N Amzallag
- The Judea Center for Research and Development, Carmel 90404, Israel.
| |
Collapse
|
23
|
Safi H, Barnes PF, Lakey DL, Shams H, Samten B, Vankayalapati R, Howard ST. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol 2004; 52:999-1012. [PMID: 15130120 DOI: 10.1111/j.1365-2958.2004.04037.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mobile insertion sequence, IS6110, is an important marker in tracking of Mycobacterium tuberculosis strains. Here, we demonstrate that IS6110 can upregulate downstream genes through an outward-directed promoter in its 3' end, thus adding to the significance of this element. Promoter activity was orientation dependent and was localized within a 110 bp fragment adjacent to the right terminal inverted repeat. Transcripts from this promoter, named OP6110, begin approximately 85 bp upstream of the 3' end of IS6110. Use of green fluorescent protein (GFP) expression constructs showed that OP6110 was upregulated in M. tuberculosis during growth in human monocytes and in late growth phases in broth. Analysis of natural insertion sites in M. tuberculosis showed that IS6110 upregulated expression of several downstream genes during growth in human monocytes, including Rv2280 in H37Rv and the PE-PGRS gene, Rv1468c, in the clinical strain 210, which is a member of the Beijing family. Transcription between IS6110 and downstream genes was confirmed by reverse transcription polymerase chain reaction. The ability to activate genes during infection suggests that IS6110 has the potential to influence growth characteristics of different strains, and indicates another mechanism by which IS6110 can impact M. tuberculosis evolution.
Collapse
Affiliation(s)
- Hassan Safi
- Department of Microbiology, Center for Pulmonary and Infectious Disease Control, University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct Signatures for Mutator Sensitivity of lacZ Reversions and for the Spectrum of lacI/lacO Forward Mutations on the Chromosome of Nondividing Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to “instantaneous gratification” models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
Affiliation(s)
- Shanti M Bharatan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| | - Manjula Reddy
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - J Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| |
Collapse
|
25
|
Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 2003; 48:429-41. [PMID: 12675802 DOI: 10.1046/j.1365-2958.2003.t01-1-03436.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work provides evidence that, during transcription, the mutability (propensity to mutate) of a base in a DNA secondary structure depends both on the stability of the structure and on the extent to which the base is unpaired. Zuker's DNA folding computer program reveals the most probable stem-loop structures (SLSs) and negative energies of folding (-DeltaG) for any given nucleotide sequence. We developed an interfacing program that calculates (i) the percentage of folds in which each base is unpaired during transcription; and (ii) the mutability index (MI) for each base, expressed as an absolute value and defined as -follows: MI = (% total folds in which the base is unpaired) x (highest -DeltaG of all folds in which it is unpaired). Thus, MIs predict the relative mutation or reversion frequencies of unpaired bases in SLSs. MIs for 16 mutable bases in auxotrophs, selected during starvation in derepressed genes, are compared with 70 background mutations in lacI and ebgR that were not derepressed during mutant selection. All the results are consistent with the location of known mutable bases in SLSs. Specific conclusions are: (i) Of 16 mutable bases in transcribing genes, 87% have higher MIs than the average base of the sequence analysed, compared with 50% for the 70 background mutations. (ii) In 15 of the mutable bases of transcribing genes, the correlation between MIs and relative mutation frequencies determined experimentally is good. There is no correlation for 35 mutable bases in the lacI gene. (iii) In derepressed auxotrophs, 100% of the codons containing the mutable bases are within one codon's length of a stem, compared with 53% for the background mutable bases in lacI. (iv) The data suggest that environmental stressors may cause as well as select mutations in derepressed genes. The implications of these results for evolution are discussed.
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Knowledge about survival of micro-organisms in stressful situations not only influences the evolutionary theory in a fundamental way, but bears an extraordinary importance in finding a global solution to a very concrete urgent problem of mankind, namely bacterial resistance to antibiotics. Recent in vitro experiments demonstrate that the adaptive mutation process involving transient hypermutators could be one of the most important mechanisms whereby bacterial cells achieve the antibiotic resistance. An effective response of the mutation rates to specific selective conditions and an increasing number of conclusive evidence that bacterial cells are indeed communicative and co-operative organisms lead us to a hypothesis that the emergence of the antibiotic resistant mutants through the so-called adaptive mutation is deeply connected with the multicellular organisation of bacterial cells.
Collapse
|
27
|
Hall BG. The EBG system of E. coli: origin and evolution of a novel ß-galactosidase for the metabolism of lactose. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-010-0229-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
28
|
Abstract
A stochastic model was designed to describe the evolution of bacterial cultures during 10,000 generations. It is based on a decreasing law for the generation of beneficial mutations as they become fixed in the genomes. Seven beneficial mutations on average were necessary to improve the relative fitness from 1.0 to 1.43 and the model was consistent with the population biology and the genetic data of 12 experimental lines. In one bacterial line, comparison between the model and the data suggests that pivotal mutations mediated by insertion sequences account for a large part of bacterial adaptation. In a more detailed analysis of one simulation, it was shown that only 0.01% of the mutations generated by a population over 10,000 generations can go to fixation as a consequence of their improved fitness. However in the model, the probability of being better fit than its parent should be set initially at ca. 10% to promote an evolution similar to the observed data.
Collapse
Affiliation(s)
- Jean-Louis Martiel
- Techniques de l'Imagerie, de la Modélisation et de la Cognition, CNRS UMR5525, F-38706 La Tronche, France.
| | | |
Collapse
|
29
|
Jin J, Gao P, Mao Y. Occurrence of leu+ revertants under starvation cultures in Escherichia coli is growth-dependent. BMC Genet 2002; 3:6. [PMID: 12019019 PMCID: PMC115868 DOI: 10.1186/1471-2156-3-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Accepted: 04/25/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many investigations have reported that advantageous mutations occurred more frequently under selective conditions than those under non-selective conditions. This phenomenon is referred to as adaptive mutation. Their characteristics are that adaptive mutations are directed and growth-independent. The idea of directed adaptive mutation had been objected by some reports, however, the idea of growth-independent adaptive mutation has been held till today. RESULTS In this paper, we have observed that under leucine starvation conditions, leu+ revertants accumulated as a function of time; leu- to leu+ reverse mutation rates and frequencies were higher than those under non starvation conditions; and no divided cells could be monitored by the penicillin method. These results were similar to the time-dependent manner of adaptive mutation from previous reports. However, leucine concentration determinate experiments revealed that certain traces of leucine, which leaked from the E. coli cells, was almost always present in the culture. More numbers of leu+ revertants appeared when the similar cultures were dropped in small areas on the selective plates than when spread on the whole selective plates. These results have shown that mutations under leucine starving conditions are growth-dependent. Fluctuation analysis of leu+ revertants indicated that leu-leu+ mutation occurred spontaneously and randomly. In addition, the spectra of leuB gene in the revertants proved that mutations under selective conditions were not specific or directed. CONCLUSIONS The above investigations led to the conclusion (1) that the occurrence of leu+ mutations under starvation conditions was growth-dependent. The occurrence mutations was also similar to that under non-starvation conditions (2). Under starvation conditions the mutation rates were higher, and was not constant during the long process.
Collapse
Affiliation(s)
- Jianling Jin
- State key laboratory of microbial technology, Shandong University, 27 Shanda South Road, Jinan250100, P.R.China
| | - Peiji Gao
- State key laboratory of microbial technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R.China
| | - Yumin Mao
- State key laboratory of genetic engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R.China
| |
Collapse
|
30
|
Barlow M, Hall BG. Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase. Genetics 2002; 160:823-32. [PMID: 11901104 PMCID: PMC1462021 DOI: 10.1093/genetics/160.3.823] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To evaluate the validity of our in vitro evolution method as a model for natural evolutionary processes, the TEM-1 beta-lactamase gene was evolved in vitro and was selected for increased resistance to cefotaxime, cefuroxime, ceftazadime, and aztreonam, i.e., the "extended-spectrum" phenotype. The amino acid substitutions recovered in 10 independent in vitro evolvants were compared with the amino acid substitutions in the naturally occurring extended-spectrum TEM alleles. Of the nine substitutions that have arisen multiple times in naturally occurring extended-spectrum TEM alleles, seven were recovered multiple times in vitro. We take this result as evidence that our in vitro evolution technique accurately mimics natural evolution and can therefore be used to predict the results of natural evolutionary processes. Additionally, our results predict that a phenotype not yet observed among TEM beta-lactamases in nature-resistance to cefepime-is likely to arise in nature.
Collapse
Affiliation(s)
- Miriam Barlow
- Biology Department, University of Rochester, Rochester, New York 14627-0211, USA
| | | |
Collapse
|
31
|
Wery J, Hidayat B, Kieboom J, de Bont JA. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 2001; 276:5700-6. [PMID: 11094055 DOI: 10.1074/jbc.m007687200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel insertion sequence ISS12 plays a key role in the tolerance of Pseudomonas putida S12 to sudden toluene stress. Under normal culturing conditions the P. putida S12 genome contained seven copies of ISS12. However, a P. putida S12 population growing to high cell density after sudden addition of a separate phase of toluene carried eight copies. The survival frequency of cells in this variant P. putida S12 population was 1000 times higher than in "normal" P. putida S12 populations. Analysis of the nucleotide sequence flanking the extra ISS12 insertion revealed integration into the srpS gene. srpS forms a gene cluster with srpR and both are putative regulators of the solvent resistance pump SrpABC. SrpABC makes a major contribution to solvent tolerance in P. putida S12 and is induced by toluene. The basal level of srp promoter activity in the P. putida S12 variant was seven times higher than in wild-type P. putida S12. Introduction of the intact srpRS gene cluster in the variant resulted in a dramatic decrease of survival frequency after a toluene shock. These findings strongly suggest that interruption of srpS by ISS12 up-regulates expression of the solvent pump, enabling the bacterium to tolerate sudden exposure to lethal concentrations of toxic solvents. We propose that P. putida S12 employs ISS12 as a mutator element to generate diverse mutations to swiftly adapt when confronted with severe adverse conditions.
Collapse
Affiliation(s)
- J Wery
- Division of Industrial Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, P. O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M. Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 2000; 156:477-88. [PMID: 11014799 PMCID: PMC1461276 DOI: 10.1093/genetics/156.2.477] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As part of a long-term evolution experiment, two populations of Escherichia coli B adapted to a glucose minimal medium for 10,000 generations. In both populations, multiple IS-associated mutations arose that then went to fixation. We identify the affected genetic loci and characterize the molecular events that produced nine of these mutations. All nine were IS-mediated events, including simple insertions as well as recombination between homologous elements that generated inversions and deletions. Sequencing DNA adjacent to the insertions indicates that the affected genes are involved in central metabolism (knockouts of pykF and nadR), cell wall synthesis (adjacent to the promoter of pbpA-rodA), and ill-defined functions (knockouts of hokB-sokB and yfcU). These genes are candidates for manipulation and competition experiments to determine whether the mutations were beneficial or merely hitchhiked to fixation.
Collapse
Affiliation(s)
- D Schneider
- Laboratoire Plasticité et Expression des Génomes Microbiens, Université Joseph Fourier, 38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
33
|
Schneider D, Faure D, Noirclerc-Savoye M, Barrière AC, Coursange E, Blot M. A broad-host-range plasmid for isolating mobile genetic elements in gram-negative bacteria. Plasmid 2000; 44:201-7. [PMID: 10964631 DOI: 10.1006/plas.2000.1483] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid pGBG1 was constructed to isolate mobile genetic elements in a wide variety of gram-negative bacteria. The mutation target, carried on a broad-host-range vector, allows positive selection for tetracycline resistance. In tests using several gram-negative bacteria we could detect transposition events of either insertion sequences or transposons. A new insertion sequence (IS) element was identified in Ralstonia eutropha.
Collapse
Affiliation(s)
- D Schneider
- Plasticité et Expression des Génomes Microbiens, CNRS EP2029, CEA LRC N degrees 12, Université Joseph Fourier, 460 rue de la Piscine, Grenoble Cedex 9, F-38041, France
| | | | | | | | | | | |
Collapse
|
34
|
Mahajan SK, Narayana Rao AVSS, Bhattacharjee SK. Stationary-state mutagenesis inEscherichia coli: A model. J Genet 2000. [DOI: 10.1007/bf02715869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
|
36
|
Abstract
A decade of research on adaptive mutation has revealed a plethora of mutagenic mechanisms that may be important in evolution. The DNA synthesis associated with recombination could be an important source of spontaneous mutation in cells that are not proliferating. The movement of insertion elements can be responsive to environmental conditions. Insertion elements not only activate and inactivate genes, they also provide sequence homology that allows large-scale genomic rearrangements. Some conjugative plasmids can recombine with their host's chromosome, and may acquire chromosomal genes that could then spread through the population and even to other species. Finally, a subpopulation of transient hypermutators could be a source of multiple variant alleles, providing a mechanism for rapid evolution under adverse conditions.
Collapse
Affiliation(s)
- P L Foster
- Department of Biology, Indiana University, Bloomington 47405, USA.
| |
Collapse
|