1
|
Li Y, Pulford CV, Díaz P, Perez-Sepulveda BM, Duarte C, Predeus AV, Wiesner M, Heavens D, Low R, Schudoma C, Montaño A, Hall N, Moreno J, Hinton JCD. Potential links between human bloodstream infection by Salmonella enterica serovar Typhimurium and international transmission to Colombia. PLoS Negl Trop Dis 2025; 19:e0012801. [PMID: 39874387 PMCID: PMC11790238 DOI: 10.1371/journal.pntd.0012801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Salmonella enterica serovar Typhimurium is a prevalent food-borne pathogen that is usually associated with gastroenteritis infection. S. Typhimurium is also a major cause of bloodstream infections in sub-Saharan Africa, and is responsible for invasive non-typhoidal Salmonella (iNTS) disease. The pathogen also causes bloodstream infection in Colombia, but there has been a lack of information about the S. Typhimurium isolates that were responsible. Here, we investigated the genomic characteristics of 270 S. Typhimurium isolates from bloodstream infection patients in Colombia, collected between 1997 and 2017. We used whole-genome sequencing to analyse multidrug-resistant (MDR) profiles, plasmid distribution, and to define phylogenetic relationships. The study identified the distinct sequence types and phylogenetic clusters of S. Typhimurium prevalent in Colombia. The majority of isolates (90.8%) were ST19, which is distinct from the iNTS-associated S. Typhimurium in sub-Saharan Africa (ST313). The two prominent clusters of MDR S. Typhimurium were either DT104 or closely related to the LT2 reference strain. We used a phylogenetic approach to associate the Colombian clusters with global S. Typhimurium isolates from public databases. By putting the Colombian S. Typhimurium isolates in the context of the global spread of DT104, ST313 and LT2-related variants, we found that the Colombian clusters were introduced to the country via multiple independent events that were consistent with international transmission. We suggest that the acquisition of quinolone and chloramphenicol resistance by the Colombian S. Typhimurium isolates was driven by horizontal gene transfer. Three ST313 isolates that caused bloodstream infection in Colombia were identified. These ST313 isolates were related to the Malawian ST313 lineage 3 & UK ST313, and shared a similarly high invasiveness index. To our knowledge, this is the first report of ST313 in Colombia.
Collapse
Affiliation(s)
- Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Caisey V. Pulford
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Paula Díaz
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Blanca M. Perez-Sepulveda
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Alexander V. Predeus
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Magdalena Wiesner
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | | | - Ross Low
- Earlham Institute, Norwich, United Kingdom
| | | | - Angeline Montaño
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jaime Moreno
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Schwieters A, Ahmer BMM. Identification of new SdiA regulon members of Escherichia coli, Enterobacter cloacae, and Salmonella enterica serovars Typhimurium and Typhi. Microbiol Spectr 2024; 12:e0192924. [PMID: 39436139 PMCID: PMC11619404 DOI: 10.1128/spectrum.01929-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Bacteria can coordinate behavior in response to population density through the production, release, and detection of small molecules, a phenomenon known as quorum sensing. Salmonella enterica is among a group of Enterobacteriaceae that can detect signaling molecules of the N-acyl homoserine lactone (AHL) type but lack the ability to produce them. The AHLs are detected by the LuxR-type transcription factor, SdiA. This enables a behavior known as eavesdropping, where organisms can sense the signaling molecules of other species of bacteria. The role of SdiA remains largely unknown. Here, we use RNA-seq to more completely identify the sdiA regulons of two clinically significant serovars of Salmonella enterica: Typhimurium and Typhi. We find that their sdiA regulons are largely conserved despite the significant differences in pathogenic strategy and host range of these two serovars. Previous studies identified sdiA-regulated genes in Escherichia coli and Enterobacter cloacae, but there is surprisingly no overlap in regulon membership between the different species. This led us to individually test orthologs of each regulon member in the other species and determine that there is indeed some overlap. Unfortunately, the functions of most sdiA-regulated genes are unknown, with the overall function of eavesdropping in these organisms remaining unclear. IMPORTANCE Many bacterial species detect their own population density through the production, release, and detection of small molecules (quorum sensing). Salmonella and other Enterobacteriaceae have a modified system that detects the N-acyl-homoserine lactones of other bacteria through the solo quorum sensing receptor SdiA, a behavior known as eavesdropping. The roles of sdiA-dependent eavesdropping in the lifecycles of these bacteria are unknown. In this study, we identify sdiA-dependent transcriptional responses in two clinically relevant serovars of Salmonella, Typhimurium and Typhi, and note that their responses are partially conserved. We also demonstrate for the first time that sdiA-dependent regulation of genes is partially conserved in Enterobacter cloacae and Escherichia coli as well, indicating a degree of commonality in eavesdropping among the Enterobacteriaceae.
Collapse
Affiliation(s)
- Andrew Schwieters
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Brian M. M. Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Klose SM, Legione AR, Bushell RN, Browning GF, Vaz PK. Unveiling genome plasticity and a novel phage in Mycoplasma felis: Genomic investigations of four feline isolates. Microb Genom 2024; 10:001227. [PMID: 38546735 PMCID: PMC11004492 DOI: 10.1099/mgen.0.001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Mycoplasma felis has been isolated from diseased cats and horses, but to date only a single fully assembled genome of this species, of an isolate from a horse, has been characterized. This study aimed to characterize and compare the completely assembled genomes of four clinical isolates of M. felis from three domestic cats, assembled with the aid of short- and long-read sequencing methods. The completed genomes encoded a median of 759 ORFs (range 743-777) and had a median average nucleotide identity of 98.2 % with the genome of the available equid origin reference strain. Comparative genomic analysis revealed the occurrence of multiple horizontal gene transfer events and significant genome reassortment. This had resulted in the acquisition or loss of numerous genes within the Australian felid isolate genomes, encoding putative proteins involved in DNA transfer, metabolism, DNA replication, host cell interaction and restriction modification systems. Additionally, a novel mycoplasma phage was detected in one Australian felid M. felis isolate by genomic analysis and visualized using cryo-transmission electron microscopy. This study has highlighted the complex genomic dynamics in different host environments. Furthermore, the sequences obtained in this work will enable the development of new diagnostic tools, and identification of future infection control and treatment options for the respiratory disease complex in cats.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, NRW, Germany
| | - Alistair R. Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Rhys N. Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| |
Collapse
|
6
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
7
|
Frankel G, David S, Low WW, Seddon C, Wong JC, Beis K. Plasmids pick a bacterial partner before committing to conjugation. Nucleic Acids Res 2023; 51:8925-8933. [PMID: 37592747 PMCID: PMC10516633 DOI: 10.1093/nar/gkad678] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
Bacterial conjugation was first described by Lederberg and Tatum in the 1940s following the discovery of the F plasmid. During conjugation a plasmid is transferred unidirectionally from one bacterium (the donor) to another (the recipient), in a contact-dependent manner. Conjugation has been regarded as a promiscuous mechanism of DNA transfer, with host range determined by the recipient downstream of plasmid transfer. However, recent data have shown that F-like plasmids, akin to tailed Caudovirales bacteriophages, can pick their host bacteria prior to transfer by expressing one of at least four structurally distinct isoforms of the outer membrane protein TraN, which has evolved to function as a highly sensitive sensor on the donor cell surface. The TraN sensor appears to pick bacterial hosts by binding compatible outer membrane proteins in the recipient. The TraN variants can be divided into specialist and generalist sensors, conferring narrow and broad plasmid host range, respectively. In this review we discuss recent advances in our understanding of the function of the TraN sensor at the donor-recipient interface, used by F-like plasmids to select bacterial hosts within polymicrobial communities prior to DNA transfer.
Collapse
Affiliation(s)
- Gad Frankel
- Department of Life Sciences, Imperial College, London, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Wen Wen Low
- Department of Life Sciences, Imperial College, London, UK
| | - Chloe Seddon
- Department of Life Sciences, Imperial College, London, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | | | - Konstantinos Beis
- Department of Life Sciences, Imperial College, London, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| |
Collapse
|
8
|
Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, Lee MD, Maurer JJ. Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics (Basel) 2023; 12:1006. [PMID: 37370325 DOI: 10.3390/antibiotics12061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Animal manures contain a large and diverse reservoir of antimicrobial resistance (AMR) genes that could potentially spillover into the general population through transfer of AMR to antibiotic-susceptible pathogens. The ability of poultry litter microbiota to transmit AMR was examined in this study. Abundance of phenotypic AMR was assessed for litter microbiota to the antibiotics: ampicillin (Ap; 25 μg/mL), chloramphenicol (Cm; 25 μg/mL), streptomycin (Sm; 100 μg/mL), and tetracycline (Tc; 25 μg/mL). qPCR was used to estimate gene load of streptomycin-resistance and sulfonamide-resistance genes aadA1 and sul1, respectively, in the poultry litter community. AMR gene load was determined relative to total bacterial abundance using 16S rRNA qPCR. Poultry litter contained 108 CFU/g, with Gram-negative enterics representing a minor population (<104 CFU/g). There was high abundance of resistance to Sm (106 to 107 CFU/g) and Tc (106 to 107 CFU/g) and a sizeable antimicrobial-resistance gene load in regards to gene copies per bacterial genome (aadA1: 0.0001-0.0060 and sul1: 0.0355-0.2455). While plasmid transfer was observed from Escherichia coli R100, as an F-plasmid donor control, to the Salmonella recipient in vitro, no AMR Salmonella were detected in a poultry litter microcosm with the inclusion of E. coli R100. Confirmatory experiments showed that isolated poultry litter bacteria were not interfering with plasmid transfer in filter matings. As no R100 transfer was observed at 25 °C, conjugative plasmid pRSA was chosen for its high plasmid transfer frequency (10-4 to 10-5) at 25 °C. While E. coli strain background influenced the persistence of pRSA in poultry litter, no plasmid transfer to Salmonella was ever observed. Although poultry litter microbiota contains a significant AMR gene load, potential to transmit resistance is low under conditions commonly used to assess plasmid conjugation.
Collapse
Affiliation(s)
- Aaron Oxendine
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Allison A Walsh
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Tamesha Young
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Brandan Dixon
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Alexa Hoke
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Eda Erdogan Rogers
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Margie D Lee
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John J Maurer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
9
|
Fatima S, Ishaq Z, Irfan M, AlAsmari AF, Achakzai JK, Zaheer T, Ali A, Akbar A. Whole-genome sequencing of multidrug resistance Salmonella Typhi clinical strains isolated from Balochistan, Pakistan. Front Public Health 2023; 11:1151805. [PMID: 37261234 PMCID: PMC10227597 DOI: 10.3389/fpubh.2023.1151805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Salmonella enterica serovar Typhi (S. Typhi) is a major cause of morbidity and mortality in developing countries, contributing significantly to the global disease burden. Methods In this study, S. Typhi strains were isolated from 100 patients exhibiting symptoms of typhoid fever at a tertiary care hospital in Pakistan. Antimicrobial testing of all isolates was performed to determine the sensitivity and resistance pattern. Three MDR strains, namely QS194, QS430, and QS468, were subjected to whole genome sequencing for genomic characterization. Results and Discussion MLST analysis showed that QS194, belonged to ST19, which is commonly associated with Salmonella enterica serovar typhimurium. In contrast, QS430 and QS468, belonged to ST1, a sequence type frequently associated with S. Typhi. PlasmidFinder identified the presence of IncFIB(S) and IncFII(S) plasmids in QS194, while IncQ1 was found in QS468. No plasmid was detected in QS430. CARD-based analysis showed that the strains were largely resistant to a variety of antibiotics and disinfecting agents/antiseptics, including fluoroquinolones, cephalosporins, monobactams, cephamycins, penams, phenicols, tetracyclines, rifamycins, aminoglycosides, etc. The S. Typhi strains possessed various virulence factors, such as Vi antigen, Agf/Csg, Bcf, Fim, Pef, etc. The sequencing data indicated that the strains had antibiotic resistance determinants and shared common virulence factors. Pangenome analysis of the selected S. Typhi strains identified 13,237 genes, with 3,611 being core genes, 2,093 shell genes, and 7,533 cloud genes. Genome-based typing and horizontal gene transfer analysis revealed that the strains had different evolutionary origins and may have adapted to distinct environments or host organisms. These findings provide important insights into the genetic characteristics of S. Typhi strains and their potential association with various ecological niches and host organisms.
Collapse
Affiliation(s)
- Sareen Fatima
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, (NUST), Islamabad, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jahangir Khan Achakzai
- Disipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, Balochistan, Pakistan
| | - Tahreem Zaheer
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, (NUST), Islamabad, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| |
Collapse
|
10
|
Kumar Panda R, Darshana Patra S, Kumar Mohakud N, Ranjan Sahu B, Ghosh M, Misra N, Suar M. Draft genome of clinical isolate Salmonella enterica Typhimurium ms204 from Odisha, India, reveals multi drug resistance and decreased virulent gene expression. Gene 2023; 863:147248. [PMID: 36738898 DOI: 10.1016/j.gene.2023.147248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Salmonellosis, a food-borne illnesses caused by enteropathogenic bacterium Salmonella spp., is a continuous concern in both developed and developing countries. This study was carried out to perform an in-depth examination of an MDR Salmonella strain isolated from gastroenteritis patients in Odisha, India, in order to understand the genomic architecture, distribution of pathogenic island regions, and virulence factor diversity. Fecal samples were obtained from individuals with acute gastroenteritis and further subjected to panel of biochemical tests. The IlluminaHiSeq X sequencer system was used to generate whole-genome sequencing. The draft genome was submitted to gene prediction and annotation using RAST annotation system. Pathogenicity Island database and bioinformatics pipeline were used to find Salmonella pathogenicity islands (SPI) from the built scaffold. The gene expression in SPI1 and SPI2 encoded regions was investigated using qRT-PCR. The taxonomic position of Salmonella enterica subsp. enterica serovar Typhimurium was validated by serotype analysis and 16S rRNA based phylogenetic analysis. The de-novo genome assembly showed total length of 5,034,110 bp and produced 37 contigs. There are nine prophage areas, comprising of 12 regions and scaffold 8 contained a single plasmid, IncFIB. The isolate contains six known SPI genes content which was shown to be largely conserved from SPI1 to SPI2. We identified the sit ABCD cluster regulatory cascade and acquired antibiotic resistance genes in S. enterica Typhimurium ms204. Further research may aid in the correct diagnosis and monitoring of MDR Salmonella strains with a variety of physiological activities.
Collapse
Affiliation(s)
| | | | - Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Bikash Ranjan Sahu
- Department of Zoology, Centurion University of Technology and Management, India
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
11
|
Low WW, Seddon C, Beis K, Frankel G. The Interaction of the F-Like Plasmid-Encoded TraN Isoforms with Their Cognate Outer Membrane Receptors. J Bacteriol 2023; 205:e0006123. [PMID: 36988519 PMCID: PMC10127662 DOI: 10.1128/jb.00061-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Horizontal gene transfer via conjugation plays a major role in bacterial evolution. In F-like plasmids, efficient DNA transfer is mediated by close association between donor and recipient bacteria. This process, known as mating pair stabilization (MPS), is mediated by interactions between the plasmid-encoded outer membrane (OM) protein TraN in the donor and chromosomally-encoded OM proteins in the recipient. We have recently reported the existence of 7 TraN sequence types, which are grouped into 4 structural types, that we named TraNα, TraNβ, TraNγ, and TraNδ. Moreover, we have shown specific pairing between TraNα and OmpW, TraNβ and OmpK36 of Klebsiella pneumoniae, TraNγ and OmpA, and TraNδ and OmpF. In this study, we found that, although structurally similar, TraNα encoded by the Salmonella enterica pSLT plasmid (TraNα2) binds OmpW in both Escherichia coli and Citrobacter rodentium, while TraNα encoded by the R100-1 plasmid (TraNα1) only binds OmpW in E. coli. AlphaFold2 predictions suggested that this specificity is mediated by a single amino acid difference in loop 3 of OmpW, which we confirmed experimentally. Moreover, we show that single amino acids insertions into loop 3 of OmpK36 affect TraNβ-mediated conjugation efficiency of the K. pneumoniae resistance plasmid pKpQIL. Lastly, we report that TraNβ can also mediate MPS by binding OmpK35, making it the first TraN variant that can bind more than one OM protein in the recipient. Together, these data show that subtle sequence differences in the OM receptors can impact TraN-mediated conjugation efficiency. IMPORTANCE Conjugation plays a central role in the spread of antimicrobial resistance genes among bacterial pathogens. Efficient conjugation is mediated by formation of mating pairs via a pilus, followed by mating pair stabilization (MPS), mediated by tight interactions between the plasmid-encoded outer membrane protein (OMP) TraN in the donor (of which there are 7 sequence types grouped into the 4 structural isoforms α, β, γ, and δ), and an OMP receptor in the recipient (OmpW, OmpK36, OmpA, and OmpF, respectively). In this study, we found that subtle differences in OmpW and OmpK36 have significant consequences on conjugation efficiency and specificity, highlighting the existence of selective pressure affecting plasmid-host compatibility and the flow of horizontal gene transfer in bacteria.
Collapse
Affiliation(s)
- Wen Wen Low
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Chloe Seddon
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, United Kingdom
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
12
|
Abstract
Plasmids are key mobile genetic elements in bacterial evolution and ecology as they allow the rapid adaptation of bacteria under selective environmental changes. However, the genetic information associated with plasmids is usually considered separately from information about their environmental origin. To broadly understand what kinds of traits may become mobilized by plasmids in different environments, we analyzed the properties and accessory traits of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts and isolation sources. Although most plasmid research focuses on resistance traits, such genes made up <1% of the total genetic information carried by plasmids. Similar to traits encoded on the bacterial chromosome, plasmid accessory trait compositions (including general Clusters of Orthologous Genes [COG] functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly defined environment types (human, animal, wastewater, plant, soil, marine, and freshwater). Despite their potential for horizontal gene transfer, plasmid traits strongly varied with their host's taxonomic assignment. However, the trait differences across environments of broad COG categories could not be entirely explained by plasmid host taxonomy, suggesting that environmental selection acts on the plasmid traits themselves. Finally, some plasmid traits and environments (e.g., resistance genes in human-related environments) were more often associated with mobilizable plasmids (those having at least one detected relaxase) than others. Overall, these findings underscore the high level of diversity of traits encoded by plasmids and provide a baseline to investigate the potential of plasmids to serve as reservoirs of adaptive traits for microbial communities. IMPORTANCE Plasmids are well known for their role in the transmission of antibiotic resistance-conferring genes. Beyond human and clinical settings, however, they disseminate many other types of genes, including those that contribute to microbially driven ecosystem processes. In this study, we identified the distribution of traits genetically encoded by plasmids isolated from seven broadly categorized environments. We find that plasmid trait content varied with both bacterial host taxonomy and environment and that, on average, half of the plasmids were potentially mobilizable. As anthropogenic activities impact ecosystems and the climate, investigating and identifying the mechanisms of how microbial communities can adapt will be imperative for predicting the impacts on ecosystem functioning.
Collapse
|
13
|
Xie M, Chen K, Chan EWC, Chen S. Identification and genetic characterization of two conjugative plasmids that confer azithromycin resistance in Salmonella. Emerg Microbes Infect 2022; 11:1049-1057. [PMID: 35333699 PMCID: PMC9009942 DOI: 10.1080/22221751.2022.2058420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the development of multidrug resistance in Salmonella spp. in recent years, ciprofloxacin, ceftriaxone, and azithromycin have become the principal antimicrobial agents used for the treatment of Salmonella infections. The underlying mechanisms of plasmid-mediated ciprofloxacin and ceftriaxone resistance have attracted extensive research interest, but not much is focused on azithromycin resistance in Salmonella. In this study, we investigated the genetic features of two conjugative plasmids and a non-transferable virulence plasmid that encode azithromycin resistance in food-borne Salmonella strains. We showed that the azithromycin resistance phenotype of these strains was conferred by erm(B) gene and/or the complete genetic structure IS26-mph(A)-mrx-mphR-IS6100. Comparative genetic analysis showed that these conjugative plasmids might originate from Escherichia coli and play a role in the rapid dissemination of azithromycin resistance in Salmonella. These conjugative plasmids may also serve as a reservoir of antimicrobial resistance (AMR) genes in Salmonella in which these AMR genes may be acquired by the virulence plasmids of Salmonella via genetic transposition events. Importantly, the formation of a novel macrolide-resistance and virulence-encoding plasmid, namely pS1380-118 kb, was observed in this study. This plasmid was found to exhibit transmission potential and pose a serious health threat as the extensive transmission of azithromycin resistant and virulent Salmonella strains would further compromise the effectiveness of treatment for salmonellosis. Further surveillance and research on the dissemination and evolution routes of pS1380-118kb-like plasmids in potential human pathogens of the family of Enterobacteriaceae are necessary.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
14
|
Downing T, Rahm A. Bacterial plasmid-associated and chromosomal proteins have fundamentally different properties in protein interaction networks. Sci Rep 2022; 12:19203. [PMID: 36357451 PMCID: PMC9649638 DOI: 10.1038/s41598-022-20809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into new anatomical and environmental niches, implying that plasmid-encoded genes can cooperate well with chromosomal genes. We hypothesise that such mobile genes are functionally different to chromosomal ones due to this ability to encode proteins performing non-essential functions like antimicrobial resistance and traverse distinct host cells. The effect of plasmid-driven gene gain on protein-protein interaction network topology is an important question in this area. Moreover, the extent to which these chromosomally- and plasmid-encoded proteins interact with proteins from their own groups compared to the levels with the other group remains unclear. Here, we examined the incidence and protein-protein interactions of all known plasmid-encoded proteins across representative specimens from most bacteria using all available plasmids. We found that plasmid-encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid genes are preferentially associated with different species but had limited taxonomical power beyond this. Surprisingly, plasmid-encoded proteins had both more protein-protein interactions compared to chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have fewer protein-level interactions. Nonetheless, topological analysis and investigation of the protein-protein interaction networks' connectivity and change in the number of independent components demonstrated that the plasmid-encoded proteins had limited overall impact in > 96% of samples. This paper assembled extensive data on plasmid-encoded proteins, their interactions and associations with diverse bacterial specimens that is available for the community to investigate in more detail.
Collapse
Affiliation(s)
- Tim Downing
- grid.15596.3e0000000102380260School of Biotechnology, Dublin City University, Dublin, Ireland ,grid.63622.330000 0004 0388 7540Present Address: The Pirbright Institute, Pirbright, UK
| | - Alexander Rahm
- grid.449688.f0000 0004 0647 1487GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
15
|
Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022; 10:2006. [PMID: 36296282 PMCID: PMC9606911 DOI: 10.3390/microorganisms10102006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a Gram-negative pathogen that causes typhoid fever in humans. Though many serotypes of Salmonella spp. are capable of causing disease in both humans and animals alike, S. Typhi and S. Paratyphi are common in human hosts only. The global burden of typhoid fever is attributable to more than 27 million cases each year and approximately 200,000 deaths worldwide, with many regions such as Africa, South and Southeast Asia being the most affected in the world. The pathogen is able to cause disease in hosts by evading defense systems, adhesion to epithelial cells, and survival in host cells in the presence of several virulence factors, mediated by virulence plasmids and genes clustered in distinct regions known as Salmonella pathogenicity islands (SPIs). These factors, coupled with plasmid-mediated antimicrobial resistance genes, enable the bacterium to become resistant to various broad-spectrum antibiotics used in the treatment of typhoid fever and other infections caused by Salmonella spp. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains in many countries of the world has raised great concern over the rise of antibiotic resistance in pathogens such as S. Typhi. In order to identify the key virulence factors involved in S. Typhi pathogenesis and infection, this review delves into various mechanisms of virulence, pathogenicity, and antimicrobial resistance to reinforce efficacious disease management.
Collapse
Affiliation(s)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan
| |
Collapse
|
16
|
Mellor KC, Blackwell GA, Cawthraw SA, Mensah NE, Reid SWJ, Thomson NR, Petrovska L, Mather AE. Contrasting long-term dynamics of antimicrobial resistance and virulence plasmids in Salmonella Typhimurium from animals. Microb Genom 2022; 8. [PMID: 35997596 PMCID: PMC9484752 DOI: 10.1099/mgen.0.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR–virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.
Collapse
Affiliation(s)
- Kate C Mellor
- Royal Veterinary College, Hatfield, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Grace A Blackwell
- European Bioinformatics Institute, Hinxton, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
Low WW, Wong JLC, Beltran LC, Seddon C, David S, Kwong HS, Bizeau T, Wang F, Peña A, Costa TRD, Pham B, Chen M, Egelman EH, Beis K, Frankel G. Mating pair stabilization mediates bacterial conjugation species specificity. Nat Microbiol 2022; 7:1016-1027. [PMID: 35697796 PMCID: PMC9246713 DOI: 10.1038/s41564-022-01146-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Bacterial conjugation mediates contact-dependent transfer of DNA from donor to recipient bacteria, thus facilitating the spread of virulence and resistance plasmids. Here we describe how variants of the plasmid-encoded donor outer membrane (OM) protein TraN cooperate with distinct OM receptors in recipients to mediate mating pair stabilization and efficient DNA transfer. We show that TraN from the plasmid pKpQIL (Klebsiella pneumoniae) interacts with OmpK36, plasmids from R100-1 (Shigella flexneri) and pSLT (Salmonella Typhimurium) interact with OmpW, and the prototypical F plasmid (Escherichia coli) interacts with OmpA. Cryo-EM analysis revealed that TraNpKpQIL interacts with OmpK36 through the insertion of a β-hairpin in the tip of TraN into a monomer of the OmpK36 porin trimer. Combining bioinformatic analysis with AlphaFold structural predictions, we identified a fourth TraN structural variant that mediates mating pair stabilization by binding OmpF. Accordingly, we devised a classification scheme for TraN homologues on the basis of structural similarity and their associated receptors: TraNα (OmpW), TraNβ (OmpK36), TraNγ (OmpA), TraNδ (OmpF). These TraN-OM receptor pairings have real-world implications as they reflect the distribution of resistance plasmids within clinical Enterobacteriaceae isolates, demonstrating the importance of mating pair stabilization in mediating conjugation species specificity. These findings will allow us to predict the distribution of emerging resistance plasmids in high-risk bacterial pathogens. Combining conjugation and structural analyses, the authors show that TraN-OMP pairings determine bacterial conjugation species specificity, with implications in resistance plasmid distribution within Enterobacteriaceae.
Collapse
Affiliation(s)
- Wen Wen Low
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Joshua L C Wong
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Leticia C Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Chloe Seddon
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Hok-Sau Kwong
- Department of Life Sciences, Imperial College, London, UK.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tatiana Bizeau
- Department of Life Sciences, Imperial College, London, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Alejandro Peña
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Gad Frankel
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK. .,Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
18
|
Mohakud NK, Panda RK, Patra SD, Sahu BR, Ghosh M, Kushwaha GS, Misra N, Suar M. Genome analysis and virulence gene expression profile of a multi drug resistant Salmonella enterica serovar Typhimurium ms202. Gut Pathog 2022; 14:28. [PMID: 35765034 PMCID: PMC9237969 DOI: 10.1186/s13099-022-00498-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background In India, multi-drug resistance in Salmonella enterica serovar Typhimurium poses a significant health threat. Indeed, S. Typhimurium has remained unknown for a large portion of its genome associated with various physiological functions including mechanism of drug resistance and virulence. The whole-genome sequence of a Salmonella strain obtained from feces of a patient with gastroenteritis in Odisha, India, was analyzed for understanding the disease association and underlying virulence mechanisms. Results The de novo assembly yielded 17 contigs and showed 99.9% similarity to S. enterica sub sp enterica strain LT2 and S. enteric subsp salamae strain DSM 9220. S. Typhimurium ms202 strain constitutes six known Salmonella pathogenicity islands and nine different phages. The comparative interpretation of pathogenic islands displayed the genes contained in SPI-1 and SPI-2 to be highly conserved. We identified sit ABCD cluster regulatory cascade in SPI-1. Multiple antimicrobial resistance genes were identified that directly implies antibiotic-resistant phenotype. Notably, seven unique genes were identified as "acquired antibiotic resistance". These data suggest that virulence in S. enterica Typhimurium ms202 is associated with SPI-1 and SPI-2. Further, we found several virulent genes encoding SPI regions belonging to type III secretion systems (T3SS) of bacteria were significantly upregulated in ms202 compared to control LT2. Moreover, all these genes were significantly downregulated in S. enterica Typhimurium ms202 as compared to control LT2 on adding Mn2+ exogenously. Conclusions Our study raises a vital concern about the potential diffusion of a novel multi-drug resistant S. enterica Typhimurium ms202. It justifies this clinical pathogen to demonstrate a higher degree survival due to higher expression of virulent genes and enhanced ability of metallic ion acquisition. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00498-w.
Collapse
Affiliation(s)
- Nirmal Kumar Mohakud
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | | | | | | | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
19
|
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2021; 30:534-543. [PMID: 34848115 DOI: 10.1016/j.tim.2021.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
The 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood. The current challenge for the field, however, is to better understand how these solutions operate in natural bacterial communities to explain and predict the distribution of plasmids and the dynamics of the horizontal gene transfer that they mediate in bacterial (pan)genomes.
Collapse
Affiliation(s)
- Michael A Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Humphrey S, Fillol-Salom A, Quiles-Puchalt N, Ibarra-Chávez R, Haag AF, Chen J, Penadés JR. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun 2021; 12:6509. [PMID: 34750368 PMCID: PMC8575950 DOI: 10.1038/s41467-021-26004-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
It is commonly assumed that the horizontal transfer of most bacterial chromosomal genes is limited, in contrast to the frequent transfer observed for typical mobile genetic elements. However, this view has been recently challenged by the discovery of lateral transduction in Staphylococcus aureus, where temperate phages can drive the transfer of large chromosomal regions at extremely high frequencies. Here, we analyse previously published as well as new datasets to compare horizontal gene transfer rates mediated by different mechanisms in S. aureus and Salmonella enterica. We find that the horizontal transfer of core chromosomal genes via lateral transduction can be more efficient than the transfer of classical mobile genetic elements via conjugation or generalized transduction. These results raise questions about our definition of mobile genetic elements, and the potential roles played by lateral transduction in bacterial evolution.
Collapse
Affiliation(s)
- Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ibarra-Chávez
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Biology, Section of Microbiology, University of Copenhagen, Universitetsparken 15, Bldg. 1, DK2100, Copenhagen, Denmark
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, 46113, Spain.
| |
Collapse
|
21
|
The Invasin and Complement-Resistance Protein Rck of Salmonella is More Widely Distributed than Previously Expected. Microbiol Spectr 2021; 9:e0145721. [PMID: 34704781 PMCID: PMC8549739 DOI: 10.1128/spectrum.01457-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rck open reading frame (ORF) on the pefI-srgC operon encodes an outer membrane protein responsible for invasion of nonphagocytic cell lines and resistance to complement-mediated killing. Until now, the rck ORF was only detected on the virulence plasmids of three serovars of Salmonella subsp. enterica (i.e., Bovismorbificans, Enteritidis, and Typhimurium). The increasing number of Salmonella genome sequences allowed us to use a combination of reference sequences and whole-genome multilocus sequence typing (wgMLST) data analysis to probe the presence of the operon and of rck in a wide array of isolates belonging to all Salmonella species and subspecies. We established the presence of partial or complete operons in 61 subsp. enterica serovars as well as in 4 other subspecies with various syntenies and frequencies. The rck ORF itself was retrieved in 36 subsp. enterica serovars and in two subspecies with either chromosomal or plasmid-borne localization. It displays high conservation of its sequence within the genus, and we demonstrated that most of the allelic variations identified did not alter the virulence properties of the protein. However, we demonstrated the importance of the residue at position 38 (at the level of the first extracellular loop of the protein) in the invasin function of Rck. Altogether, our results highlight that rck is not restricted to the three formerly identified serovars and could therefore have a more important role in virulence than previously expected. Moreover, this work raises questions about the mechanisms involved in rck acquisition and about virulence plasmid distribution and evolution. IMPORTANCE The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood. The significance of our research is in determining the distribution of one of these factors, the virulence plasmid-encoded invasin and resistance to complement killing protein Rck. In addition to providing elements of reflection concerning the mechanisms of acquisition of specific virulence genes in certain serotypes, this work will help to understand the role of Rck in the pathogenesis of Salmonella.
Collapse
|
22
|
Harmer CJ. HI1 and I1 Resistance Plasmids from Salmonella enterica Serovar Typhimurium Strain SRC27 Are Epidemic. Microb Drug Resist 2021; 27:1495-1504. [PMID: 34242087 DOI: 10.1089/mdr.2020.0579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugative plasmids are a major contributor to the global spread of antibiotic resistance determinants, but the tracking of their evolutionary history is often neglected. Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SRC27 was isolated from an equine infection in Australia in 1999. SRC27 was known to carry conjugative HI1 and I1 resistance plasmids. In this study, SRC27 was sequenced to determine the relationship between these HI1 and I1 resistance plasmids it was known to carry and HI1 and I1 resistance plasmids circulating worldwide. The resistance genes in the HI1 plasmid, pSRC27-H, are all located in a single complex 34.7 kb resistance region. The backbone sequence and location of the pSRC27-H resistance island were used to identify the most closely related HI1 plasmids among the >90 that have been sequenced since 2011. This defined a sublineage of 20 type 2 HI1 plasmids that have been circulating in Europe, Asia, North America, and Australia since at least 1993. The overall resistance gene content of these HI1 plasmids differs, indicating extensive evolution in situ through the acquisition of additional transposons and deletion or replacement of ancestral regions. The I1 plasmid contains a complete copy of Tn5393a, containing the strAB genes that confer resistance to streptomycin. The precise location of Tn5393a in the backbone also defined a globally disseminated sublineage of I1 plasmids, many of which have also acquired additional resistance determinants. The sequence revealed that SRC27 also carried two additional plasmids, the pSLT-type FIB(S):FII(S) virulence plasmid and a small cryptic theta-replicating Col156 plasmid.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Payne M, Octavia S, Luu LDW, Sotomayor-Castillo C, Wang Q, Tay ACY, Sintchenko V, Tanaka MM, Lan R. Enhancing genomics-based outbreak detection of endemic Salmonella enterica serovar Typhimurium using dynamic thresholds. Microb Genom 2021; 7:000310. [PMID: 31682222 PMCID: PMC8627665 DOI: 10.1099/mgen.0.000310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens.
Collapse
Affiliation(s)
- Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristina Sotomayor-Castillo
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead NSW, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
| | - Alfred Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead NSW, New South Wales, Australia
| | - Mark M. Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Oluwadare M, Lee MD, Grim CJ, Lipp EK, Cheng Y, Maurer JJ. The Role of the Salmonella spvB IncF Plasmid and Its Resident Entry Exclusion Gene traS on Plasmid Exclusion. Front Microbiol 2020; 11:949. [PMID: 32499773 PMCID: PMC7242723 DOI: 10.3389/fmicb.2020.00949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica cause significant illnesses worldwide. There has been a marked increase in resistance to fluoroquinolones and β-lactams/cephalosporins, antibiotics commonly used to treat salmonellosis. However, S. enterica serovars vary in their resistance to these and other antibiotics. The systemic virulence of some Salmonella serovars is due to a low copy number, IncF plasmid (65-100 kb) that contains the ADP-ribosylating toxin, SpvB. This virulence plasmid is present in only nine Salmonella serovars. It is possible that the spvB-virulence plasmid excludes other plasmids and may explain why antibiotic resistance is slow to develop in certain Salmonella serovars such as S. Enteritidis. The distribution of plasmid entry exclusion genes traS/traT and traY/excA are variable in Salmonella IncF and IncI plasmids, respectively and may account for differences in emergent antimicrobial resistance for some Salmonella serovars. The goal of this study is to determine the contribution of the Salmonella spvB-virulence plasmid in F-plasmid exclusion. From conjugation experiments, S. Typhimurium exhibited lower conjugation frequency with incFI and incFII plasmids when the spvB-virulence plasmid is present. Furthermore, introduction of cloned incFI traS into a "plasmidless" S. Typhimurium LT2 strain and Escherichia coli DH5α excluded incFI plasmid. However, deletion of the virulence plasmid traS did not affect plasmid exclusion significantly compared to a spvB control deletion. In addition, differences in F plasmid conjugation in natural Salmonella isolates did not correlate with IncF or SpvB-virulence plasmid genotype. There appear to be other plasmid or chromosomal genes at play in plasmid exclusion that may be responsible for the slow development of antibiotic resistance in certain serovars.
Collapse
Affiliation(s)
- Mopelola Oluwadare
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Margie D. Lee
- Department of Population Health, University of Georgia, Athens, GA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - John J. Maurer
- Department of Population Health, University of Georgia, Athens, GA, United States
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
25
|
Genetic characterisation of variants of the virulence plasmid, pSLT, in Salmonella enterica serovar Typhimurium provides evidence of a variety of evolutionary directions consistent with vertical rather than horizontal transmission. PLoS One 2019; 14:e0215207. [PMID: 30973933 PMCID: PMC6459517 DOI: 10.1371/journal.pone.0215207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/28/2019] [Indexed: 01/13/2023] Open
Abstract
The virulence plasmid pSLT as exemplified by the 94 Kb plasmid in Salmonella Typhimurium strain LT2 is only found in isolates of serovar Typhimurium. While it occurs commonly among such isolates recent genotyping methods have shown that it is mostly confined to certain genotypes. Although pSLT plasmids are capable of self-transmissibility under experimental conditions their confinement to certain host genotypes suggests that in practice they are maintained by vertical rather than by horizontal transmission. This would imply that evolution of the pSLT plasmid proceeds in parallel with evolution of its host. The development of a phylogenetic evolutionary framework for genotypes of S. Typhimurium based on single-nucleotide-polymorphism (SNPs) typing provided an opportunity to test whether the pSLT plasmid coevolves with its host genotype. Accordingly SNPs analysis was applied to the pSLT plasmids from 71 strains S. Typhimurium of Australian and international origins representing most of the genotypes which commonly have a pSLT. The phylogenetic tree showed that pSLT sequences clustered into almost the same groups as the host chromosomes so that each pSLT genotype was associated with a single host genotype. A search for tandem repeats in pSLT plasmids showed that a 9 bp VNTR in the traD gene occurred in the pSLT from all isolates belonging to Clade II but not from isolates belonging to Clade I. Another 9 bp repeat occurred only in three Clade I genotypes with a recent common ancestor. The evidence relating to both of these VNTRs supports the proposition that the pSLT plasmid is only transmitted vertically. Some isolates belonging to one S. Typhimurium genotype were found to have pSLTs which have lost a large block of genes when a resistance gene cassette has been acquired. Examples were found of pSLT plasmids which have recombined with other plasmids to form fusion plasmids sometimes with loss of some pSLT genes. In all cases the underlying genotype of the modified pSLT was the same as the genotype of regular pSLTs with the same host genotype implying that these changes have occurred within the host cell of the pSLT plasmid.
Collapse
|
26
|
Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 2019; 12:504-521. [PMID: 31190705 PMCID: PMC6515828 DOI: 10.14202/vetworld.2019.504-521] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/03/2022] Open
Abstract
Salmonella genus represents the most common foodborne pathogens frequently isolated from food-producing animals that is responsible for zoonotic infections in humans and animal species including birds. Thus, Salmonella infections represent a major concern to public health, animals, and food industry worldwide. Salmonella enterica represents the most pathogenic specie and includes > 2600 serovars characterized thus far. Salmonella can be transmitted to humans along the farm-to-fork continuum, commonly through contaminated foods of animal origin, namely poultry and poultry-related products (eggs), pork, fish etc. Some Salmonella serovars are restricted to one specific host commonly referred to as "host-restricted" whereas others have broad host spectrum known as "host-adapted" serovars. For Salmonella to colonize its hosts through invading, attaching, and bypassing the host's intestinal defense mechanisms such as the gastric acid, many virulence markers and determinants have been demonstrated to play crucial role in its pathogenesis; and these factors included flagella, capsule, plasmids, adhesion systems, and type 3 secretion systems encoded on the Salmonella pathogenicity island (SPI)-1 and SPI-2, and other SPIs. The epidemiologically important non-typhoidal Salmonella (NTS) serovars linked with a high burden of foodborne Salmonella outbreaks in humans worldwide included Typhimurium, Enteritidis, Heidelberg, and Newport. The increased number of NTS cases reported through surveillance in recent years from the United States, Europe and low- and middle-income countries of the world suggested that the control programs targeted at reducing the contamination of food animals along the food chain have largely not been successful. Furthermore, the emergence of several clones of Salmonella resistant to multiple antimicrobials worldwide underscores a significant food safety hazard. In this review, we discussed on the historical background, nomenclature and taxonomy, morphological features, physical and biochemical characteristics of NTS with a particular focus on the pathogenicity and virulence factors, host specificity, transmission, and antimicrobial resistance including multidrug resistance and its surveillance.
Collapse
Affiliation(s)
- Saleh Mohammed Jajere
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria
| |
Collapse
|
27
|
Khajanchi BK, Kaldhone PR, Foley SL. Protocols of Conjugative Plasmid Transfer in Salmonella: Plate, Broth, and Filter Mating Approaches. Methods Mol Biol 2019; 2016:129-139. [PMID: 31197715 DOI: 10.1007/978-1-4939-9570-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial conjugation is a natural process that allows for horizontal transmission of DNA from one bacterium to another. Several plasmids carry transposons that encode multiple antimicrobial and metal resistance genes. Conjugative plasmid transfer requires intimate cell-to-cell contacts between the donor and the recipient. Self-conjugative plasmids harbor tra genes which facilitate plasmid transfer from donor to recipient bacterial strain. Here we describe different methods of conjugative plasmid transfers via conjugation.
Collapse
Affiliation(s)
- Bijay K Khajanchi
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA.
| | - Pravin R Kaldhone
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Steven L Foley
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
28
|
Passaris I, Cambré A, Govers SK, Aertsen A. Bimodal Expression of the Salmonella Typhimurium spv Operon. Genetics 2018; 210:621-635. [PMID: 30143595 PMCID: PMC6216589 DOI: 10.1534/genetics.118.300822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023] Open
Abstract
The well-studied spv operon of Salmonellatyphimurium is important for causing full virulence in mice and both the regulation and function of the Spv proteins have been characterized extensively over the past several decades. Using quantitative single-cell fluorescence microscopy, we demonstrate the spv regulon to display a bimodal expression pattern that originates in the bimodal expression of the SpvR activator. The spv expression pattern is influenced by growth conditions and the specific Styphimurium strain used, but does not require Salmonella-specific virulence regulators. By monitoring real-time promoter kinetics, we reveal that SpvA has the ability to impart negative feedback on spvABCD expression without affecting spvR expression. Together, our data suggest that the SpvA protein counteracts the positive feedback loop imposed by SpvR, and could thus be responsible for dampening spvABCD expression and coordinating virulence protein production in time. The results presented here yield new insights in the intriguing regulation of the spv operon and adds this operon to the growing list of virulence factors exhibiting marked expression heterogeneity in Styphimurium.
Collapse
Affiliation(s)
- Ioannis Passaris
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| |
Collapse
|
29
|
Tanner JR, Kingsley RA. Evolution of Salmonella within Hosts. Trends Microbiol 2018; 26:986-998. [PMID: 29954653 PMCID: PMC6249985 DOI: 10.1016/j.tim.2018.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
Abstract
Within-host evolution has resulted in thousands of variants of Salmonella that exhibit remarkable diversity in host range and disease outcome, from broad host range to exquisite host restriction, causing gastroenteritis to disseminated disease such as typhoid fever. Within-host evolution is a continuing process driven by genomic variation that occurs during each infection, potentiating adaptation to a new niche resulting from changes in animal husbandry, the use of antimicrobials, and emergence of immune compromised populations. We discuss key advances in our understanding of the evolution of Salmonella within the host, inferred from (i) the process of host adaptation of Salmonella pathovars in the past, and (ii) direct observation of the generation of variation and selection of beneficial traits during single infections. Salmonella is a bacterial pathogen with remarkable diversity in its host range and pathogenicity due to past within-host evolution in vertebrate species that modified ancestral mechanisms of pathogenesis. Variation arising during infection includes point mutations, new genes acquired through horizontal gene transfer (HGT), deletions, and genomic rearrangements. Beneficial mutations increase in frequency within the host and, if they retain the ability to be transmitted to subsequent hosts, may become fixed in the population. Whole-genome sequencing of sequential isolates from clinical infections reveals within-host HGT and point mutations that impact therapy and clinical management. HGT is the primary mechanism for evolution in prokaryotes and is synergised by complex networks of transfer involving the microbiome. Within-host evolution of Salmonella, resulting in new pathovars, can proceed in the absence of HGT.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|
30
|
Panzenhagen PHN, Cabral CC, Suffys PN, Franco RM, Rodrigues DP, Conte-Junior CA. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach. Lett Appl Microbiol 2018; 66:352-359. [PMID: 29397031 DOI: 10.1111/lam.12859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 02/03/2023]
Abstract
Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. SIGNIFICANCE AND IMPACT OF THE STUDY Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach.
Collapse
Affiliation(s)
- P H N Panzenhagen
- Food Science Program, Chemistry Institute, University Federal of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - C C Cabral
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.,Faculty of Veterinary Medicine, Severino Sombra University (USS), Vassouras, Rio de Janeiro, Brazil
| | - P N Suffys
- Laboratory of Molecular Biology and Diagnosis of Infectious Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - R M Franco
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - D P Rodrigues
- National Reference Laboratory Diagnosis of Enteric Bacteria, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - C A Conte-Junior
- Food Science Program, Chemistry Institute, University Federal of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.,National Institute of Quality Control in Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Tran-Dien A, Le Hello S, Bouchier C, Weill FX. Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study. THE LANCET. INFECTIOUS DISEASES 2017; 18:207-214. [PMID: 29198740 DOI: 10.1016/s1473-3099(17)30705-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium. METHODS In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the disc diffusion method, and isolates shown to be resistant to ampicillin underwent resistance-transfer experiments. To provide insights into population structure and mechanisms of ampicillin resistance, we did whole-genome sequencing on a subset of 225 isolates, selected to maximise source, spatiotemporal, and genetic diversity. FINDINGS 11 (4%) of 288 isolates were resistant to ampicillin because of acquisition of various β lactamase genes, including blaTEM-1, carried by various plasmids, including the virulence plasmid of S enterica serotype Typhimurium. These 11 isolates were from three phylogenomic groups. One isolate producing TEM-1 β lactamase was isolated in France in 1959 and two isolates producing TEM-1 β lactamase were isolated in Tunisia in 1960, before ampicillin went on sale. The vectors for ampicillin resistance were different from those reported in the strains responsible for the outbreaks in the UK in the 1960s. INTERPRETATION The association between antibiotic use and selection of resistance determinants is not as direct as often presumed. Our results suggest that the non-clinical use of narrow-spectrum penicillins (eg, benzylpenicillin) might have favoured the diffusion of plasmids carrying the blaTEM-1 gene in S enterica serotype Typhimurium in the late 1950s. FUNDING Institut Pasteur, Santé publique France, the French Government's Investissement d'Avenir programme, the Fondation Le Roch-Les Mousquetaires.
Collapse
Affiliation(s)
- Alicia Tran-Dien
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | | | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France.
| |
Collapse
|
32
|
Whole-Genome Sequences of Salmonella enterica subsp. enterica Serovar Typhimurium Strains TT6675 and TT9097 Employed in the Isolation and Characterization of a Giant Phage Mutant Collection. GENOME ANNOUNCEMENTS 2017; 5:5/34/e00857-17. [PMID: 28839032 PMCID: PMC5571418 DOI: 10.1128/genomea.00857-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
Collapse
|
33
|
Silva C, Puente JL, Calva E. Salmonella virulence plasmid: pathogenesis and ecology. Pathog Dis 2017; 75:3883984. [PMID: 28645187 DOI: 10.1093/femspd/ftx070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A current view on the role of the Salmonella virulence plasmid in the pathogenesis of animal and human hosts is discussed; including the possible relevance in secondary ecological niches. Various strategies towards further studies in this respect are proposed within the One Health Concept.
Collapse
Affiliation(s)
- Claudia Silva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
34
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
35
|
Development of an Avirulent Salmonella Surrogate for Modeling Pathogen Behavior in Pre- and Postharvest Environments. Appl Environ Microbiol 2016; 82:4100-4111. [PMID: 27129962 DOI: 10.1128/aem.00898-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium. The strain lacks major Salmonella pathogenicity islands SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 as well as the virulence plasmid pSLT. Deletions and the absence of genomic rearrangements were confirmed by genomic sequencing, and the surrogate behaved like the parental wild-type strain on selective media. A loss-of-function (phoN) selective marker allowed the differentiation of this strain from wild-type strains on a medium containing a chromogenic substrate for alkaline phosphatase. Lack of virulence was confirmed by oral infection of female BALB/c mice. The strain persisted in tomatoes, cantaloupes, leafy greens, and soil with the same kinetics as the parental wild-type and selected outbreak strains, and it reached similar final population levels. The responses of this strain to heat treatment and disinfectants were similar to those of the wild type, supporting its potential as a surrogate for future studies on the ecology and survival of Salmonella in production and processing environments. IMPORTANCE There is significant interest in understanding the ecology of human pathogens in environments outside of their animal hosts, including the crop production environment. However, manipulative field experiments with virulent human pathogens are unlikely to receive regulatory approval due to the obvious risks. Therefore, we constructed an avirulent strain of S. enterica serovar Typhimurium and characterized it extensively.
Collapse
|
36
|
Werbowy O, Kaczorowski T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS One 2016; 11:e0148355. [PMID: 26848973 PMCID: PMC4743918 DOI: 10.1371/journal.pone.0148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
37
|
Genomic Variability of Serial Human Isolates of Salmonella enterica Serovar Typhimurium Associated with Prolonged Carriage. J Clin Microbiol 2015; 53:3507-14. [PMID: 26311853 DOI: 10.1128/jcm.01733-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an important foodborne human pathogen that often causes self-limiting but severe gastroenteritis. Prolonged excretion of S. Typhimurium after the infection can lead to secondary transmissions. However, little is known about within-host genomic variation in bacteria associated with asymptomatic shedding. Genomes of 35 longitudinal isolates of S. Typhimurium recovered from 11 patients (children and adults) with culture-confirmed gastroenteritis were sequenced. There were three or four isolates obtained from each patient. Single nucleotide polymorphisms (SNPs) were analyzed in these isolates, which were recovered between 1 and 279 days after the initial diagnosis. Limited genomic variation (5 SNPs or fewer) was associated with short- and long-term carriage of S. Typhimurium. None of the isolates was shown to be due to reinfection. SNPs occurred randomly, and the majority of the SNPs were nonsynonymous. Two nonsense mutations were observed. A nonsense mutation in flhC rendered the isolate nonmotile, whereas the significance of a nonsense mutation in yihV is unknown. The estimated mutation rate is 1.49 × 10(-6) substitution per site per year. S. Typhimurium isolates excreted in stools following acute gastroenteritis in children and adults demonstrated limited genomic variability over time, regardless of the duration of carriage. These findings have important implications for the detection of possible transmission events suspected by public health genomic surveillance of S. Typhimurium infections.
Collapse
|
38
|
Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544. Infect Immun 2014; 83:197-204. [PMID: 25332122 DOI: 10.1128/iai.02633-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage.
Collapse
|
39
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
40
|
Pang S, Octavia S, Feng L, Liu B, Reeves PR, Lan R, Wang L. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types. BMC Genomics 2013; 14:718. [PMID: 24138507 PMCID: PMC3853940 DOI: 10.1186/1471-2164-14-718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing. Results Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2. Conclusion The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
41
|
Complete nucleotide sequences of virulence-resistance plasmids carried by emerging multidrug-resistant Salmonella enterica Serovar Typhimurium isolated from cattle in Hokkaido, Japan. PLoS One 2013; 8:e77644. [PMID: 24155970 PMCID: PMC3796477 DOI: 10.1371/journal.pone.0077644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, we have shown that virulence-resistance plasmids from emerging multidrug-resistant isolates of Salmonella enterica serovar Typhimurium were derived from a virulence-associated plasmid, essential for systematic invasiveness of S. Typhimurium in mice (pSLT), through acquisition of a large insert containing a resistance island flanked by IS1294 elements. A blaCMY-2-carrying plasmid from a cefotaxime-resistant isolate comprised a segment of Escherichia coli plasmid pAR060302 and the replication region (IncFIB) of a virulence-resistance plasmid. These results provide insights into the evolution of drug resistance in emerging clones of S. Typhimurium.
Collapse
|
42
|
Montero I, Herrero-Fresno A, Rodicio R, Rodicio MR. Efficient mobilization of a resistance derivative of pSLT, the virulence plasmid specific of Salmonella enterica serovar Typhimurium, by an IncI1 plasmid. Plasmid 2013; 70:104-9. [DOI: 10.1016/j.plasmid.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
|
43
|
Hayward MR, Jansen VAA, Woodward MJ. Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics 2013; 14:365. [PMID: 23725633 PMCID: PMC3680342 DOI: 10.1186/1471-2164-14-365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the frequent isolation of Salmonella enterica sub. enterica serovars Derby and Mbandaka from livestock in the UK and USA little is known about the biological processes maintaining their prevalence. Statistics for Salmonella isolations from livestock production in the UK show that S. Derby is most commonly associated with pigs and turkeys and S. Mbandaka with cattle and chickens. Here we compare the first sequenced genomes of S. Derby and S. Mbandaka as a basis for further analysis of the potential host adaptations that contribute to their distinct host species distributions. Results Comparative functional genomics using the RAST annotation system showed that predominantly mechanisms that relate to metabolite utilisation, in vivo and ex vivo persistence and pathogenesis distinguish S. Derby from S. Mbandaka. Alignment of the genome nucleotide sequences of S. Derby D1 and D2 and S. Mbandaka M1 and M2 with Salmonella pathogenicity islands (SPI) identified unique complements of genes associated with host adaptation. We also describe a new genomic island with a putative role in pathogenesis, SPI-23. SPI-23 is present in several S. enterica serovars, including S. Agona, S. Dublin and S. Gallinarum, it is absent in its entirety from S. Mbandaka. Conclusions We discovered a new 37 Kb genomic island, SPI-23, in the chromosome sequence of S. Derby, encoding 42 ORFS, ten of which are putative TTSS effector proteins. We infer from full-genome synonymous SNP analysis that these two serovars diverged, between 182kya and 625kya coinciding with the divergence of domestic pigs. The differences between the genomes of these serovars suggest they have been exposed to different stresses including, phage, transposons and prolonged externalisation. The two serovars possess distinct complements of metabolic genes; many of which cluster into pathways for catabolism of carbon sources.
Collapse
Affiliation(s)
- Matthew R Hayward
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK.
| | | | | |
Collapse
|
44
|
Hemmis CW, Schildbach JF. Thioredoxin-like proteins in F and other plasmid systems. Plasmid 2013; 70:168-89. [PMID: 23721857 DOI: 10.1016/j.plasmid.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Bacterial conjugation is the process by which a conjugative plasmid transfers from donor to recipient bacterium. During this process, single-stranded plasmid DNA is actively and specifically transported from the cytoplasm of the donor, through a large membrane-spanning assembly known as the pore complex, and into the cytoplasm of the recipient. In Gram negative bacteria, construction of the pore requires localization of a subset of structural and catalytically active proteins to the bacterial periplasm. Unlike the cytoplasm, the periplasm contains proteins that promote disulfide bond formation within or between cysteine-containing proteins. To ensure proper protein folding and assembly, bacteria employ periplasmic redox systems for thiol oxidation, disulfide bond/sulfenic acid reduction, and disulfide bond isomerization. Recent data suggest that plasmid-based proteins belonging to the disulfide bond formation family play an integral role in the conjugative process by serving as mediators in folding and/or assembly of pore complex proteins. Here we report the identification of 165 thioredoxin-like family members across 89 different plasmid systems. Using phylogenetic analysis, all but nine family members were categorized into thioredoxin-like subfamilies. In addition, we discuss the diversity, conservation, and putative roles of thioredoxin-like proteins in plasmid systems, which include homologs of DsbA, DsbB, DsbC, DsbD, DsbG, and CcmG from Escherichia coli, TlpA from Bradyrhizobium japonicum, Com1 from Coxiella burnetii, as well as TrbB and TraF from plasmid F, and the absolute conservation of a disulfide isomerase in plasmids containing homologs of the transfer proteins TraH, TraN, and TraU.
Collapse
Affiliation(s)
- Casey W Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
45
|
Mebrhatu MT, Cenens W, Aertsen A. An overview of the domestication and impact of the Salmonella mobilome. Crit Rev Microbiol 2013; 40:63-75. [PMID: 23356413 DOI: 10.3109/1040841x.2012.755949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salmonella spp. are accountable for a large fraction of the global infectious disease burden, with most of their infections being food- or water-borne. The phenotypic features and adaptive potential of Salmonella spp. appear to be driven to a large extent by mobile or laterally acquired genetic elements. A better understanding of the conduct and diversification of these important pathogens consequently requires a more profound insight into the different mechanisms by which these pivotal elements establish themselves in the cell and affect its behavior. This review, therefore, provides an overview of the physiological impact and domestication of the Salmonella mobilome.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven , Leuven , Belgium
| | | | | |
Collapse
|
46
|
Kong W, Brovold M, Koeneman BA, Clark-Curtiss J, Curtiss R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 2012; 109:19414-9. [PMID: 23129620 PMCID: PMC3511069 DOI: 10.1073/pnas.1217554109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antibodies, Bacterial/immunology
- Antibody Formation/immunology
- Apoptosis
- Base Sequence
- Deoxyribonucleases/metabolism
- Gene Transfer Techniques
- Genes, Bacterial/genetics
- Genetic Engineering
- Genetic Vectors/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Mice
- Molecular Sequence Data
- Plasmids/genetics
- Salmonella/genetics
- Salmonella/immunology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/prevention & control
- Salmonella Vaccines/immunology
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | | | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| |
Collapse
|
47
|
Conjugal transfer of a virulence plasmid in the opportunistic intracellular actinomycete Rhodococcus equi. J Bacteriol 2012; 194:6790-801. [PMID: 23042997 DOI: 10.1128/jb.01210-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular, Gram-positive, soilborne actinomycete which can cause severe pyogranulomatous pneumonia with abscessation in young horses (foals) and in immunocompromised people, such as persons with AIDS. All strains of R. equi isolated from foals and approximately a third isolated from humans contain a large, ~81-kb plasmid which is essential for the intramacrophage growth of the organism and for virulence in foals and murine in vivo model systems. We found that the entire virulence plasmid could be transferred from plasmid-containing strains of R. equi (donor) to plasmid-free R. equi strains (recipient) at a high frequency and that plasmid transmission reestablished the capacity for intracellular growth in macrophages. Plasmid transfer required living cells and cell-to-cell contact and was unaffected by the presence of DNase, factors pointing to conjugation as the major means of genetic transfer. Deletion of a putative relaxase-encoding gene, traA, located in the proposed conjugative region of the plasmid, abolished plasmid transfer. Reversion of the traA mutation restored plasmid transmissibility. Finally, plasmid transmission to other Rhodococcus species and some additional related organisms was demonstrated. This is the first study showing a virulence plasmid transfer in R. equi, and it establishes a mechanism by which the virulence plasmid can move among bacteria in the soil.
Collapse
|
48
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
49
|
Feng Y, Liu J, Li YG, Cao FL, Johnston RN, Zhou J, Liu GR, Liu SL. Inheritance of the Salmonella virulence plasmids: Mostly vertical and rarely horizontal. INFECTION GENETICS AND EVOLUTION 2012; 12:1058-63. [DOI: 10.1016/j.meegid.2012.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022]
|
50
|
Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res 2012; 167:199-210. [DOI: 10.1016/j.micres.2011.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/25/2022]
|