1
|
Petrova A, Kiktev D, Askinazi O, Chabelskaya S, Moskalenko S, Zemlyanko O, Zhouravleva G. The translation termination factor eRF1 (Sup45p) of Saccharomyces cerevisiae is required for pseudohyphal growth and invasion. FEMS Yeast Res 2015; 15:fov033. [PMID: 26054854 DOI: 10.1093/femsyr/fov033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 01/16/2023] Open
Abstract
Mutations in the essential genes SUP45 and SUP35, encoding yeast translation termination factors eRF1 and eRF3, respectively, lead to a wide range of phenotypes and affect various cell processes. In this work, we show that nonsense and missense mutations in the SUP45, but not the SUP35, gene abolish diploid pseudohyphal and haploid invasive growth. Missense mutations that change phosphorylation sites of Sup45 protein do not affect the ability of yeast strains to form pseudohyphae. Deletion of the C-terminal part of eRF1 did not lead to impairment of filamentation. We show a correlation between the filamentation defect and the budding pattern in sup45 strains. Inhibition of translation with specific antibiotics causes a significant reduction in pseudohyphal growth in the wild-type strain, suggesting a strong correlation between translation and the ability for filamentous growth. Partial restoration of pseudohyphal growth by addition of exogenous cAMP assumes that sup45 mutants are defective in the cAMP-dependent pathway that control filament formation.
Collapse
Affiliation(s)
- Alexandra Petrova
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Denis Kiktev
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Askinazi
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Chabelskaya
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Moskalenko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Zemlyanko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Galina Zhouravleva
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| |
Collapse
|
2
|
Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae. Genetics 2014; 199:455-74. [PMID: 25527290 DOI: 10.1534/genetics.114.173831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation.
Collapse
|
3
|
Kemp AJ, Betney R, Ciandrini L, Schwenger ACM, Romano MC, Stansfield I. A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation. Mol Microbiol 2012; 87:284-300. [PMID: 23146061 PMCID: PMC3664417 DOI: 10.1111/mmi.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/27/2022]
Abstract
In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG-decoding tRNA(Gln)(CUG). A mutant allele, sup70-65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNA(Gln)(CUG) anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70-65 tRNA(Gln)(CUG) is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG-rich ORFs in the tRNA(Gln)(CUG)-depleted sup70-65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70-65 pseudohyphal phenotype was partly complemented by overexpressing CAA-decoding tRNA(Gln)(UUG), an inefficient wobble-decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5' end of an ORF can reduce eukaryote translational expression, and that the mutant tRNA(CUG)(Gln) constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.
Collapse
Affiliation(s)
- Alain J Kemp
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
5
|
Barberio C, Bianchi L, Pinzauti F, Lodi T, Ferrero I, Polsinelli M, Casalone E. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain. Can J Microbiol 2007; 53:223-30. [PMID: 17496970 DOI: 10.1139/w06-132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.
Collapse
Affiliation(s)
- Claudia Barberio
- Department of Animal Biology and Genetics, University of Florence, via Romana 17, I-50125 Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Ibrahimo S, Holmes LEA, Ashe MP. Regulation of translation initiation by the yeast eIF4E binding proteins is required for the pseudohyphal response. Yeast 2007; 23:1075-88. [PMID: 17083129 DOI: 10.1002/yea.1415] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is responsible for the recognition of the mRNA cap structure and, as such, plays a key role in the selection of mRNAs for translation. The interaction of eIF4E with the 'multi-adaptor' eIF4G (and thus recruitment of ribosomes to mRNA) can be regulated via competitive binding of 4E-binding proteins (4E-BPs). 4E-BPs have broad functions in cell growth, proliferation and development. We have found that disruption of the genes for either of the yeast 4E-BPs (Eap1p or Caf20p) leads to an inhibition of pseudohyphal growth in the resulting diploid yeast strain following nitrogen limitation. Specific 4E-binding domain mutations destroy the capacity of each 4E-BP gene to complement the non-pseudohyphal phenotype, suggesting that a translational function for the 4E-BPs is important for pseudohyphal growth. In addition, neither of the 4E-BP deletion strains is deficient in global or stress-regulated protein synthesis. However, our evidence reveals that the two 4E-BPs are functionally distinct with regard to pseudohyphal growth. Therefore, this work supports a model where the yeast 4E-BPs are acting on specific mRNAs to facilitate a defined proliferative response to environmental stress in yeast.
Collapse
Affiliation(s)
- Salma Ibrahimo
- Faculty of Life Sciences, The University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK
| | | | | |
Collapse
|
7
|
Holtzman T, Meimoun A, Kornitzer D. Synthetic Genetic Interaction Between the Ubiquitin-Conjugating Enzyme Cdc34 and a tRNA Mutant. Isr J Chem 2006. [DOI: 10.1560/688a-xh1u-xnuy-23kr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Rossi B, Manasse S, Serrani F, Berardi E. Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. FEMS Yeast Res 2005; 5:1009-17. [PMID: 16214423 DOI: 10.1016/j.femsyr.2005.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/02/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
In the yeast Hansenula polymorpha (Pichia angusta) nitrate assimilation is tightly regulated and subject to a dual control: nitrogen metabolite repression (NMR), triggered by reduced nitrogen compounds, and induction, elicited by nitrate itself. In a previous paper [Serrani, F., Rossi, B. and Berardi, E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr. Genet. 40, 243-250], we identified five loci (NMR1-NMR5) involved in NMR, and characterised one of them (NMR1), which likely identifies a regulatory factor. Here, we describe two more mutants, namely nmr2-1 and nmr4-1. The first one possibly identifies a regulatory factor involved in nitrogen metabolite repression by various nitrogen sources alternative to ammonium. The second one, apparently involved in ammonium assimilation, probably has sensor functions.
Collapse
Affiliation(s)
- Beatrice Rossi
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
9
|
Morozov IY, Galbis-Martinez M, Jones MG, Caddick MX. Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol 2001; 42:269-77. [PMID: 11679084 DOI: 10.1046/j.1365-2958.2001.02636.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AreA is the principal transcription factor involved in determining nitrogen utilization in Aspergillus nidulans. NH4+ and Gln are utilized preferentially but in their absence, AreA acts to facilitate the expression of genes involved in metabolizing alternative nitrogen sources. It is crucial to the function of AreA that its expression is tightly modulated by the quality and availability of nitrogen sources. One signalling mechanism involves regulated degradation of the areA transcript in response to NH4+ and Gln, which provides the first direct means of monitoring nitrogen signalling in this fungus. Here we assess the specificity of the transcript degradation response, determining that it responds qualitatively to a variety of additional nitrogen sources including Asn. Furthermore, the response to Gln and NH4+ requires the same discrete region of the areA 3'-UTR but both NH4+ and Asn need to be metabolized to Gln before they are effective as a signal. However, NH4+ signalling is independent of AreA activity, unlike Gln and Asn signalling. A mutation in the structural gene for NADP-linked glutamate dehydrogenase, gdhA, which disrupts metabolism of NH4+ to Glu, is additive with mutations in two distinct regions of areA that disrupt the previously identified signalling mechanisms. The triple mutant is both strongly derepressed and expresses very high levels of nitrate reductase activity. These data suggest nitrogen metabolism in A. nidulans is in part regulated in response to the intracellular levels of Gln via the regulated degradation of areA mRNA, but the intracellular Gln level is not the sole determinant of nitrogen metabolite repression.
Collapse
Affiliation(s)
- I Y Morozov
- Plant Science and Fungal Molecular Biology Research Group, School of Biological Sciences, Donnan Labs, The University of Liverpool, Liverpool L69 7ZD, UK
| | | | | | | |
Collapse
|
10
|
Parsons R, Sunley RJ. Nitrogen nutrition and the role of root-shoot nitrogen signalling particularly in symbiotic systems. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:435-443. [PMID: 11326050 DOI: 10.1093/jexbot/52.suppl_1.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To obtain and concentrate reduced N from the environment, plants have evolved a diverse array of adaptations to utilize soil, biotic and atmospheric N. In symbiotic N(2)-fixing systems the potential for oversupply exists and regulation of activity to match demand is crucial. N status in plants is likely to be most strongly sensed in the shoot and signals translocated to the roots may involve phloem transported amino compounds or very low concentrations of specific signal molecules. The mechanism for sensing N status in plant cells is not understood at the molecular level although it may be expected to be similar in all plants. Mechanisms for the regulation of symbiotic N(2) fixation may be very different in the different symbiotic types. Rhizobia, Frankia and cyanobacteria are all symbiotic with different species of plants and the provision of O(2), carbohydrate or other nutrients may control symbiotic activity to varying extents in the different symbioses.
Collapse
Affiliation(s)
- R Parsons
- University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | | |
Collapse
|
11
|
Cox KH, Rai R, Distler M, Daugherty JR, Coffman JA, Cooper TG. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 2000; 275:17611-8. [PMID: 10748041 PMCID: PMC4384688 DOI: 10.1074/jbc.m001648200] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae selectively uses good nitrogen sources (glutamine) in preference to poor ones (proline) by repressing GATA factor-dependent transcription of the genes needed to transport and catabolize poor nitrogen sources, a physiological process designated nitrogen catabolite repression (NCR). We show that some NCR-sensitive genes (CAN1, DAL5, DUR1,2, and DUR3) produce two transcripts of slightly different sizes. Synthesis of the shorter transcript is NCR-sensitive and that of the longer transcript is not. The longer transcript also predominates in gln3Delta mutants irrespective of the nitrogen source provided. We demonstrate that the longer mRNA species arises through the use of an alternative transcription start site generated by Gln3p-binding sites (GATAAs) being able to act as surrogate TATA elements. The ability of GATAAs to serve as surrogate TATAs, i.e. when synthesis of the shorter, NCR-sensitive transcripts are inhibited, correlates with sequestration of enhanced green fluorescent protein (EGFP)-Gln3p in the cytoplasm in a way that is indistinguishable from that seen with EGFP-Ure2p. However, when the shorter, NCR-sensitive DAL5 transcript predominates, EGFP-Gln3p is nuclear. These data suggest that the mechanism underlying NCR involves the cytoplasmic association of Ure2p with Gln3p, an interaction that prevents Gln3p from reaching it is binding sites upstream of NCR-sensitive genes.
Collapse
Affiliation(s)
- Kathleen H. Cox
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | - Rajendra Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | - Mackenzie Distler
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| | | | | | - Terrance G. Cooper
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163
| |
Collapse
|
12
|
Abstract
Prior studies have shown that S. cerevisiae rim4 mutations cause reduced expression of a sporulation-specific reporter gene and sporulation. We report here that RIM4 (ORF YHL024W) is a putative RNA-binding protein of the RRM class that is expressed at elevated levels early in meiosis. Mutations in the two RRMs reduce or abolish sporulation and, in some cases, cause reduced Rim4p expression. RIM4 is required for expression of early and middle sporulation-specific genes. Unlike other meiotic regulatory genes, RIM4 is required for full gene activation through both the Ime1p and Ime2p pathways. The rim4Delta defect in activation by Ime2p is suppressed by a hyperactive Ime2p derivative. These observations argue that Rim4p may act upstream of Ime2p, perhaps in a nutritional sensing pathway.
Collapse
Affiliation(s)
- M Soushko
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|