1
|
Wang H, Xie G, Huang J. Genome-based characterization of a novel prophage of Vibrio parahaemolyticus, VPS05ph1, a novel member of Peduoviridae. Virology 2024; 595:110087. [PMID: 38636362 DOI: 10.1016/j.virol.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Vibrio parahaemolyticus is a globally important bacterium related to climate warming and health threat to human and marine animals. Yet, there is limited knowledge about its polylysogeny harboring multiple prophages and the genetic information. In this study, two prophages (VPS05ph1 and VPS05ph2) were identified in a V. parahaemolyticus isolate through genomic and transcriptional analyses. Both prophages were determined as HP1-like phages, located in a novel phylogenetic lineage of Peduoviridae. They shared a moderate genome-wide sequence similarity with each other and high synteny with the closest relatives, but showed low identities to the repressor counterparts of the representative phages within the family. In addition, no bacterial virulence genes, antibiotic resistance genes and known phage-encoded lytic proteins were identified on both prophage genomes. Moreover, the V. parahaemolyticus isolate was induced with mitomycin, which caused aberrant cellular morphology and nonviability of bacterial cells and excision of prophage VPS05ph1, accompanied by the respective inhibition and promotion of transcriptions of the cI-like and cox-like regulator genes for phage decision making. Results in this study provide the genetic context of polylysogeny in the V. parahaemolyticus isolate, support the diversity and prevalence of HP1-like phages in vibrios, and promote to explore interactions between the HP1-like prophage and its vibrio host.
Collapse
Affiliation(s)
| | - Guosi Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jie Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Network of Aquaculture Centres in Asia-Pacific, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Hazra M, Dubey RC. In silico study of cox protein from P2 type enteric bacteriophages based on sequence, structure and dynamics to understand its functional integrity. J Biomol Struct Dyn 2022; 40:14035-14050. [PMID: 34762025 DOI: 10.1080/07391102.2021.2000496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cox protein plays a critical role in deciding the lytic-lysogenic switch of P2 enteric phages. This phenomenon makes Cox protein one of the most important candidates in developing novel phage-based therapeutics against antibacterial resistant pathogens. The principle focus concerning protein and its decision making is a DNA binding event, which helps to regulate differential promoter expression. In the current study, we have attempted to understand the sequence, structural and dynamic features associated with Cox protein and its DNA binding. Unavailability of information was a big burden in further proceedings. We have done an extensive literature search to develop a database of Cox with relevant information. That information coupled with the methods of Sequence-based phylogenetic and conservation studies, Homology Modelling, Atomic-level Docking and Molecular Dynamics (MD) Simulation (50 ns each for 10 systems, i.e. total of 500 ns) were performed in the current study. Analysis of those extensive studies has provided us the required sequence to structure to dynamics to functional understanding. Our present study would indeed be very helpful in understanding the biochemical mechanism of Cox activation as well as designing potential phage therapeutics.
Collapse
Affiliation(s)
- Mousumi Hazra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| |
Collapse
|
3
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
4
|
Pedersen M, Neergaard JT, Cassias J, Rasmussen KK, Lo Leggio L, Sneppen K, Hammer K, Kilstrup M. Repression of the lysogenic P R promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite O M-O R operator. Sci Rep 2020; 10:8659. [PMID: 32457340 PMCID: PMC7250872 DOI: 10.1038/s41598-020-65493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.
Collapse
Affiliation(s)
- Margit Pedersen
- University of Copenhagen, Department of Biology, Copenhagen, DK2200, Denmark
| | - Jesper Tvenge Neergaard
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Johan Cassias
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | | | - Leila Lo Leggio
- University of Copenhagen, Department of Chemistry, Copenhagen, DK2200, Denmark
| | - Kim Sneppen
- University of Copenhagen, Center for Models of Life, Copenhagen, DK2200, Denmark
| | - Karin Hammer
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark.
| |
Collapse
|
5
|
Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2018; 111:495-513. [PMID: 30475408 PMCID: PMC7379572 DOI: 10.1111/mmi.14170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonasaeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Frykholm K, Berntsson RPA, Claesson M, de Battice L, Odegrip R, Stenmark P, Westerlund F. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels. Nucleic Acids Res 2016; 44:7219-27. [PMID: 27131370 PMCID: PMC5009727 DOI: 10.1093/nar/gkw352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.
Collapse
Affiliation(s)
- Karolin Frykholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ronnie Per-Arne Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Magnus Claesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Laura de Battice
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Richard Odegrip
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
7
|
Berntsson RPA, Odegrip R, Sehlén W, Skaar K, Svensson LM, Massad T, Högbom M, Haggård-Ljungquist E, Stenmark P. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2. Nucleic Acids Res 2013; 42:2725-35. [PMID: 24259428 PMCID: PMC3936717 DOI: 10.1093/nar/gkt1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.
Collapse
Affiliation(s)
- Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden and Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Keeton CM, Park J, Wang GR, Hopp CM, Shoemaker NB, Gardner JF, Salyers AA. The excision proteins of CTnDOT positively regulate the transfer operon. Plasmid 2013; 69:172-9. [PMID: 23237854 PMCID: PMC3570755 DOI: 10.1016/j.plasmid.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
Abstract
The Bacteroides conjugative transposon, CTnDOT, is an integrated conjugative element (ICE), found in many human colonic Bacteroides spp. strains. It has a complex regulatory system for both excision from the chromosome and transfer and mobilization into a new host. It was previously shown that a cloned DNA segment encoding the xis2c, xis2d, orf3, and exc genes was required for tetracycline dependent activation of the P(tra) promoter. The Xis2c and Xis2d proteins are required for excision while the Exc protein stimulates excision. We report here that neither the Orf3 nor the Exc proteins are involved in activation of the P(tra) promoter. Deletion analysis and electromobility shift assays showed that the Xis2c and Xis2d proteins bind to the P(tra) promoter to activate the tra operon. Thus, the recombination directionality factors of CTnDOT excision also function as activator proteins of the P(tra) promoter.
Collapse
Affiliation(s)
- Carolyn M Keeton
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Ahlgren-Berg A, Cardoso-Palacios C, Eriksson JM, Mandali S, Sehlén W, Sylwan L, Haggård-Ljungquist E. A comparative analysis of the bifunctional Cox proteins of two heteroimmune P2-like phages with different host integration sites. Virology 2009; 385:303-12. [PMID: 19150106 DOI: 10.1016/j.virol.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/24/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
Abstract
The Cox protein of the coliphage P2 is multifunctional; it acts as a transcriptional repressor of the Pc promoter, as a transcriptional activator of the P(LL) promoter of satellite phage P4, and as a directionality factor for site-specific recombination. The Cox proteins constitute a unique group of directionality factors since they couple the developmental switch with the integration or excision of the phage genome. In this work, the DNA binding characteristics of the Cox protein of WPhi, a P2-related phage, are compared with those of P2 Cox. P2 Cox has been shown to recognize a 9 bp sequence, repeated at least 6 times in different targets. In contrast to P2 Cox, WPhi Cox binds with a strong affinity to the early control region that contains an imperfect direct repeat of 12 nucleotides. The removal of one of the repeats has drastic effects on the capacity of WPhi to bind to the Pe-Pc region. Again in contrast to P2 Cox, WPhi Cox has a lower affinity to attP compared to the Pe-Pc region, and a repeat of 9 bp can be found that has 5 bp in common with the repeat in the Pe-Pc region. WPhi Cox, however, is essential for excisive recombination in vitro. WPhi Cox, like P2 Cox, binds cooperatively with integrase to attP. Both Cox proteins induce a strong bend in their DNA targets upon binding.
Collapse
Affiliation(s)
- Alexandra Ahlgren-Berg
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm
| | | | | | | | | | | | | |
Collapse
|
11
|
Abbani MA, Papagiannis CV, Sam MD, Cascio D, Johnson RC, Clubb RT. Structure of the cooperative Xis-DNA complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly. Proc Natl Acad Sci U S A 2007; 104:2109-14. [PMID: 17287355 PMCID: PMC1893000 DOI: 10.1073/pnas.0607820104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA architectural protein Xis regulates the construction of higher-order nucleoprotein intasomes that integrate and excise the genome of phage lambda from the Escherichia coli chromosome. Xis modulates the directionality of site-specific recombination by stimulating phage excision 10(6)-fold, while simultaneously inhibiting phage reintegration. Control is exerted by cooperatively assembling onto a approximately 35-bp DNA regulatory element, which it distorts to preferentially stabilize an excisive intasome. Here, we report the 2.6-A crystal structure of the complex between three cooperatively bound Xis proteins and a 33-bp DNA containing the regulatory element. Xis binds DNA in a head-to-tail orientation to generate a micronucleoprotein filament. Although each protomer is anchored to the duplex by a similar set of nonbase specific contacts, malleable protein-DNA interactions enable binding to sites that differ in nucleotide sequence. Proteins at the ends of the duplex sequence specifically recognize similar binding sites and participate in cooperative binding via protein-protein interactions with a bridging Xis protomer that is bound in a less specific manner. Formation of this polymer introduces approximately 72 degrees of curvature into the DNA with slight positive writhe, which functions to connect disparate segments of DNA bridged by integrase within the excisive intasome.
Collapse
Affiliation(s)
- Mohamad A. Abbani
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
| | - My D. Sam
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Duilio Cascio
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Reid C. Johnson
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
- To whom correspondence may be addressed. E-mail:
or
| | - Robert T. Clubb
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
12
|
Hu HL, Wang MY, Chung CH, Suen SY. Purification of VP3 protein of infectious bursal disease virus using nickel ion-immobilized regenerated cellulose-based membranes. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 840:76-84. [PMID: 16716768 DOI: 10.1016/j.jchromb.2006.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/31/2006] [Accepted: 04/25/2006] [Indexed: 11/23/2022]
Abstract
In this study, hexa-histidine tagged VP3 protein of infectious bursal disease virus (IBDV) was purified using immobilized metal ion affinity technique from the fermentation of Escherichia coli BL21 (DE3) containing a recombinant plasmid with a VP3 gene. The purification efficiencies of VP3 protein (TVP3 and DeltaTVP3) using Ni(2+)-NTA commercial agarose gels and Ni(2+)-IDA regenerated cellulose-based membranes at 4 degrees C were compared. A good washing condition for removing most impurity proteins was found as 20 mM NaH(2)PO(4), 500 mM NaCl, 40 mM imidazole, pH 7.8, whereas an efficient elution condition was 20 mM NaH(2)PO(4), 500 mM NaCl, 500 or 750 mM imidazole, pH 7.8. By applying these conditions to the flow experiments, similar recovery (86-88%) and purity (98-99%) for VP3 were obtained in both gel column (1 ml gel) and membrane cartridge (four membrane disks) under the flow rate of 1.7 ml/min for protein loading and 2.7 ml/min for protein elution. Regarding that the membrane process exhibited some advantages such as shorter residence time and lower cost, a better process efficiency in a large-scale system could be expected for the Ni(2+)-IDA membranes.
Collapse
Affiliation(s)
- Hui-Ling Hu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
13
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Renberg-Eriksson SK, Ahlgren-Berg A, DeGrooth J, Haggård-Ljungquist E. Characterization of the developmental switch region of bacteriophage P2 Hy dis. Virology 2001; 290:199-210. [PMID: 11883185 DOI: 10.1006/viro.2001.1162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the DNA sequence of the transcriptional switch that affects the development of the P2 Hy dis bacteriophage was determined. The switch contains two face-to-face-located promoters and two repressors, Cox and C. The locations of the Pc and Pe promoters were determined by primer extension analysis. The P2 Hy dis homolog of the P2 multifunctional Cox protein was shown to be able to substitute for P2 Cox in repression of the P2 Pc promoter, excision of the P2 prophage, and activation of the satellite phage P4 PLL promoter. A directly repeated sequence, flanking the--35 region of the Pe promoter, was found to be important for C repressor binding as well as for repression. The P4 E protein was shown to derepress the developmental switch of P2 Hy dis in a plasmid-based derepression assay.
Collapse
|
15
|
Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 2001; 29:2205-16. [PMID: 11376138 PMCID: PMC55702 DOI: 10.1093/nar/29.11.2205] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/12/2022] Open
Abstract
Similarity between the DNA substrates and products of integrase-mediated site-specific recombination reactions results in a single recombinase enzyme being able to catalyze both the integration and excision reactions. The control of directionality in these reactions is achieved through a class of small accessory factors that favor one reaction while interfering with the other. These proteins, which we will refer to collectively as recombination directionality factors (RDFs), play architectural roles in reactions catalyzed by their cognate recombinases and have been identified in conjunction with both tyrosine and serine integrases. Previously identified RDFs are typically small, basic and have diverse amino acid sequences. A subset of RDFs, the cox genes, also function as transcriptional regulators. We present here a compilation of all the known RDF proteins as well as those identified through database mining that we predict to be involved in conferring recombination directionality. Analysis of this group of proteins shows that they can be grouped into distinct sub-groups based on their sequence similarities and that they are likely to have arisen from several independent evolutionary lineages. This compilation will prove useful in recognizing new proteins that confer directionality upon site-specific recombination reactions encoded by plasmids, transposons, phages and prophages.
Collapse
Affiliation(s)
- J A Lewis
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|