1
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Tahoun M, Engeser M, Svolacchia L, Sander PM, Müller CE. Molecular Taphonomy of Heme: Chemical Degradation of Hemin under Presumed Fossilization Conditions. Molecules 2023; 28:4887. [PMID: 37446548 DOI: 10.3390/molecules28134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
The metalloporphyrin heme acts as the oxygen-complexing prosthetic group of hemoglobin in blood. Heme has been noted to survive for many millions of years in fossils. Here, we investigate its stability and degradation under various conditions expected to occur during fossilization. Oxidative, reductive, aerobic, and anaerobic conditions were studied at neutral and alkaline pH values. Elevated temperatures were applied to accelerate degradation. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) identified four main degradation products. The vinyl residues are oxidized to formyl and further to carboxylate groups. In the presence of air or H2O2, cleavage of the tetrapyrrole ring occurs, and hematinic acid is formed. The highest stability of heme was observed under anaerobic reductive conditions (half-life 9.5 days), while the lowest stability was found in the presence of H2O2 (half-life 1 min). We confirmed that the iron cation plays a crucial role in degradation, since protoporphyrin IX, lacking iron, remained significantly more stable. Under anaerobic, reductive conditions, the above-mentioned degradation products were not observed, suggesting a different degradation pathway. To our knowledge, this is the first molecular taphonomy study on heme, which will be useful for understanding its fate during fossilization.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Luca Svolacchia
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Paul Martin Sander
- Section Paleontology, Institute of Geosciences, University of Bonn, 53115 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
3
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
4
|
Identification and Tetramer Structure of Hemin-Binding Protein SPD_0310 Linked to Iron Homeostasis and Virulence of Streptococcus pneumoniae. mSystems 2022; 7:e0022122. [PMID: 35414267 PMCID: PMC9238395 DOI: 10.1128/msystems.00221-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron and iron-containing compounds are essential for bacterial virulence and host infection. Hemin is an important supplement compound for bacterial survival in an iron-deficient environment. Despite strong interest in hemin metabolism, the detailed mechanism of hemin transportation in Gram-positive bacteria is yet to be reported. The results of our study revealed that the homologous proteins of SPD_0310 were significantly conservative in Gram-positive bacteria (P < 0.001), and these proteins were identified as belonging to an uncharacterized protein family (UPF0371). The results of thermodynamic and kinetic studies have shown that SPD_0310 has a high hemin-binding affinity. Interestingly, we found that the crystal structure of SPD_0310 presented a homotetramer conformation, which is required for hemin binding. SPD_0310 can interact with many hemin-binding proteins (SPD_0090, SPD_1609, and GAPDH) located on the cell surface, which contributes to hemin transfer to the cytoplasm. It also has a high affinity with other iron transporters in the cytoplasm (SPD_0226 and SPD_0227), which facilitates iron redistribution in cells. More importantly, the knockout of the spd_0310 gene (Δspd_0310) resulted in a decrease in the iron content and protein expression levels of many bacterial adhesion factors. Moreover, the animal model showed that the Δspd_0310 strain has a lower virulence than the wild type. Based on the crystallographic and biochemical studies, we inferred that SPD_0310 is a hemin intermediate transporter which contributes to iron homeostasis and further affects the virulence of Streptococcus pneumoniae in the host. Our study provides not only an important theoretical basis for the in-depth elucidation of the hemin transport mechanism in bacteria but also an important candidate target for the development of novel antimicrobial agents based on metal transport systems. IMPORTANCE Iron is an essential element for bacterial virulence and infection of the host. The detailed hemin metabolism in Gram-positive bacteria has rarely been studied. SPD_0310 belongs to the UPF0371 family of proteins, and results of homology analysis and evolutionary tree analysis suggested that it was widely distributed and highly conserved in Gram-positive bacteria. However, the function of the UPF0371 family remains unknown. We successfully determined the crystal structure of apo-SPD_0310, which is a homotetramer. We found that cytoplasmic protein SPD_0310 with a special tetramer structure has a strong hemin-binding ability and interacts with many iron transporters, which facilitates hemin transfer from the extracellular space to the cytoplasm. The results of detailed functional analyses indicated that SPD_0310 may function as a hemin transporter similar to hemoglobin in animals and contributes to bacterial iron homeostasis and virulence. This study provides a novel target for the development of antimicrobial drugs against pathogenic Gram-positive bacteria.
Collapse
|
5
|
Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021; 10:729. [PMID: 34063102 PMCID: PMC8148161 DOI: 10.3390/antiox10050729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide and carbon monoxide share the ability to be beneficial or harmful molecules depending on the concentrations to which organisms are exposed. Interestingly, humans and some bacteria produce small amounts of these compounds. Since several publications have summarized the recent knowledge of its effects in humans, here we have chosen to focus on the role of H2S and CO on microbial physiology. We briefly review the current knowledge on how bacteria produce and use H2S and CO. We address their potential antimicrobial properties when used at higher concentrations, and describe how microbial systems detect and survive toxic levels of H2S and CO. Finally, we highlight their antimicrobial properties against human pathogens when endogenously produced by the host and when released by external chemical donors.
Collapse
|
6
|
A noncanonical heme oxygenase specific for the degradation of c-type heme. J Biol Chem 2021; 296:100666. [PMID: 33862082 PMCID: PMC8131568 DOI: 10.1016/j.jbc.2021.100666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Heme oxygenases (HOs) play a critical role in recouping iron from the labile heme pool. The acquisition and liberation of heme iron are especially important for the survival of pathogenic bacteria. All characterized HOs, including those belonging to the HugZ superfamily, preferentially cleave free b-type heme. Another common form of heme found in nature is c-type heme, which is covalently linked to proteinaceous cysteine residues. However, mechanisms for direct iron acquisition from the c-type heme pool are unknown. Here we identify a HugZ homolog from the oligopeptide permease (opp) gene cluster of Paracoccus denitrificans that lacks any observable reactivity with heme b and show that it instead rapidly degrades c-type hemopeptides. This c-type heme oxygenase catalyzes the oxidative cleavage of the model substrate microperoxidase-11 at the β- and/or δ-meso position(s), yielding the corresponding peptide-linked biliverdin, CO, and free iron. X-ray crystallographic analysis suggests that the switch in substrate specificity from b-to c-type heme involves loss of the N-terminal α/β domain and C-terminal loop containing the coordinating histidine residue characteristic of HugZ homologs, thereby accommodating a larger substrate that provides its own iron ligand. These structural features are also absent in certain heme utilization/storage proteins from human pathogens that exhibit low or no HO activity with free heme. This study thus expands the scope of known iron acquisition strategies to include direct oxidative cleavage of heme-containing proteolytic fragments of c-type cytochromes and helps to explain why certain oligopeptide permeases show specificity for the import of heme in addition to peptides.
Collapse
|
7
|
Robinson EA, Wilks A, Xue F. Repurposing Acitretin as an Antipseudomonal Agent Targeting the Pseudomonas aeruginosa Iron-Regulated Heme Oxygenase. Biochemistry 2021; 60:689-698. [PMID: 33621054 DOI: 10.1021/acs.biochem.0c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential micronutrient for the survival and virulence of the bacterial pathogen Pseudomonas aeruginosa. To overcome iron withholding and successfully colonize a host, P. aeruginosa uses a variety of mechanisms to acquire iron, including the secretion of high-affinity iron chelators (siderophores) or the uptake and utilization of heme. P. aeruginosa heme oxygenase (HemO) plays pivotal roles in heme sensing, uptake, and utilization and has emerged as a therapeutic target for the development of antipseudomonal agents. Using a high-throughput fluorescence quenching assay combined with minimum inhibitory concentration measurements, we screened the Selleck Bioactive collection of 2100 compounds and identified acitretin, a Food and Drug Administration-approved oral retinoid, as a potent and selective inhibitor of HemO. Acitretin binds to HemO with a KD value of 0.10 ± 0.02 μM and inhibits the growth of P. aeruginosa PAO1 with an IC50 of 70 ± 18 μg/mL. In addition, acitretin showed good selectivity for HemO, which uniquely generates BVIXβ/δ, over human heme oxygenase (hHO1) and other BVIXα-producing homologues such as the heme oxygenases from Neisseria meningitidis (nmHO) and Acinetobacter baumannii (abHO). The binding of acitretin within the HemO active site was confirmed by 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance, and molecular modeling provided further insight into potential interactions of acitretin with residues specific for orienting heme in the β/δ selective HemO. Moreover, at 20 μM, acitretin inhibited the enzymatic activity of HemO in P. aeruginosa cells by >60% and effectively blocked the ability of P. aeruginosa to sense and acquire heme as demonstrated in the β-galactosidase transcriptional reporter assay.
Collapse
Affiliation(s)
- Elizabeth A Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Brimberry M, Toma MA, Hines KM, Lanzilotta WN. HutW from Vibrio cholerae Is an Anaerobic Heme-Degrading Enzyme with Unique Functional Properties. Biochemistry 2021; 60:699-710. [PMID: 33600151 DOI: 10.1021/acs.biochem.0c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing antibiotic resistance, and a growing recognition of the importance of the human microbiome, demand that new therapeutic targets be identified. Characterization of metabolic pathways that are unique to enteric pathogens represents a promising approach. Iron is often the rate-limiting factor for growth, and Vibrio cholerae, the causative agent of cholera, has been shown to contain numerous genes that function in the acquisition of iron from the environment. Included in this arsenal of genes are operons dedicated to obtaining iron from heme and heme-containing proteins. Given the persistence of cholera, an important outstanding question is whether V. cholerae is capable of anaerobic heme degradation as was recently reported for enterohemorrhagic Escherichia coli O157:H7. In this work, we demonstrate that HutW from V. cholerae is a radical S-adenosylmethionine methyl transferase involved in the anaerobic opening of the porphyrin ring of heme. However, in contrast to the enzyme ChuW, found in enterohemorrhagic E. coli O157:H7, there are notable differences in the mechanism and products of the HutW reaction. Of particular interest are data that demonstrate HutW will catalyze ring opening as well as tetrapyrrole reduction and can utilize reduced nicotinamide adenine dinucleotide phosphate as an electron source. The biochemical and biophysical properties of HutW are presented, and the evolutionary implications are discussed.
Collapse
|
9
|
Tohda R, Tanaka H, Mutoh R, Zhang X, Lee YH, Konuma T, Ikegami T, Migita CT, Kurisu G. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. J Biol Chem 2021; 296:100217. [PMID: 33839679 PMCID: PMC7948506 DOI: 10.1074/jbc.ra120.016271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.
Collapse
Affiliation(s)
- Rei Tohda
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Xuhong Zhang
- Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata, Japan
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-gu, Daejeon, South Korea; Research Headquarters, Korea Brain Research Institute, Dong-gu, Daegu, South Korea; Bio-Analytical Science, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Catharina T Migita
- Department of Biological Chemistry, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
10
|
Takahashi S, Nambu S, Matsui T, Fujii H, Ishikawa H, Mizutani Y, Tsumoto K, Ikeda-Saito M. Unique Electronic Structures of the Highly Ruffled Hemes in Heme-Degrading Enzymes of Staphylococcus aureus, IsdG and IsdI, by Resonance Raman and Electron Paramagnetic Resonance Spectroscopies. Biochemistry 2020; 59:3918-3928. [PMID: 32988197 DOI: 10.1021/acs.biochem.0c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-β-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI. Heme complexed to IsdG and IsdI is coordinated by a neutral histidine. The trans ligand is hydroxide in the ferric alkaline form of both proteins. In the ferric neutral form at pH 6.0, heme is six-coordinated with water as the sixth ligand for IsdG and is in the mixture of the five-coordinated and six-coordinated species for IsdI. In the ferrous CO-bound form, CO is strongly hydrogen bonded with a distal residue. The marker lines, ν2 and ν3, appear at frequencies that are distinct from other proteins having planar hemes. The EPR spectra for the ferric hydroxide and cyanide states might be explained by assuming the thermal mixing of the d-electron configurations, (dxy)2(dxz,dyz)3 and (dxz,dyz)4(dxy)1. The fraction for the latter becomes larger for the ferric cyanide form. In the ferric neutral state at pH 6.0, the quantum mechanical mixing of the high and intermediate spin configurations might explain the peculiar frequencies of ν2 and ν3 in the RR spectra. The heme ruffling imposed by IsdG and IsdI gives rise to unique electronic structures of heme, which are expected to modulate the first and subsequent steps of the heme oxygenation.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Shusuke Nambu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Hiroshi Fujii
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan.,Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masao Ikeda-Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan.,BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
11
|
Biochemical characterization of biliverdins IXβ/δ generated by a selective heme oxygenase. Biochem J 2020; 477:601-614. [PMID: 31913441 DOI: 10.1042/bcj20190810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The pro-oxidant effect of free heme (Fe2+-protoporphyrin IX) is neutralized by phylogenetically-conserved heme oxygenases (HMOX) that generate carbon monoxide, free ferrous iron, and biliverdin (BV) tetrapyrrole(s), with downstream BV reduction by non-redundant NADPH-dependent BV reductases (BLVRA and BLVRB) that retain isomer-restricted functional activity for bilirubin (BR) generation. Regioselectivity for the heme α-meso carbon resulting in predominant BV IXα generation is a defining characteristic of canonical HMOXs, thereby limiting generation and availability of BVs IXβ, IXδ, and IXγ as BLVRB substrates. We have now exploited the unique capacity of the Pseudomonas aeruginosa (P. aeruginosa) hemO/pigA gene for focused generation of isomeric BVs (IXβ and IXδ). A scalable system followed by isomeric separation yielded highly pure samples with predicted hydrogen-bonded structure(s) as documented by 1H NMR spectroscopy. Detailed kinetic studies established near-identical activity of BV IXβ and BV IXδ as BLVRB-selective substrates, with confirmation of an ordered sequential mechanism of BR/NADP+ dissociation. Halogenated xanthene-based compounds previously identified as BLVRB-targeted flavin reductase inhibitors displayed comparable inhibition parameters using BV IXβ as substrate, documenting common structural features of the cofactor/substrate-binding pocket. These data provide further insights into structure/activity mechanisms of isomeric BVs as BLVRB substrates, with potential applicability to further dissect redox-regulated functions in cytoprotection and hematopoiesis.
Collapse
|
12
|
Chao A, Burley KH, Sieminski PJ, de Miranda R, Chen X, Mobley DL, Goulding CW. Structure of a Mycobacterium tuberculosis Heme-Degrading Protein, MhuD, Variant in Complex with Its Product. Biochemistry 2019; 58:4610-4620. [PMID: 31638374 DOI: 10.1021/acs.biochem.9b00726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, requires iron for survival. In Mtb, MhuD is the cytosolic protein that degrades imported heme. MhuD is distinct, in both sequence and structure, from canonical heme oxygenases (HOs) but homologous with IsdG-type proteins. Canonical HO is found mainly in eukaryotes, while IsdG-type proteins are predominantly found in prokaryotes, including pathogens. While there are several published structures of MhuD and other IsdG-type proteins in complex with the heme substrate, no structures of IsdG-type proteins in complex with a product have been reported, unlike the case for HOs. We recently showed that the Mtb variant MhuD-R26S produces biliverdin IXα (αBV) rather than the wild-type mycobilin isomers. Given that mycobilin and other IsdG-type protein products like staphylobilin are difficult to isolate in quantities sufficient for structure determination, here we use the MhuD-R26S variant and its product αBV as a proxy to study the IsdG-type protein-product complex. First, we show that αBV has a nanomolar affinity for MhuD and the R26S variant. Second, we determined the MhuD-R26S-αBV complex structure to 2.5 Å, which reveals two notable features: (1) two αBV molecules bound per active site and (2) a novel α-helix (α3) that was not observed in previous MhuD-heme structures. Finally, through molecular dynamics simulations, we show that α3 is stable with the proximal αBV alone. MhuD's high affinity for the product and the observed structural and electrostatic changes that accompany substrate turnover suggest that there may be an unidentified class of proteins that are responsible for the extraction of products from MhuD and other IsdG-type proteins.
Collapse
|
13
|
Giardina BJ, Shahzad S, Huang W, Wilks A. Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO). Arch Biochem Biophys 2019; 672:108066. [PMID: 31398314 DOI: 10.1016/j.abb.2019.108066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that causes serious infections in critically ill and immune compromised patients. The ability to acquire iron from the hosts iron and heme containing proteins is critical to their survival and virulence. The majority of A. baumannii hypervirulent strains encode a heme uptake system that includes a putative heme oxygenase (hemO). Despite reports indicating A. baumannii can grow on heme direct evidence of extracellular heme uptake and metabolism has not been shown. Through isotopic labeling (13C-heme) we show the hypervirulent A. baumannii LAC-4 metabolizes heme to biliverdin IXα (BVIXα), whereas ATC 17978 that lacks the hemO gene cluster cannot efficiently utilize heme. Expression and purification of the protein encoded by the A. baumannii LAC-4 hemO gene confirmed catalytic conversion of heme to BVIX. We further show inhibition of abHemO with previously characterized P. aeruginosa HemO inhibitors in a fluorescence based assay that couples HemO catalytic activity to the BVIXα binding phytochrome IFP1.4. Furthermore, the hemO gene cluster encodes genes with homology to heme-dependent extra cytoplasmic function (ECF) σ factor systems. The hemophore-dependent ECF system in Pseudomonas aeruginosa has been shown to play a critical role in heme sensing and virulence within the host. The prevalence of a hemO gene cluster in A. baumannii LAC4 and other hypervirulent strains suggests it is required within the host to adapt and utilize heme and is a major contributor to virulence.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Uchida T, Ota K, Sekine Y, Dojun N, Ishimori K. Subunit-subunit interactions play a key role in the heme-degradation reaction of HutZ from Vibrio cholerae. Dalton Trans 2019; 48:3973-3983. [PMID: 30834412 DOI: 10.1039/c9dt00604d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HutZ, a dimeric protein, from Vibrio cholerae is a protein that catalyzes the oxygen-dependent degradation of heme. Interestingly, the ascorbic acid-supported heme-degradation activity of HutZ depends on pH: less than 10% of heme is degraded by HutZ at pH 8.0, but nearly 90% of heme is degraded at pH 6.0. We examined here pH-dependent conformational changes in HutZ using fluorescence spectroscopy. Trp109 is estimated to be located approximately 21 Å from heme and is present in a different subunit containing a heme axial ligand. Thus, we postulated that the distance between heme and Trp109 reflects subunit-subunit orientational changes. On the basis of resonance energy transfer from Trp109 to heme, we estimated the distance between heme and Trp109 to be approximately 17 Å at pH 8.0, while the distance increased by less than 2 Å at pH 6.0. We presumed that such changes led to a decrease in electron donation from the proximal histidine, resulting in enhancement of the heme-degradation activity. To confirm this scenario, we mutated Ala31, located at the dimer interface, to valine to alter the distance through the subunit-subunit interaction. The distance between heme and Trp109 for the A31V mutant was elongated to 24-27 Å. Although resonance Raman spectra and reduction rate of heme suggested that this mutation resulted in diminished electron donation from the heme axial ligand, ascorbic acid-supported heme-degradation activity was not observed. Based on our findings, it can be proposed that the relative positioning of two protomers is important in determining the heme degradation rate by HutZ.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
15
|
Sugishima M, Wada K, Unno M, Fukuyama K. Bilin-metabolizing enzymes: site-specific reductions catalyzed by two different type of enzymes. Curr Opin Struct Biol 2019; 59:73-80. [PMID: 30954759 DOI: 10.1016/j.sbi.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
In mammals, the green heme metabolite biliverdin is converted to a yellow anti-oxidant by NAD(P)H-dependent biliverdin reductase (BVR), whereas in O2-dependent photosynthetic organisms it is converted to photosynthetic or light-sensing pigments by ferredoxin-dependent bilin reductases (FDBRs). In NADP+-bound and biliverdin-bound BVR-A, two biliverdins are stacked at the binding cleft; one is positioned to accept hydride from NADPH, and the other appears to donate a proton to the first biliverdin through a neighboring arginine residue. During the FDBR-catalyzed reaction, electrons and protons are supplied to bilins from ferredoxin and from FDBRs and waters bound within FDBRs, respectively. Thus, the protonation sites of bilin and catalytic residues are important for the analysis of site-specific reduction. The neutron structure of FDBR sheds light on this issue.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan.
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki 316-8511, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
16
|
Keppel M, Piepenbreier H, Gätgens C, Fritz G, Frunzke J. Toxic but tasty - temporal dynamics and network architecture of heme-responsive two-component signaling in Corynebacterium glutamicum. Mol Microbiol 2019; 111:1367-1381. [PMID: 30767351 PMCID: PMC6850329 DOI: 10.1111/mmi.14226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 01/24/2023]
Abstract
Heme is an essential cofactor and alternative iron source for almost all bacterial species but may cause severe toxicity upon elevated levels and consequently, regulatory mechanisms coordinating heme homeostasis represent an important fitness trait. A remarkable scenario is found in several corynebacterial species, e.g. Corynebacterium glutamicum and Corynebacterium diphtheriae, which dedicate two paralogous, heme-responsive two-component systems, HrrSA and ChrSA, to cope with the Janus nature of heme. Here, we combined experimental reporter profiling with a quantitative mathematical model to understand how this particular regulatory network architecture shapes the dynamic response to heme. Our data revealed an instantaneous activation of the detoxification response (hrtBA) upon stimulus perception and we found that kinase activity of both kinases contribute to this fast onset. Furthermore, instant deactivation of the PhrtBA promoter is achieved by a strong ChrS phosphatase activity upon stimulus decline. While the activation of detoxification response is uncoupled from further factors, heme utilization is additionally governed by the global iron regulator DtxR integrating information on iron availability into the regulatory network. Altogether, our data provide comprehensive insights how TCS cross-regulation and network hierarchy shape the temporal dynamics of detoxification (hrtBA) and utilization (hmuO) as part of a global homeostatic response to heme.
Collapse
Affiliation(s)
- Marc Keppel
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Hannah Piepenbreier
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Cornelia Gätgens
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Georg Fritz
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
17
|
Chao A, Goulding CW. A Single Mutation in the Mycobacterium tuberculosis Heme-Degrading Protein, MhuD, Results in Different Products. Biochemistry 2019; 58:489-492. [PMID: 30605595 DOI: 10.1021/acs.biochem.8b01198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium tuberculosis heme-degrading protein MhuD degrades heme to mycobilin isomers and iron, while its closest homologues from Staphylococcus aureus, IsdG and IsdI, degrade heme to staphylobilin isomers, formaldehyde, and iron. Superposition of the structures of the heme-bound complexes reveals that the heme molecule in the MhuD active site is rotated ∼90° about the tetrapyrrole plane with respect to IsdG and IsdI active site heme molecules. Therefore, the variation in IsdG/IsdI and MhuD chromophore products may be attributed to the different heme orientations. In MhuD, two arginines, Arg22 and Arg26, stabilize the heme propionates and may account for the heme orientation. Herein, we demonstrate that the MhuD-R26S variant alters the resulting chromophore product from mycobilin to biliverdin IXα (α-BV), whereas the R22S variant does not. Surprisingly, unlike canonical heme oxygenase (HO) that also degrades heme to α-BV, the MhuD-R26S variant produces the C1 product formaldehyde rather than carbon monoxide as observed for HO. The MhuD-R26S variant is an important tool for further probing the mechanism of action of MhuD and for studying the fate of the MhuD product in mycobacterium.
Collapse
|
18
|
Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron Acquisition in Mycobacterium tuberculosis. Chem Rev 2018; 119:1193-1220. [PMID: 30474981 DOI: 10.1021/acs.chemrev.8b00285] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The highly contagious disease tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis (Mtb), which has been evolving drug resistance at an alarming rate. Like all human pathogens, Mtb requires iron for growth and virulence. Consequently, Mtb iron transport is an emerging drug target. However, the development of anti-TB drugs aimed at these metabolic pathways has been restricted by the dearth of information on Mtb iron acquisition. In this Review, we describe the multiple strategies utilized by Mtb to acquire ferric iron and heme iron. Mtb iron uptake is a complex process, requiring biosynthesis and subsequent export of Mtb siderophores, followed by ferric iron scavenging and ferric-siderophore import into Mtb. Additionally, Mtb possesses two possible heme uptake pathways and an Mtb-specific mechanism of heme degradation that yields iron and novel heme-degradation products. We conclude with perspectives for potential therapeutics that could directly target Mtb heme and iron uptake machineries. We also highlight how hijacking Mtb heme and iron acquisition pathways for drug import may facilitate drug transport through the notoriously impregnable Mtb cell wall.
Collapse
Affiliation(s)
| | | | - Cedric P Owens
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | | |
Collapse
|
19
|
Taslı H, Akbıyık A, Topaloğlu N, Alptüzün V, Parlar S. Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus. J Microbiol 2018; 56:828-837. [PMID: 30353469 DOI: 10.1007/s12275-018-8244-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.
Collapse
Affiliation(s)
- Hüseyin Taslı
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey.
| | - Ayse Akbıyık
- Department of Nursing, Faculty of Health Sciences, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - Sülünay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
20
|
Sebastián VP, Salazar GA, Coronado-Arrázola I, Schultz BM, Vallejos OP, Berkowitz L, Álvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol 2018; 9:1956. [PMID: 30258436 PMCID: PMC6143658 DOI: 10.3389/fimmu.2018.01956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Heme Oxygenase 1 (HMOX1) is an enzyme that catalyzes the reaction that degrades the heme group contained in several important proteins, such as hemoglobin, myoglobin, and cytochrome p450. The enzymatic reaction catalyzed by HMOX1 generates Fe2+, biliverdin and CO. It has been shown that HMOX1 activity and the by-product CO can downmodulate the damaging immune response in several models of intestinal inflammation as a result of pharmacological induction of HMOX1 expression and the administration of non-toxic amounts of CO. Inflammatory Bowel Diseases, which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), are one of the most studied ailments associated to HMOX1 effects. However, microbiota imbalances and infections are also important factors influencing the occurrence of acute and chronic intestinal inflammation, where HMOX1 activity may play a major role. As part of this article we discuss the immune modulatory capacity of HMOX1 during IBD, as well during the infections and interactions with the microbiota that contribute to this inflammatory disease.
Collapse
Affiliation(s)
- Valentina P. Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M. Álvarez-Lobos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
The Asp99-Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis. J Biol Inorg Chem 2018; 23:1057-1070. [PMID: 30194537 DOI: 10.1007/s00775-018-1609-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Abstract
The P. aeruginosa iron-regulated heme oxygenase (HemO) is required within the host for the utilization of heme as an iron source. As iron is essential for survival and virulence, HemO represents a novel antimicrobial target. We recently characterized small molecule inhibitors that bind to an allosteric site distant from the heme pocket, and further proposed binding at this site disrupts a nearby salt bridge between D99 and R188. Herein, through a combination of site-directed mutagenesis and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we determined that the disruption of the D99-R188 salt bridge leads to significant decrease in conformational flexibility within the distal and proximal helices that form the heme-binding site. The RR spectra of the resting state Fe(III) and reduced Fe(II)-deoxy heme-HemO D99A, R188A and D99/R188A complexes are virtually identical to those of wild-type HemO, indicating no significant change in the heme environment. Furthermore, mutation of D99 or R188 leads to a modest decrease in the stability of the Fe(II)-O2 heme complex. Despite this slight difference in Fe(II)-O2 stability, we observe complete loss of enzymatic activity. We conclude the loss of activity is a result of decreased conformational flexibility in helices previously shown to be critical in accommodating variation in the distal ligand and the resulting chemical intermediates generated during catalysis. Furthermore, this newly identified allosteric binding site on HemO represents a novel alternative drug-design strategy to that of competitive inhibition at the active site or via direct coordination of ligands to the heme iron.
Collapse
|
22
|
Ghadiri Khozroughi A, Kroh LW, Schlüter O, Rawel H. Assessment of the bacterial impact on the post-mortem formation of zinc protoporphyrin IX in pork meat. Food Chem 2018; 256:25-30. [DOI: 10.1016/j.foodchem.2018.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
23
|
Spencer CS, Yunta C, de Lima GPG, Hemmings K, Lian LY, Lycett G, Paine MJI. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:25-33. [PMID: 29729387 DOI: 10.1016/j.ibmb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a KD of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control.
Collapse
Affiliation(s)
| | - Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Kay Hemmings
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lu-Yun Lian
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth Lycett
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
24
|
Lyles KV, Eichenbaum Z. From Host Heme To Iron: The Expanding Spectrum of Heme Degrading Enzymes Used by Pathogenic Bacteria. Front Cell Infect Microbiol 2018; 8:198. [PMID: 29971218 PMCID: PMC6018153 DOI: 10.3389/fcimb.2018.00198] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 01/02/2023] Open
Abstract
Iron is an essential nutrient for many bacteria. Since the metal is highly sequestered in host tissues, bound predominantly to heme, pathogenic bacteria often take advantage of heme uptake and degradation mechanisms to acquire iron during infection. The most common mechanism of releasing iron from heme is through oxidative degradation by heme oxygenases (HOs). In addition, an increasing number of proteins that belong to two distinct structural families have been implicated in aerobic heme catabolism. Finally, an enzyme that degrades heme anaerobically was recently uncovered, further expanding the mechanisms for bacterial heme degradation. In this analysis, we cover the spectrum and recent advances in heme degradation by infectious bacteria. We briefly explain heme oxidation by the two groups of recognized HOs to ground readers before focusing on two new types of proteins that are reported to be involved in utilization of heme iron. We discuss the structure and enzymatic function of proteins representing these groups, their biological context, and how they are regulated to provide a more complete look at their cellular role.
Collapse
Affiliation(s)
- Kristin V Lyles
- Biology, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
25
|
Soldano A, Klinke S, Otero LH, Rivera M, Catalano-Dupuy DL, Ceccarelli EA. Structural and mutational analyses of the Leptospira interrogans virulence-related heme oxygenase provide insights into its catalytic mechanism. PLoS One 2017; 12:e0182535. [PMID: 28771589 PMCID: PMC5542595 DOI: 10.1371/journal.pone.0182535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Heme oxygenase from Leptospira interrogans is an important virulence factor. During catalysis, redox equivalents are provided to this enzyme by the plastidic-type ferredoxin-NADP+ reductase also found in L. interrogans. This process may have evolved to aid this bacterial pathogen to obtain heme-iron from their host and enable successful colonization. Herein we report the crystal structure of the heme oxygenase-heme complex at 1.73 Å resolution. The structure reveals several distinctive features related to its function. A hydrogen bonded network of structural water molecules that extends from the catalytic site to the protein surface was cleared observed. A depression on the surface appears to be the H+ network entrance from the aqueous environment to the catalytic site for O2 activation, a key step in the heme oxygenase reaction. We have performed a mutational analysis of the F157, located at the above-mentioned depression. The mutant enzymes were unable to carry out the complete degradation of heme to biliverdin since the reaction was arrested at the verdoheme stage. We also observed that the stability of the oxyferrous complex, the efficiency of heme hydroxylation and the subsequent conversion to verdoheme was adversely affected. These findings underscore a long-range communication between the outer fringes of the hydrogen-bonded network of structural waters and the heme active site during catalysis. Finally, by analyzing the crystal structures of ferredoxin-NADP+ reductase and heme oxygenase, we propose a model for the productive association of these proteins.
Collapse
Affiliation(s)
- Anabel Soldano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Mario Rivera
- Department of Chemistry and Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Daniela L. Catalano-Dupuy
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
26
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
27
|
Lojek LJ, Farrand AJ, Wisecaver JH, Blaby-Haas CE, Michel BW, Merchant SS, Rokas A, Skaar EP. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. mSphere 2017; 2:e00176-17. [PMID: 28815214 PMCID: PMC5557675 DOI: 10.1128/msphere.00176-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenase (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. IMPORTANCE This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is conserved in all domains of life. Additionally, C. reinhardtii contains two previously identified HO-1 family heme oxygenases, making C. reinhardtii the first organism shown to contain two families of heme oxygenases. These data indicate that C. reinhardtii may have unique mechanisms for regulating iron homeostasis within the chloroplast.
Collapse
Affiliation(s)
- Lisa J. Lojek
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison J. Farrand
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Post DMB, Schilling B, Reinders LM, D’Souza AK, Ketterer MR, Kiel SJ, Chande AT, Apicella MA, Gibson BW. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLoS One 2017; 12:e0179621. [PMID: 28654654 PMCID: PMC5487020 DOI: 10.1371/journal.pone.0179621] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs) of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP) as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA), which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl) were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt) strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as “AckA-dependent”. Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for future studies focusing on specific acetylation sites that may have relevance in gonococcal pathogenesis and metabolism.
Collapse
Affiliation(s)
- Deborah M. B. Post
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (DMBP); (BWG)
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Lorri M. Reinders
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - Margaret R. Ketterer
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Steven J. Kiel
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Aroon T. Chande
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail: (DMBP); (BWG)
| |
Collapse
|
29
|
Yanatori I, Richardson DR, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem 2017; 292:13205-13229. [PMID: 28655775 DOI: 10.1074/jbc.m117.776021] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
Mammals incorporate a major proportion of absorbed iron as heme, which is catabolized by the heme oxygenase 1 (HO1)-NADPH-cytochrome P450 reductase (CPR) complex into biliverdin, carbon monoxide, and ferrous iron. Moreover, intestinal iron is incorporated as ferrous iron, which is transported via the iron importer, divalent metal transporter 1 (DMT1). Recently, we demonstrated that the iron chaperone poly(rC)-binding protein 2 (PCBP2) can directly receive ferrous iron from DMT1 or transfer iron to the iron exporter, ferroportin 1. To promote intracellular iron flux, an iron chaperone may be essential for receiving iron generated by heme catabolism, but this hypothesis is untested so far. Herein, we demonstrate that HO1 binds to PCBP2, but not to other PCBP family members, namely PCBP1, PCBP3, or PCBP4. Interestingly, HO1 formed a complex with either CPR or PCBP2, and it was demonstrated that PCBP2 competes with CPR for HO1 binding. Using PCBP2-deletion mutants, we demonstrated that the PCBP2 K homology 3 domain is important for the HO1/PCBP2 interaction. In heme-loaded cells, heme prompted HO1-CPR complex formation and decreased the HO1/PCBP2 interaction. Furthermore, in vitro reconstitution experiments with purified recombinant proteins indicated that HO1 could bind to PCBP2 in the presence of heme, whereas loading of PCBP2 with ferrous iron caused PCBP2 to lose its affinity for HO1. These results indicate that ferrous iron released from heme can be bound by PCBP2 and suggest a model for an integrated heme catabolism and iron transport metabolon.
Collapse
Affiliation(s)
- Izumi Yanatori
- From the Department of Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Des R Richardson
- the Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Shinya Toyokuni
- the Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia, and.,the Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumio Kishi
- From the Department of Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan,
| |
Collapse
|
30
|
Transition metals at the host-pathogen interface: how Neisseria exploit human metalloproteins for acquiring iron and zinc. Essays Biochem 2017; 61:211-223. [PMID: 28487398 DOI: 10.1042/ebc20160084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Transition metals are essential nutrients for all organisms and important players in the host-microbe interaction. During bacterial infection, a tug-of-war between the host and microbe for nutrient metals occurs: the host innate immune system responds to the pathogen by reducing metal availability and the pathogen tries to outmaneuver this response. The outcome of this competition, which involves metal-sequestering host-defense proteins and microbial metal acquisition machinery, is an important determinant for whether infection occurs. One strategy bacterial pathogens employ to overcome metal restriction involves hijacking abundant host metalloproteins. The obligate human pathogens Neisseria meningitidis and N. gonorrhoeae express TonB-dependent transport systems that capture human metalloproteins, extract the bound metal ions, and deliver these nutrients into the bacterial cell. This review highlights structural and mechanistic investigations that provide insights into how Neisseria acquire iron from the Fe(III)-transport protein transferrin (TF), the Fe(III)-chelating host-defense protein lactoferrin (LF), and the oxygen-transport protein hemoglobin (Hb), and obtain zinc from the metal-sequestering antimicrobial protein calprotectin (CP).
Collapse
|
31
|
Onzuka M, Sekine Y, Uchida T, Ishimori K, Ozaki SI. HmuS from Yersinia pseudotuberculosis is a non-canonical heme-degrading enzyme to acquire iron from heme. Biochim Biophys Acta Gen Subj 2017; 1861:1870-1878. [PMID: 28385652 DOI: 10.1016/j.bbagen.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023]
Abstract
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.
Collapse
Affiliation(s)
- Masato Onzuka
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Yukari Sekine
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin-Ichi Ozaki
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
32
|
LaMattina JW, Delrossi M, Uy KG, Keul ND, Nix DB, Neelam AR, Lanzilotta WN. Anaerobic Heme Degradation: ChuY Is an Anaerobilin Reductase That Exhibits Kinetic Cooperativity. Biochemistry 2017; 56:845-855. [PMID: 28045510 DOI: 10.1021/acs.biochem.6b01099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme catabolism is an important biochemical process that many bacterial pathogens utilize to acquire iron. However, tetrapyrrole catabolites can be reactive and often require further processing for transport out of the cell or conversion to another useful cofactor. In previous work, we presented in vitro evidence of an anaerobic heme degradation pathway in Escherichia coli O157:H7. Consistent with reactions that have been reported for other radical S-adenosyl-l-methionine methyltransferases, ChuW transfers a methyl group to heme by a radical-mediated mechanism and catalyzes the β-scission of the porphyrin macrocycle. This facilitates iron release and the production of a new linear tetrapyrrole termed "anaerobilin". In this work, we describe the structure and function of ChuY, an enzyme expressed downstream from chuW within the same heme utilization operon. ChuY is structurally similar to biliverdin reductase and forms a dimeric complex in solution that reduces anaerobilin to the product we have termed anaerorubin. Steady state analysis of ChuY exhibits kinetic cooperativity that is best explained by a random addition mechanism with a kinetically preferred path for initial reduced nicotinamide adenine dinucleotide phosphate binding.
Collapse
Affiliation(s)
- Joseph W LaMattina
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Michael Delrossi
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Katherine G Uy
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Nicholas D Keul
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - David B Nix
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Anudeep R Neelam
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology and ‡The Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
33
|
Radical new paradigm for heme degradation in Escherichia coli O157:H7. Proc Natl Acad Sci U S A 2016; 113:12138-12143. [PMID: 27791000 DOI: 10.1073/pnas.1603209113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All of the heme-degrading enzymes that have been characterized to date require molecular oxygen as a cosubstrate. Escherichia coli O157:H7 has been shown to express heme uptake and transport proteins, as well as use heme as an iron source. This enteric pathogen colonizes the anaerobic space of the lower intestine in mammals, yet no mechanism for anaerobic heme degradation has been reported. Herein we provide evidence for an oxygen-independent heme-degradation pathway. Specifically, we demonstrate that ChuW is a radical S-adenosylmethionine methyltransferase that catalyzes a radical-mediated mechanism facilitating iron liberation and the production of the tetrapyrrole product we termed "anaerobilin." We further demonstrate that anaerobilin can be used as a substrate by ChuY, an enzyme that is coexpressed with ChuW in vivo along with the heme uptake machinery. Our findings are discussed in terms of the competitive advantage this system provides for enteric bacteria, particularly those that inhabit an anaerobic niche in the intestines.
Collapse
|
34
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
35
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1665] [Impact Index Per Article: 208.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
36
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
37
|
Mouriño S, Giardina BJ, Reyes-Caballero H, Wilks A. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa. J Biol Chem 2016; 291:20503-15. [PMID: 27493207 DOI: 10.1074/jbc.m116.728527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXβ and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXβ and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell.
Collapse
Affiliation(s)
- Susana Mouriño
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Bennett J Giardina
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Hermes Reyes-Caballero
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
38
|
Ahmed FH, Mohamed AE, Carr PD, Lee BM, Condic-Jurkic K, O'Mara ML, Jackson CJ. Rv2074 is a novel F420 H2 -dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Sci 2016; 25:1692-709. [PMID: 27364382 DOI: 10.1002/pro.2975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Bilirubin is a potent antioxidant that is produced from the reduction of the heme degradation product biliverdin. In mammalian cells and Cyanobacteria, NADH/NADPH-dependent biliverdin reductases (BVRs) of the Rossmann-fold have been shown to catalyze this reaction. Here, we describe the characterization of Rv2074 from Mycobacterium tuberculosis, which belongs to a structurally and mechanistically distinct family of F420 H2 -dependent BVRs (F-BVRs) that are exclusively found in Actinobacteria. We have solved the crystal structure of Rv2074 bound to its cofactor, F420 , and used this alongside molecular dynamics simulations, site-directed mutagenesis and NMR spectroscopy to elucidate its catalytic mechanism. The production of bilirubin by Rv2074 could exploit the anti-oxidative properties of bilirubin and contribute to the range of immuno-evasive mechanisms that have evolved in M. tuberculosis to allow persistent infection.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - A Elaaf Mohamed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Paul D Carr
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Brendon M Lee
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
39
|
Sachla AJ, Ouattara M, Romero E, Agniswamy J, Weber IT, Gadda G, Eichenbaum Z. In vitro heme biotransformation by the HupZ enzyme from Group A streptococcus. Biometals 2016; 29:593-609. [PMID: 27154580 DOI: 10.1007/s10534-016-9937-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/01/2016] [Indexed: 01/14/2023]
Abstract
In Group A streptococcus (GAS), the metallorepressor MtsR regulates iron homeostasis. Here we describe a new MtsR-repressed gene, which we named hupZ (heme utilization protein). A recombinant HupZ protein was purified bound to heme from Escherichia coli grown in the presence of 5-aminolevulinic acid and iron. HupZ specifically binds heme with stoichiometry of 1:1. The addition of NADPH to heme-bound HupZ (in the presence of cytochrome P450 reductase, NADPH-regeneration system and catalase) triggered progressive decrease of the HupZ Soret band and the appearance of an absorption peak at 660 nm that was resistance to hydrolytic conditions. No spectral changes were observed when ferredoxin and ferredoxin reductase were used as redox partners. Differential spectroscopy with myoglobin or with the ferrous chelator, ferrozine, confirmed that carbon monoxide and free iron are produced during the reaction. ApoHupZ was crystallized as a homodimer with a split β-barrel conformation in each monomer comprising six β strands and three α helices. This structure resembles the split β-barrel domain shared by the members of a recently described family of heme degrading enzymes. However, HupZ is smaller and lacks key residues found in the proteins of the latter group. Phylogenetic analysis places HupZ on a clade separated from those for previously described heme oxygenases. In summary, we have identified a new GAS enzyme-containing split β-barrel and capable of heme biotransformation in vitro; to the best of our knowledge, this is the first enzyme among Streptococcus species with such activity.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Mahamoudou Ouattara
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Elvira Romero
- Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Johnson Agniswamy
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Irene T Weber
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.,Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30303, USA
| | - Giovanni Gadda
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.,Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.
| |
Collapse
|
40
|
HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo. Biometals 2016; 29:333-47. [DOI: 10.1007/s10534-016-9919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
|
41
|
Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MD, Jubinville É, Jia Z, Ivancich A, Couture M. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: Release of hematinic acid, tripyrrole and Fe(III). J Inorg Biochem 2016; 154:103-13. [DOI: 10.1016/j.jinorgbio.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 11/24/2022]
|
42
|
Wareham LK, Poole RK, Tinajero-Trejo M. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era. J Biol Chem 2015; 290:18999-9007. [PMID: 26055702 PMCID: PMC4521022 DOI: 10.1074/jbc.r115.642926] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells.
Collapse
Affiliation(s)
- Lauren K Wareham
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Robert K Poole
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Mariana Tinajero-Trejo
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
43
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
44
|
Hogle SL, Barbeau KA, Gledhill M. Heme in the marine environment: from cells to the iron cycle. Metallomics 2015; 6:1107-20. [PMID: 24811388 DOI: 10.1039/c4mt00031e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.
Collapse
Affiliation(s)
- Shane L Hogle
- Geoscience Research Division, Scripps Institution of Oceanography, La Jolla, California, USA.
| | | | | |
Collapse
|
45
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
46
|
Heme-iron utilization by Leptospira interrogans requires a heme oxygenase and a plastidic-type ferredoxin-NADP+ reductase. Biochim Biophys Acta Gen Subj 2014; 1840:3208-17. [PMID: 25092651 DOI: 10.1016/j.bbagen.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
|
47
|
Biville F, Brézillon C, Giorgini D, Taha MK. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity. PLoS One 2014; 9:e107612. [PMID: 25290693 PMCID: PMC4189776 DOI: 10.1371/journal.pone.0107612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/14/2014] [Indexed: 11/17/2022] Open
Abstract
The ability to acquire iron from various sources has been demonstrated to be a major determinant
in the pathogenesis of Neisseria meningitidis. Outside the cells, iron is bound to
transferrin in serum, or to lactoferrin in mucosal secretions. Meningococci can extract iron from
iron-loaded human transferrin by the TbpA/TbpB outer membrane complex. Moreover, N.
meningitidis expresses the LbpA/LbpB outer membrane complex, which can extract iron from
iron-loaded human lactoferrin. Iron transport through the outer membrane requires energy provided by
the ExbB-ExbD-TonB complex. After transportation through the outer membrane, iron is bound by
periplasmic protein FbpA and is addressed to the FbpBC inner membrane transporter. Iron-complexing
compounds like citrate and pyrophosphate have been shown to support meningococcal growth ex
vivo. The use of iron pyrophosphate as an iron source by N. meningitidis
was previously described, but has not been investigated. Pyrophosphate was shown to participate in
iron transfer from transferrin to ferritin. In this report, we investigated the use of ferric
pyrophosphate as an iron source by N. meningitidis both ex vivo
and in a mouse model. We showed that pyrophosphate was able to sustain N.
meningitidis growth when desferal was used as an iron chelator. Addition of a pyrophosphate
analogue to bacterial suspension at millimolar concentrations supported N.
meningitidis survival in the mouse model. Finally, we show that pyrophosphate enabled
TonB-independent ex vivo use of iron-loaded human or bovine transferrin as an iron
source by N. meningitidis. Our data suggest that, in addition to acquiring iron
through sophisticated systems, N. meningitidis is able to use simple strategies to
acquire iron from a wide range of sources so as to sustain bacterial survival.
Collapse
Affiliation(s)
- Francis Biville
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Christophe Brézillon
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Dario Giorgini
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Muhamed-Kheir Taha
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Wilks A, Ikeda-Saito M. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 2014; 47:2291-8. [PMID: 24873177 PMCID: PMC4139177 DOI: 10.1021/ar500028n] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme
to biliverdin, iron, and carbon monoxide (CO) in three successive
oxygenation steps. Pathogenic bacteria require iron for survival and
infection. Extracellular heme uptake from the host plays a critical
role in iron acquisition and virulence. In the past decade, several
HOs required for the release of iron from extracellular heme have
been identified in pathogenic bacteria, including Corynebacterium
diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The
bacterial enzymes were shown to be structurally and mechanistically
similar to those of the canonical eukaryotic HO enzymes. However,
the recent discovery of the structurally and mechanistically distinct
noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has
expanded the reaction manifold of heme degradation. The distinct ferredoxin-like
structural fold and extreme heme ruffling are proposed to give rise
to the alternate heme degradation products in the S.
aureus and M. tuberculosis enzymes. In addition, several “heme-degrading factors”
with no structural homology to either class of HOs have recently been
reported. The identification of these “heme-degrading proteins”
has largely been determined on the basis of in vitro heme degradation
assays. Many of these proteins were reported to produce biliverdin,
although no extensive characterization of the products was performed.
Prior to the characterization of the canonical HO enzymes, the nonenzymatic
degradation of heme and heme proteins in the presence of a reductant
such as ascorbate or hydrazine, a reaction termed “coupled
oxidation”, served as a model for biological heme degradation.
However, it was recognized that there were important mechanistic differences
between the so-called coupled oxidation of heme proteins and enzymatic
heme oxygenation. In the coupled oxidation reaction, the final product,
verdoheme, can readily be converted to biliverdin under hydrolytic
conditions. The differences between heme oxygenation by the canonical
and noncanonical HOs and coupled oxidation will be discussed in the
context of the stabilization of the reactive FeIII–OOH
intermediate and regioselective heme hydroxylation. Thus, in the determination
of heme oxygenase activity in vitro, it is important to ensure that
the reaction proceeds through successive oxygenation steps. We further
suggest that when bacterial heme degradation is being characterized,
a systems biology approach combining genetics, mechanistic enzymology,
and metabolite profiling should be undertaken.
Collapse
Affiliation(s)
- Angela Wilks
- Department
of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201-1140, United States
| | - Masao Ikeda-Saito
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
49
|
Sanz V, de Marcos S, Galbán J. Analytical applications of the optical properties of ferric hemoglobin: A theoretical and experimental study. Microchem J 2014. [DOI: 10.1016/j.microc.2013.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|