1
|
Yang Y, He J, Wang Y, Liang L, Zhang Z, Tan X, Tao S, Wu Z, Dong M, Zheng J, Zhang H, Feng S, Cheng W, Chen Q, Wei H. Whole intestinal microbiota transplantation is more effective than fecal microbiota transplantation in reducing the susceptibility of DSS-induced germ-free mice colitis. Front Immunol 2023; 14:1143526. [PMID: 37234168 PMCID: PMC10206398 DOI: 10.3389/fimmu.2023.1143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1β in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqing Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Tao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Appl Environ Microbiol 2023; 89:e0175322. [PMID: 36625594 PMCID: PMC9888227 DOI: 10.1128/aem.01753-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.
Collapse
|
3
|
Su Y, Michimori Y, Atomi H. Biochemical and genetic examination of two aminotransferases from the hyperthermophilic archaeon Thermococcus kodakarensis. Front Microbiol 2023; 14:1126218. [PMID: 36891395 PMCID: PMC9986279 DOI: 10.3389/fmicb.2023.1126218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis utilizes amino acids as a carbon and energy source. Multiple aminotransferases, along with glutamate dehydrogenase, are presumed to be involved in the catabolic conversion of amino acids. T. kodakarensis harbors seven Class I aminotransferase homologs on its genome. Here we examined the biochemical properties and physiological roles of two Class I aminotransferases. The TK0548 protein was produced in Escherichia coli and the TK2268 protein in T. kodakarensis. Purified TK0548 protein preferred Phe, Trp, Tyr, and His, and to a lower extent, Leu, Met and Glu. The TK2268 protein preferred Glu and Asp, with lower activities toward Cys, Leu, Ala, Met and Tyr. Both proteins recognized 2-oxoglutarate as the amino acceptor. The TK0548 protein exhibited the highest k cat/K m value toward Phe, followed by Trp, Tyr, and His. The TK2268 protein exhibited highest k cat/K m values for Glu and Asp. The TK0548 and TK2268 genes were individually disrupted, and both disruption strains displayed a retardation in growth on a minimal amino acid medium, suggesting their involvement in amino acid metabolism. Activities in the cell-free extracts of the disruption strains and the host strain were examined. The results suggested that the TK0548 protein contributes to the conversion of Trp, Tyr and His, and the TK2268 protein to that of Asp and His. Although other aminotransferases seem to contribute to the transamination of Phe, Trp, Tyr, Asp, and Glu, our results suggest that the TK0548 protein is responsible for the majority of aminotransferase activity toward His in T. kodakarensis. The genetic examination carried out in this study provides insight into the contributions of the two aminotransferases toward specific amino acids in vivo, an aspect which had not been thoroughly considered thus far.
Collapse
Affiliation(s)
- Yu Su
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Kondrotaite Z, Valk LC, Petriglieri F, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Front Microbiol 2022; 13:917553. [PMID: 35875537 PMCID: PMC9304909 DOI: 10.3389/fmicb.2022.917553] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The Saprospiraceae family within the phylum Bacteroidota is commonly present and highly abundant in wastewater treatment plants (WWTPs) worldwide, but little is known about its role. In this study, we used MiDAS 4 global survey with samples from 30 countries to analyze the abundance and distribution of members of Saprospiraceae. Phylogenomics were used to delineate five new genera from a set of 31 high-quality metagenome-assembled genomes from Danish WWTPs. Newly designed probes for fluorescence in situ hybridization (FISH) revealed rod-shaped morphologies for all genera analyzed, including OLB8, present mostly inside the activated sludge flocs. The genomes revealed potential metabolic capabilities for the degradation of polysaccharides, proteins, and other complex molecules; partial denitrification; and storage of intracellular polymers (glycogen, polyphosphate, and polyhydroxyalkanoates). FISH in combination with Raman microspectroscopy confirmed the presence of intracellular glycogen in Candidatus Brachybacter, Candidatus Parvibacillus calidus (both from the former genus OLB8), and Candidatus Opimibacter, and the presence of polyhydroxyalkanoates in Candidatus Defluviibacterium haderslevense and Candidatus Vicinibacter. These results provide the first overview of the most abundant novel Saprospiraceae genera present in WWTPs across the world and their potential involvement in nutrient removal and the degradation of macromolecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Per H. Nielsen
- Department of Chemistry and Bioscience, Center of Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Pillot G, Amin Ali O, Davidson S, Shintu L, Combet-Blanc Y, Godfroy A, Bonin P, Liebgott PP. Evolution of Thermophilic Microbial Communities from a Deep-Sea Hydrothermal Chimney under Electrolithoautotrophic Conditions with Nitrate. Microorganisms 2021; 9:microorganisms9122475. [PMID: 34946077 PMCID: PMC8705573 DOI: 10.3390/microorganisms9122475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown the presence of an abiotic electrical current across the walls of deep-sea hydrothermal chimneys, allowing the growth of electroautotrophic microbial communities. To understand the role of the different phylogenetic groups and metabolisms involved, this study focused on electrotrophic enrichment with nitrate as electron acceptor. The biofilm density, community composition, production of organic compounds, and electrical consumption were monitored by FISH confocal microscopy, qPCR, metabarcoding, NMR, and potentiostat measurements. A statistical analysis by PCA showed the correlation between the different parameters (qPCR, organic compounds, and electron acceptors) in three distinct temporal phases. In our conditions, the Archaeoglobales have been shown to play a key role in the development of the community as the first colonizers on the cathode and the first producers of organic compounds, which are then used as an organic source by heterotrophs. Finally, through subcultures of the community, we showed the development of a greater biodiversity over time. This observed phenomenon could explain the biodiversity development in hydrothermal contexts, where energy sources are transient and unstable.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
| | - Oulfat Amin Ali
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
| | - Sylvain Davidson
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
| | - Laetitia Shintu
- Aix Marseille Université, CNRS Centrale Marseille, iSm2, 13284 Marseille, France;
| | - Yannick Combet-Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
| | - Anne Godfroy
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, CNRS, IFREMER, 29280 Plouzané, France;
| | - Patricia Bonin
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
| | - Pierre-Pol Liebgott
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (G.P.); (O.A.A.); (S.D.); (Y.C.-B.); (P.B.)
- Correspondence:
| |
Collapse
|
6
|
Ahmad S, Jiang L, Zheng S, Chen Y, Zhang JY, Stanley D, Miao H, Ge LQ. Silencing of a putative alanine aminotransferase (ALT) gene influences free amino acid composition in hemolymph and fecundity of the predatory bug, Cyrtorhinus lividipennis Reuter. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21836. [PMID: 34288123 DOI: 10.1002/arch.21836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In Asian rice systems, Cyrtorhinus lividipennis Reuter is an important predator that preys on rice planthopper eggs and young nymphs, as a primary food source. Alanine aminotransferase (ALT) acts in many physiological and biochemical processes in insects. We cloned the full-length complementary DNA of C. lividipennis ClALT. Expression analysis showed higher expression in the fat body and midgut compared to other tissues. It is expressed in all C. lividipennis developmental stages and at least four organs. Silencing of ClALT by RNA interference significantly decreased the ClALT enzyme activity and ClALT expression compared to dsGFP-treated controls at 2 days after emergence (DAE). Silencing of ClALT influenced free hemolymph amino acid compositions, resulting in a reduction of Aspartic acid (Asp) and Alanine (Ala) proportions, and increased Cysteine (Cys) and Valine (Val) proportions in females at 2 DAE. dsClALT treatments led to decreased soluble total protein concentrations in ovary and fat body, and to lower reduced vitellogenin (Vg) expression, body weight, and the numbers of laid eggs. The double-stranded RNA viruse treatments also led to prolonged preoviposition periods and hindered ovarian development. Western blot analysis indicated that silencing ClALT also led to reduced fat body Vg protein abundance at 2 DAE. These data support our hypothesis that ClALT influences amino acid metabolism and fecundity in C. lividipennis.
Collapse
Affiliation(s)
- Sheraz Ahmad
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Lu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Sui Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jie Y Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - David Stanley
- Biological Controls of Insects Research Laboratory, USDA-Agricultural Research Service, Columbia, Missouri, USA
| | - Hong Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Lin Q Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Courtine D, Vince E, Maignien L, Philippon X, Gayet N, Shao Z, Alain K. Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2021; 71. [PMID: 34236955 DOI: 10.1099/ijsem.0.004853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A coccoid-shaped, strictly anaerobic, hyperthermophilic and piezophilic organoheterotrophic archaeon, strain Iri35cT, was isolated from a hydrothermal chimney rock sample collected at a depth of 2300 m at the Mid-Atlantic Ridge (Rainbow vent field). Cells of strain Iri35cT grew at NaCl concentrations ranging from 1-5 % (w/v) (optimum 2.0 %), from pH 5.0 to 9.0 (optimum 7.0-7.5), at temperatures between 50 and 90 °C (optimum 75-80 °C) and at pressures from 0.1 to at least 50 MPa (optimum: 10-30 MPa). The novel isolate grew on complex organic substrates, such as yeast extract, tryptone, peptone or beef extract, preferentially in the presence of elemental sulphur or l-cystine; however, these molecules were not necessary for growth. Its genomic DNA G+C content was 54.63 mol%. The genome has been annotated and the metabolic predictions are in accordance with the metabolic characteristics of the strain and of Thermococcales in general. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain Iri35cT belongs to the genus Thermococcus, and is closer to the species T. celericrescens and T. siculi. Average nucleotide identity scores and in silico DNA-DNA hybridization values between the genome of strain Iri35cT and the genomes of the type species of the genus Thermococcus were below the species delineation threshold. Therefore, and considering the phenotypic data presented, strain Iri35cT is suggested to represent a novel species, for which the name Thermococcus camini sp. nov. is proposed, with the type strain Iri35cT (=UBOCC M-2026T=DSM 111003T).
Collapse
Affiliation(s)
- Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Erwann Vince
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Xavier Philippon
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | | | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| |
Collapse
|
8
|
Simons JR, Beppu H, Imanaka T, Kanai T, Atomi H. Effects of high-level expression of A 1-ATPase on H 2 production in Thermococcus kodakarensis. J Biosci Bioeng 2020; 130:149-158. [PMID: 32414665 DOI: 10.1016/j.jbiosc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.
Collapse
Affiliation(s)
- Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruki Beppu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
9
|
Optimization of an In Vitro Transcription/Translation System Based on Sulfolobus solfataricus Cell Lysate. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2019; 2019:9848253. [PMID: 30886540 PMCID: PMC6388310 DOI: 10.1155/2019/9848253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022]
Abstract
A system is described which permits the efficient synthesis of proteins in vitro at high temperature. It is based on the use of an unfractionated cell lysate (S30) from Sulfolobus solfataricus previously well characterized in our laboratory for translation of pretranscribed mRNAs, and now adapted to perform coupled transcription and translation. The essential element in this expression system is a strong promoter derived from the S. solfataricus 16S/23S rRNA-encoding gene, from which specific mRNAs may be transcribed with high efficiency. The synthesis of two different proteins is reported, including the S. solfataricus DNA-alkylguanine-DNA-alkyl-transferase protein (SsOGT), which is shown to be successfully labeled with appropriate fluorescent substrates and visualized in cell extracts. The simplicity of the experimental procedure and specific activity of the proteins offer a number of possibilities for the study of structure-function relationships of proteins.
Collapse
|
10
|
Zheng RC, Hachisuka SI, Tomita H, Imanaka T, Zheng YG, Nishiyama M, Atomi H. An ornithine ω-aminotransferase required for growth in the absence of exogenous proline in the archaeon Thermococcus kodakarensis. J Biol Chem 2018; 293:3625-3636. [PMID: 29352105 DOI: 10.1074/jbc.ra117.001222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between amino acids and α-keto acids, and are important for the cellular metabolism of nitrogen. Many bacterial and eukaryotic ω-aminotransferases that use l-ornithine (Orn), l-lysine (Lys), or γ-aminobutyrate (GABA) have been identified and characterized, but the corresponding enzymes from archaea are unknown. Here, we examined the activity and function of TK2101, a gene annotated as a GABA aminotransferase, from the hyperthermophilic archaeon Thermococcus kodakarensis We overexpressed the TK2101 gene in T. kodakarensis and purified and characterized the recombinant protein and found that it displays only low levels of GABA aminotransferase activity. Instead, we observed a relatively high ω-aminotransferase activity with l-Orn and l-Lys as amino donors. The most preferred amino acceptor was 2-oxoglutarate. To examine the physiological role of TK2101, we created a TK2101 gene-disruption strain (ΔTK2101), which was auxotrophic for proline. Growth comparison with the parent strain KU216 and the biochemical characteristics of the protein strongly suggested that TK2101 encodes an Orn aminotransferase involved in the biosynthesis of l-Pro. Phylogenetic comparisons of the TK2101 sequence with related sequences retrieved from the databases revealed the presence of several distinct protein groups, some of which having no experimentally studied member. We conclude that TK2101 is part of a novel group of Orn aminotransferases that are widely distributed at least in the genus Thermococcus, but perhaps also throughout the Archaea.
Collapse
Affiliation(s)
- Ren-Chao Zheng
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,the College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shin-Ichi Hachisuka
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroya Tomita
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.,the Department of Biotechnology, College of Life Science, Ritsumeikan University Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yu-Guo Zheng
- the College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Makoto Nishiyama
- the Biotechnology Research Center, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo 113-8657, Japan, and
| | - Haruyuki Atomi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, .,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
11
|
Shimizu M. NAD +/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem 2018; 82:216-224. [PMID: 29327656 DOI: 10.1080/09168451.2017.1422972] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- a Faculty of Agriculture, Department of Applied Biological Chemistry , Meijo University , Nagoya , Japan
| |
Collapse
|
12
|
Dalwadi MP, King JR, Minton NP. Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine. J Math Biol 2017; 77:165-199. [PMID: 29159570 PMCID: PMC5949144 DOI: 10.1007/s00285-017-1189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/04/2017] [Indexed: 11/26/2022]
Abstract
A biosustainable production route for 3-hydroxypropionic acid (3HP), an important platform chemical, would allow 3HP to be produced without using fossil fuels. We are interested in investigating a potential biochemical route to 3HP from pyruvate through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-alanine and, in this paper, we develop and solve a mathematical model for the reaction kinetics of the metabolites involved in this pathway. We consider two limiting cases, one where the levels of pyruvate are never replenished, the other where the levels of pyruvate are continuously replenished and thus kept constant. We exploit the natural separation of both the time scales and the metabolite concentrations to make significant asymptotic progress in understanding the system without resorting to computationally expensive parameter sweeps. Using our asymptotic results, we are able to predict the most important reactions to maximize the production of 3HP in this system while reducing the maximum amount of the toxic intermediate compound malonic semi-aldehyde present at any one time, and thus we are able to recommend which enzymes experimentalists should focus on manipulating.
Collapse
Affiliation(s)
- Mohit P Dalwadi
- Synthetic Biology Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - John R King
- Synthetic Biology Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- Synthetic Biology Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
13
|
Hensley SA, Moreira E, Holden JF. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste. Front Microbiol 2016; 7:167. [PMID: 26941713 PMCID: PMC4762990 DOI: 10.3389/fmicb.2016.00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 02/03/2023] Open
Abstract
Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L(-1) at rates of 5-36 fmol H2 cell(-1) h(-1) on 0.5% (wt vol(-1)) maltose, 0.5% (wt vol(-1)) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L(-1) of medium when grown on up to 70% (vol vol(-1)) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L(-1) of medium when grown on 0.1-10% (wt vol(-1)) spent brewery grain while P. furiosus produced < 1 mmol of H2 L(-1). Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different growth conditions; however, methyl viologen-dependent membrane hydrogenase activity remained constant across all media types. The results demonstrate the potential of at least some Thermococcus species to produce H2 if protein and α-glucosides are present as substrates.
Collapse
Affiliation(s)
| | | | - James F. Holden
- Department of Microbiology, University of Massachusetts AmherstAmherst, MA, USA
| |
Collapse
|
14
|
Kanai T, Simons JR, Tsukamoto R, Nakajima A, Omori Y, Matsuoka R, Beppu H, Imanaka T, Atomi H. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production. Front Microbiol 2015; 6:847. [PMID: 26379632 PMCID: PMC4549637 DOI: 10.3389/fmicb.2015.00847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw−1 h−1 was observed at a dilution rate of 0.31 h−1. We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR was 36.2 mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1 resulted in a SHPR of 120 mmol H2 g-dcw−1 h−1, which is one of the highest production rates observed in microbial fermentation.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| | - Jan-Robert Simons
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| | - Ryohei Tsukamoto
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | | | | | - Ryoji Matsuoka
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Haruki Beppu
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Tadayuki Imanaka
- Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan ; Research Organization of Science and Technology, Ritsumeikan University Kusatsu, Japan
| | - Haruyuki Atomi
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
15
|
Wan PJ, Fu KY, Lü FG, Guo WC, Li GQ. Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata. Amino Acids 2015; 47:1445-54. [DOI: 10.1007/s00726-015-1978-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/30/2015] [Indexed: 01/04/2023]
|
16
|
McAllister CH, Good AG. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 2015; 10:e0121830. [PMID: 25830496 PMCID: PMC4382294 DOI: 10.1371/journal.pone.0121830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.
Collapse
Affiliation(s)
- Chandra H. McAllister
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- * E-mail:
| | - Allen G. Good
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
17
|
Lewis DL, Notey JS, Chandrayan SK, Loder AJ, Lipscomb GL, Adams MWW, Kelly RM. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles 2014; 19:269-81. [PMID: 25472011 DOI: 10.1007/s00792-014-0712-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.
Collapse
Affiliation(s)
- Derrick L Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, EB-1,911 Partners Way, Raleigh, NC, 27695-7905, US
| | | | | | | | | | | | | |
Collapse
|
18
|
Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2014; 196:3831-9. [PMID: 25157082 DOI: 10.1128/jb.02021-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the simultaneous oxidation of pyruvate and amino acids during H2-evolving growth of the hyperthermophilic archaeon Thermococcus kodakarensis. The comparison of mass balance between a cytosolic hydrogenase (HYH)-deficient strain (the ΔhyhBGSL strain) and the parent strain indicated that NADPH generated via H2 uptake by HYH was consumed by reductive amination of 2-oxoglutarate catalyzed by glutamate dehydrogenase. Further examinations were done to elucidate functions of three enzymes potentially involved in pyruvate oxidation: pyruvate formate-lyase (PFL), pyruvate:ferredoxin oxidoreductase (POR), and 2-oxoisovalerate:ferredoxin oxidoreductase (VOR) under the HYH-deficient background in T. kodakarensis. No significant change was observed by deletion of pflDA, suggesting that PFL had no critical role in pyruvate oxidation. The growth properties and mass balances of ΔporDAB and ΔvorDAB strains indicated that POR and VOR specifically functioned in oxidation of pyruvate and branched-chain amino acids, respectively, and the lack of POR or VOR was compensated for by promoting the oxidation of another substrate driven by the remaining oxidoreductase. The H2 yields from the consumed pyruvate and amino acids were increased from 31% by the parent strain to 67% and 82% by the deletion of hyhBGSL and double deletion of hyhBGSL and vorDAB, respectively. Significant discrepancies in the mass balances were observed in excess formation of acetate and NH3, suggesting the presence of unknown metabolisms in T. kodakarensis grown in the rich medium containing pyruvate.
Collapse
|
19
|
Peña-Soler E, Fernandez FJ, López-Estepa M, Garces F, Richardson AJ, Quintana JF, Rudd KE, Coll M, Vega MC. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli. PLoS One 2014; 9:e102139. [PMID: 25014014 PMCID: PMC4094517 DOI: 10.1371/journal.pone.0102139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5′-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.
Collapse
Affiliation(s)
- Esther Peña-Soler
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Francisco J. Fernandez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain
| | - Miguel López-Estepa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain
| | - Fernando Garces
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Andrew J. Richardson
- University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Juan F. Quintana
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain
| | - Kenneth E. Rudd
- University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - M. Cristina Vega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Isolation of a Mutant Auxotrophic forL-Alanine and Identification of Three Major Aminotransferases That SynthesizeL-Alanine inEscherichia coli. Biosci Biotechnol Biochem 2014; 75:930-8. [DOI: 10.1271/bbb.100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
|
22
|
Characterization of ten heterotetrameric NDP-dependent acyl-CoA synthetases of the hyperthermophilic archaeon Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:176863. [PMID: 24669200 PMCID: PMC3942289 DOI: 10.1155/2014/176863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/09/2013] [Indexed: 12/03/2022]
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α2β2 structures but the genome contains genes encoding three additional α-subunits. The ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α2β2 isoenzymes. The α-subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. The β-subunit determined preference for adenine or guanine nucleotides. The GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes. Transcriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the Thermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.
Collapse
|
23
|
Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2013; 195:1940-8. [PMID: 23435976 DOI: 10.1128/jb.01979-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid catabolism in Thermococcales is presumed to proceed via three steps: oxidative deamination of amino acids by glutamate dehydrogenase (GDH) or aminotransferases, oxidative decarboxylation by 2-oxoacid:ferredoxin oxidoreductases (KOR), and hydrolysis of acyl-coenzyme A (CoA) by ADP-forming acyl-CoA synthetases (ACS). Here, we performed a genetic examination of enzymes involved in Glu catabolism in Thermococcus kodakarensis. Examination of amino acid dehydrogenase activities in cell extracts of T. kodakarensis KUW1 (ΔpyrF ΔtrpE) revealed high NADP-dependent GDH activity, along with lower levels of NAD-dependent activity. NADP-dependent activities toward Gln/Ala/Val/Cys and an NAD-dependent threonine dehydrogenase activity were also detected. In KGDH1, a gene disruption strain of T. kodakarensis GDH (Tk-GDH), only threonine dehydrogenase activity was detected, indicating that all other activities were dependent on Tk-GDH. KGDH1 could not grow in a medium in which growth was dependent on amino acid catabolism, implying that Tk-GDH is the only enzyme that can discharge the electrons (to NADP(+)/NAD(+)) released from amino acids in their oxidation to 2-oxoacids. In a medium containing excess pyruvate, KGDH1 displayed normal growth, but higher degrees of amino acid catabolism were observed compared to those for KUW1, suggesting that Tk-GDH functions to suppress amino acid oxidation and plays an anabolic role under this condition. We further constructed disruption strains of 2-oxoglutarate:ferredoxin oxidoreductase and succinyl-CoA synthetase. The two strains displayed growth defects in both media compared to KUW1. Succinate generation was not observed in these strains, indicating that the two enzymes are solely responsible for Glu catabolism among the multiple KOR and ACS enzymes in T. kodakarensis.
Collapse
|
24
|
McAllister CH, Facette M, Holt A, Good AG. Analysis of the enzymatic properties of a broad family of alanine aminotransferases. PLoS One 2013; 8:e55032. [PMID: 23408955 PMCID: PMC3567105 DOI: 10.1371/journal.pone.0055032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 01/04/2023] Open
Abstract
Alanine aminotransferase (AlaAT) has been studied in a variety of organisms due to the involvement of this enzyme in mammalian processes such as non-alcoholic hepatocellular damage, and in plant processes such as C4 photosynthesis, post-hypoxic stress response and nitrogen use efficiency. To date, very few studies have made direct comparisons of AlaAT enzymes and fewer still have made direct comparisons of this enzyme across a broad spectrum of organisms. In this study we present a direct kinetic comparison of glutamate:pyruvate aminotransferase (GPAT) activity for seven AlaATs and two glutamate:glyoxylate aminotransferases (GGAT), measuring the KM values for the enzymes analyzed. We also demonstrate that recombinant expression of AlaAT enzymes in Eschericia coli results in differences in bacterial growth inhibition, supporting previous reports of AlaAT possessing bactericidal properties, attributed to lipopolysaccharide endotoxin recognition and binding. A probable lipopolysaccharide binding region within the AlaAT enzymes, homologous to a region of a lipopolysaccharide binding protein (LBP) in humans, was also identified in this study. The AlaAT enzyme differences identified here indicate that AlaAT homologues have differentiated significantly and the roles these homologues play in vivo may also have diverged significantly. Specifically, the differing kinetics of AlaAT enzymes and how this may alter the nitrogen use efficiency in plants is discussed.
Collapse
|
25
|
Munt O, Prüfer D, Schulze Gronover C. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:33-40. [PMID: 23073363 DOI: 10.1016/j.jplph.2012.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.
Collapse
Affiliation(s)
- Oliver Munt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | |
Collapse
|
26
|
Duff SM, Rydel TJ, McClerren AL, Zhang W, Li JY, Sturman EJ, Halls C, Chen S, Zeng J, Peng J, Kretzler CN, Evdokimov A. The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure. Arch Biochem Biophys 2012; 528:90-101. [DOI: 10.1016/j.abb.2012.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/15/2022]
|
27
|
Kendziorek M, Paszkowski A, Zagdańska B. Biochemical characterization and kinetic properties of alanine aminotransferase homologues partially purified from wheat (Triticum aestivum L.). PHYTOCHEMISTRY 2012; 82:7-14. [PMID: 22863564 DOI: 10.1016/j.phytochem.2012.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 05/16/2023]
Abstract
Four homologues of alanine aminotransferase have been isolated from shoots of wheat seedlings and purified by saline precipitation, gel filtration, preparative electrophoresis and anion exchange chromatography on Protein-Pak Q 8HR column attached to HPLC. Alanine aminotransferase 1 (AlaAT1) and 2 (AlaAT2) were purified 303- and 452-fold, respectively, whereas l-glutamate: glyoxylate aminotransferase 1 (GGAT1) and 2 (GGAT2) were purified 485- and 440-fold, respectively. Consistent inhibition of AlaAT (EC 2.6.1.2) and GGAT (EC 2.6.1.4) activities by p-hydroxymercuribenzoate points on participation of cysteine residues in the enzyme activity. The molecular weight of AlaAT1 and AlaAT2 was estimated to be 65kDa and both of them are monomers in native state. Nonsignificant differences between K(m) using alanine as substrate and catalytic efficiency (k(cat)/K(m)) for l-alanine in reaction with 2-oxoglutarate indicate comparable kinetic constants for AlaAT1 and AlaAT2. Similar kinetic constants for l-alanine in reaction with 2-oxoglutarate and for l-glutamate in reaction with pyruvate for all four homologues suggest equally efficient reaction in both forward and reverse directions. GGAT1 and GGAT2 were able to catalyze transamination between l-glutamate and glyoxylate, l-alanine and glyoxylate and reverse reactions between glycine and 2-oxoglutarate or pyruvate. Both GGATs also consisted of a single subunit with molecular weight of about 50kDa. The estimated K(m) for GGAT1 (3.22M) and GGAT2 (1.27M) using l-glutamate as substrate was lower in transamination with glyoxylate than with pyruvate (9.52 and 9.09mM, respectively). Moreover, distinctively higher values of catalytic efficiency for l-glutamate in reaction with glyoxylate than for l-glutamate in reaction with pyruvate confirm involvement of these homologues into photorespiratory metabolism.
Collapse
Affiliation(s)
- Maria Kendziorek
- Biochemistry Department, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
| | | | | |
Collapse
|
28
|
Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2011; 193:3109-16. [PMID: 21515783 DOI: 10.1128/jb.01072-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H₂) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S⁰) or H₂ generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H₂S- and H₂-evolving conditions. H₂S generation in PHY1 was equivalent to that of the host strain, and H₂ generation was higher in PHY1, suggesting that Hyh functions in the direction of H₂ uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H₂-evolving conditions. This fact, as well as the impaired H₂ generation activity in MHD1, indicated that Mbh is mainly responsible for H₂ evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H₂ transfer (i.e., H₂ evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H₂S-evolving conditions and exhibited a lower H₂S generation activity, indicating the involvement of Mbx in the S⁰ reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.
Collapse
|
29
|
Abstract
The genus Thermotoga comprises extremely thermophilic (Topt > or = 70 degrees C) and hyperthermophilic (Topt > or = 80 degrees C) bacteria, which have been extensively studied for insights into the basis for life at elevated temperatures and for biotechnological opportunities (e.g. biohydrogen production, biocatalysis). Over the past decade, genome sequences have become available for a number of Thermotoga species, leading to functional genomics efforts to understand growth physiology as well as genomics-based identification and characterization of novel high-temperature biocatalysts. Discussed here are recent developments along these lines for this group of microorganisms.
Collapse
Affiliation(s)
- Andrew D Frock
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | |
Collapse
|
30
|
Kameya M, Arai H, Ishii M, Igarashi Y. Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6 - novel types of alanine or glycine aminotransferase. FEBS J 2010; 277:1876-85. [DOI: 10.1111/j.1742-4658.2010.07604.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 2010; 76:1507-15. [PMID: 20081005 DOI: 10.1128/aem.02135-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD(+) and NADPH/NADP(+) under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD(+) and NADP(+) regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.
Collapse
|
32
|
Abstract
In general, rapid morphological change in mammals has been infrequently documented. Examples that do exist are almost exclusively of rodents on islands. Such changes are usually attributed to selective release or founder events related to restricted gene flow in island settings. Here we document rapid morphological changes in rodents in 20 of 28 museum series collected on four continents, including 15 of 23 mainland sites. Approximately 17,000 measurements were taken of 1302 rodents. Trends included both increases and decreases in the 15 morphological traits measured, but slightly more trends were towards larger size. Generalized linear models indicated that changes in several of the individual morphological traits were associated with changes in human population density, current temperature gradients, and/or trends in temperature and precipitation. When we restricted these analyses to samples taken in the US (where data on human population trends were presumed to be more accurate), we found changes in two additional traits to be positively correlated with changes in human population density. Principle component analysis revealed general trends in cranial and external size, but these general trends were uncorrelated with climate or human population density. Our results indicate that over the last 100+ years, rapid morphological change in rodents has occurred quite frequently, and that these changes have taken place on the mainland as well as on islands. Our results also suggest that these changes may be driven, at least in part, by human population growth and climate change.
Collapse
|
33
|
Genomic analysis of "Elusimicrobium minutum," the first cultivated representative of the phylum "Elusimicrobia" (formerly termite group 1). Appl Environ Microbiol 2009; 75:2841-9. [PMID: 19270133 DOI: 10.1128/aem.02698-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organisms of the candidate phylum termite group 1 (TG1) are regularly encountered in termite hindguts but are present also in many other habitats. Here, we report the complete genome sequence (1.64 Mbp) of "Elusimicrobium minutum" strain Pei191(T), the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut, and we discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, nonribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of "Elusimicrobia" (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.
Collapse
|
34
|
Chou CJ, Jenney FE, Adams MW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metab Eng 2008; 10:394-404. [DOI: 10.1016/j.ymben.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
|
35
|
Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 2008; 74:7457-62. [PMID: 18931286 DOI: 10.1128/aem.01025-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminotransferases (ATs) interacting with L-alanine are the least studied bacterial ATs. Whereas AlaT converts pyruvate to L-alanine in a glutamate-dependent reaction, AvtA is able to convert pyruvate to L-alanine in an L-valine-dependent manner. We show here that the wild type of Corynebacterium glutamicum with a deletion of either of the corresponding genes does not exhibit an explicit growth deficiency. However, a double mutant was auxotrophic for L-alanine, showing that both ATs can provide L-alanine and that they are the only ATs involved. Kinetic studies with isolated enzymes demonstrate that the catalytic efficiency, k(cat)/K(m), of AlaT is higher than 1 order of magnitude in the direction of L-alanine formation (3.5 x 10(4) M(-1) s(-1)), but no preference was apparent for AvtA, suggesting that AlaT is the principal L-alanine-supplying enzyme. This is in line with the cytosolic L-alanine concentration, which is reduced in the exponential growth phase from 95 mM to 18 mM by a deletion of alaT, whereas avtA deletion decreases the L-alanine concentration only to 76 mM. The combined data show that the presence of both ATs has subtle but obvious consequences on balancing intracellular amino acid pools in the wild type. The consequences are more obvious in an L-valine production strain where a high intracellular drain-off of the L-alanine precursor pyruvate prevails. We therefore used deletion of alaT to successfully reduce the contaminating L-alanine in extracellular accumulated L-valine by 80%.
Collapse
|
36
|
Two groups of thermophilic amino acid aminotransferases exhibiting broad substrate specificities for the synthesis of phenylglycine derivatives. Appl Microbiol Biotechnol 2008; 79:775-84. [PMID: 18481057 DOI: 10.1007/s00253-008-1487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 01/09/2023]
Abstract
Thirty two thermophilic amino acid aminotransferases (AATs) were expressed in Escherichia coli as soluble and active proteins. Based on their primary structures, the 32 AATs were divided into four phylogenetic groups (classes I, II, IV, and V). The substrate specificities of these AATs were examined, and 12 AATs were found capable of synthesizing ring-substituted phenylglycine derivatives such as hydroxyl-, methoxy-, and fluorophenylglycines. Eleven out of the 12 AATs were enzymes belonging to two phylogenetic groups namely, one subgroup of the class I family and the class IV family. AATs in these two groups may thus be useful for the synthesis of a variety of ring-substituted phenylglycine derivatives.
Collapse
|
37
|
Chou CJ, Shockley KR, Conners SB, Lewis DL, Comfort DA, Adams MWW, Kelly RM. Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 2007; 73:6842-53. [PMID: 17827328 PMCID: PMC2074980 DOI: 10.1128/aem.00597-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoside linkage (cellobiose versus maltose) dramatically influenced bioenergetics to different extents and by different mechanisms in the hyperthermophilic archaeon Pyrococcus furiosus when it was grown in continuous culture at a dilution rate of 0.45 h(-1) at 90 degrees C. In the absence of S(0), cellobiose-grown cells generated twice as much protein and had 50%-higher specific H(2) generation rates than maltose-grown cultures. Addition of S(0) to maltose-grown cultures boosted cell protein production fourfold and shifted gas production completely from H(2) to H(2)S. In contrast, the presence of S(0) in cellobiose-grown cells caused only a 1.3-fold increase in protein production and an incomplete shift from H(2) to H(2)S production, with 2.5 times more H(2) than H(2)S formed. Transcriptional response analysis revealed that many genes and operons known to be involved in alpha- or beta-glucan uptake and processing were up-regulated in an S(0)-independent manner. Most differentially transcribed open reading frames (ORFs) responding to S(0) in cellobiose-grown cells also responded to S(0) in maltose-grown cells; these ORFs included ORFs encoding a membrane-bound oxidoreductase complex (MBX) and two hypothetical proteins (PF2025 and PF2026). However, additional genes (242 genes; 108 genes were up-regulated and 134 genes were down-regulated) were differentially transcribed when S(0) was present in the medium of maltose-grown cells, indicating that there were different cellular responses to the two sugars. These results indicate that carbohydrate characteristics (e.g., glycoside linkage) have a major impact on S(0) metabolism and hydrogen production in P. furiosus. Furthermore, such issues need to be considered in designing and implementing metabolic strategies for production of biofuel by fermentative anaerobes.
Collapse
Affiliation(s)
- Chung-Jung Chou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Carbone A. Computational prediction of genomic functional cores specific to different microbes. J Mol Evol 2006; 63:733-46. [PMID: 17103060 DOI: 10.1007/s00239-005-0250-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 07/10/2006] [Indexed: 10/23/2022]
Abstract
Computational and experimental attempts tried to characterize a universal core of genes representing the minimal set of functional needs for an organism. Based on the increasing number of available complete genomes, comparative genomics has concluded that the universal core contains < 50 genes. In contrast, experiments suggest a much larger set of essential genes (certainly more than several hundreds, even under the most restrictive hypotheses) that is dependent on the biological complexity and environmental specificity of the organism. Highly biased genes, which are generally also the most expressed in translationally biased organisms, tend to be over represented in the class of genes deemed to be essential for any given bacterial species. This association is far from perfect; nevertheless, it allows us to propose a new computational method to detect, to a certain extent, ubiquitous genes, nonorthologous genes, environment-specific genes, genes involved in the stress response, and genes with no identified function but highly likely to be essential for the cell. Most of these groups of genes cannot be identified with previously attempted computational and experimental approaches. The large variety of life-styles and the unusually detectable functional signals characterizing translationally biased organisms suggest using them as reference organisms to infer essentiality in other microbial species. The case of small parasitic genomes is discussed. Data issued by the analysis are compared with previous computational and experimental studies. Results are discussed both on methodological and biological grounds.
Collapse
Affiliation(s)
- Alessandra Carbone
- Génomique Analytique, Université Pierre et Marie Curie-Paris 6, INSERM U511, 91, Bd de I'Hôpital, 75013, Paris, France.
| |
Collapse
|
39
|
Koma D, Sawai T, Harayama S, Kino K. Overexpression of the genes from thermophiles in Escherichia coli by high-temperature cultivation. Appl Microbiol Biotechnol 2006; 73:172-80. [PMID: 16652221 DOI: 10.1007/s00253-006-0448-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/25/2006] [Accepted: 03/28/2006] [Indexed: 12/18/2022]
Abstract
Twenty-nine aminotransferase genes from Pyrococcus horikoshii, Aeropyrum pernix, and Sulfolobus tokodaii were cloned and expressed in Escherichia coli. The expression of several of the genes at 15, 25, or 37 degrees C resulted in the formation of insoluble protein aggregates. Therefore, we developed a simple method to express these genes into soluble proteins, by cultivating E. coli clones at a higher temperature. Thus, four genes could be expressed efficiently into soluble and active enzymes by cultivating the respective E. coli clones at 46 degrees C. Subsequently, the method was applied to the expression into soluble proteins of other aminotransferase genes that were derived from nine species of thermophilic microorganisms.
Collapse
Affiliation(s)
- Daisuke Koma
- Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0812, Japan.
| | | | | | | |
Collapse
|
40
|
van de Werken HJG, Verhees CH, Akerboom J, de Vos WM, van der Oost J. Identification of a glycolytic regulon in the archaeaPyrococcusandThermococcus. FEMS Microbiol Lett 2006; 260:69-76. [PMID: 16790020 DOI: 10.1111/j.1574-6968.2006.00292.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The glycolytic pathway of the hyperthermophilic archaea that belong to the order Thermococcales (Pyrococcus, Thermococcus and Palaeococcus) differs significantly from the canonical Embden-Meyerhof pathway in bacteria and eukarya. This archaeal glycolysis variant consists of several novel enzymes, some of which catalyze unique conversions. Moreover, the enzymes appear not to be regulated allosterically, but rather at transcriptional level. To elucidate details of the gene expression control, the transcription initiation sites of the glycolytic genes in Pyrococcus furiosus have been mapped by primer extension analysis and the obtained promoter sequences have been compared with upstream regions of non-glycolytic genes. Apart from consensus sequences for the general transcription factors (TATA-box and BRE) this analysis revealed the presence of a potential transcription factor binding site (TATCAC-N(5)-GTGATA) in glycolytic and starch utilizing promoters of P. furiosus and several thermococcal species. The absence of this inverted repeat in Pyrococcus abyssi and Pyrococcus horikoshii probably reflects that their reduced catabolic capacity does not require this regulatory system. Moreover, this phyletic pattern revealed a TrmB-like regulator (PF0124 and TK1769) which may be involved in recognizing the repeat. This Thermococcales glycolytic regulon, with more than 20 genes, is the largest regulon that has yet been described for Archaea.
Collapse
|
41
|
Vedavathi M, Girish KS, Kumar MK. A novel low molecular weight alanine aminotransferase from fasted rat liver. BIOCHEMISTRY (MOSCOW) 2006; 71 Suppl 1:S105-12. [PMID: 16487061 DOI: 10.1134/s0006297906130189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM.
Collapse
Affiliation(s)
- M Vedavathi
- Department of Biochemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
42
|
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 2005; 187:7639-46. [PMID: 16267288 PMCID: PMC1280304 DOI: 10.1128/jb.187.22.7639-7646.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.
Collapse
Affiliation(s)
- Jan Marienhagen
- Institute of Biotechnology, Research Centre Juelich, Germany
| | | | | | | |
Collapse
|
43
|
Carbone A, Madden R. Insights on the evolution of metabolic networks of unicellular translationally biased organisms from transcriptomic data and sequence analysis. J Mol Evol 2005; 61:456-69. [PMID: 16187158 DOI: 10.1007/s00239-004-0317-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 04/20/2005] [Indexed: 11/27/2022]
Abstract
Codon bias is related to metabolic functions in translationally biased organisms, and two facts are argued about. First, genes with high codon bias describe in meaningful ways the metabolic characteristics of the organism; important metabolic pathways corresponding to crucial characteristics of the lifestyle of an organism, such as photosynthesis, nitrification, anaerobic versus aerobic respiration, sulfate reduction, methanogenesis, and others, happen to involve especially biased genes. Second, gene transcriptional levels of sets of experiments representing a significant variation of biological conditions strikingly confirm, in the case of Saccharomyces cerevisiae, that metabolic preferences are detectable by purely statistical analysis: the high metabolic activity of yeast during fermentation is encoded in the high bias of enzymes involved in the associated pathways, suggesting that this genome was affected by a strong evolutionary pressure that favored a predominantly fermentative metabolism of yeast in the wild. The ensemble of metabolic pathways involving enzymes with high codon bias is rather well defined and remains consistent across many species, even those that have not been considered as translationally biased, such as Helicobacter pylori, for instance, reveal some weak form of translational bias for this genome. We provide numerical evidence, supported by experimental data, of these facts and conclude that the metabolic networks of translationally biased genomes, observable today as projections of eons of evolutionary pressure, can be analyzed numerically and predictions of the role of specific pathways during evolution can be derived. The new concepts of Comparative Pathway Index, used to compare organisms with respect to their metabolic networks, and Evolutionary Pathway Index, used to detect evolutionarily meaningful bias in the genetic code from transcriptional data, are introduced.
Collapse
Affiliation(s)
- Alessandra Carbone
- Génomique Analytique, Université Pierre et Marie Curie, INSERM U511, 91 Bd de l'Hôpital, 75013 Paris, France.
| | | |
Collapse
|
44
|
Hummel CS, Lancaster KM, Crane EJ. Determination of coenzyme A levels in Pyrococcus furiosus and other Archaea: implications for a general role for coenzyme A in thermophiles. FEMS Microbiol Lett 2005; 252:229-34. [PMID: 16213671 DOI: 10.1016/j.femsle.2005.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/18/2005] [Accepted: 09/01/2005] [Indexed: 11/22/2022] Open
Abstract
Physiologically significant levels of intracellular coenzyme A were identified in Pyrococcus furiosus, Thermococcus litoralis, and Sulfolobus solfataricus, suggesting a role for CoA as an important low molecular mass thiol in the thermophilic Archaea. In P. furiosus, cells grown in the presence of sulfur showed significantly higher levels of oxidized CoA compared with those grown in the absence of S(0). T. litoralis showed strikingly similar CoA levels, although with low disulfide levels in both the presence and absence of S(0). S. solfataricus showed similarly high levels of CoA thiol, with correspondingly low levels of the CoA disulfide. These results are consistent with the identification of a coenzyme A disulfide reductase (CoADR) in P. furiosus and horikoshii as well as the presence of CoADR homologues in the genomes of S. solfataricus and T. kodakaraensis.
Collapse
Affiliation(s)
- Charles S Hummel
- Department of Chemistry, Pomona College, Claremont, CA 91711, USA
| | | | | |
Collapse
|
45
|
Ward DE, de Vos WM, van der Oost J. Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:133-41. [PMID: 15803651 PMCID: PMC2685563 DOI: 10.1155/2002/959031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genes encoding aromatic aminotransferase II (AroAT II) and aspartate aminotransferase (AspAT) from Pyrococcus furiosus have been identified, expressed in Escherichia coli and the recombinant proteins characterized. The AroAT II enzyme was specific for the transamination reaction of the aromatic amino acids, and uses a-ketoglutarate as the amino acceptor. Like the previously characterized AroAT I, AroAT II has highest efficiency for phenylalanine (k(cat)/Km = 923 s(-1) mM(-1)). Northern blot analyses revealed that AroAT I was mainly expressed when tryptone was the primary carbon and energy source. Although the expression was significantly lower, a similar trend was observed for AroAT II. These observations suggest that both AroATs are involved in amino acid degradation. Although AspAT exhibited highest activity with aspartate and alpha-ketoglutarate (k(cat) approximately 105 s(-1)), it also showed significant activity with alanine, glutamate and the aromatic amino acids. With aspartate as the amino donor, AspAT catalyzed the amination of alpha-ketoglutarate, pyruvate and phenyl-pyruvate. No activity was detected with either branched-chain amino acids or alpha-keto acids. The AspAT gene (aspC) was expressed as a polycistronic message as part of the aro operon, with expression observed only when the aromatic amino acids were absent from the growth medium, indicating a role in the biosynthesis of the aromatic amino acids.
Collapse
Affiliation(s)
- Donald E. Ward
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
- Department of Chemical Engineering, North Carolina State University, P.O. Box 7905, Raleigh, NC, 27695, USA
| | - William M. de Vos
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
- Corresponding author ()
| |
Collapse
|
46
|
Harris DR, Ward DE, Feasel JM, Lancaster KM, Murphy RD, Mallet TC, Crane EJ. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. FEBS J 2005; 272:1189-200. [PMID: 15720393 DOI: 10.1111/j.1742-4658.2005.04555.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have cloned NADH oxidase homologues from Pyrococcus horikoshii and P. furiosus, and purified the recombinant form of the P. horikoshii enzyme to homogeneity from Escherichia coli. Both enzymes (previously referred to as NOX2) have been shown to act as a coenzyme A disulfide reductases (CoADR: CoA-S-S-CoA + NAD(P)H + H+-->2CoA-SH + NAD(P)+). The P. horikoshii enzyme shows a kcat app of 7.2 s(-1) with NADPH at 75 degrees C. While the enzyme shows a preference for NADPH, it is able to use both NADPH and NADH efficiently, with both giving roughly equal kcats, while the Km for NADPH is roughly eightfold lower than that for NADH. The enzyme is specific for the CoA disulfide, and does not show significant reductase activity with other disulfides, including dephospho-CoA. Anaerobic reductive titration of the enzyme with NAD(P)H proceeds in two stages, with an apparent initial reduction of a nonflavin redox center with the first reduction resulting in what appears to be an EH2 form of the enzyme. Addition of a second of NADPH results in the formation of an apparent FAD-NAD(P)H complex. The behavior of this enzyme is quite different from the mesophilic staphylococcal version of the enzyme. This is only the second enzyme with this activity discovered, and the first from a strict anaerobe, an Archaea, or hyperthermophilic source. P. furiosus cells were assayed for small molecular mass thiols and found to contain 0.64 micromol CoA.g dry weight(-1) (corresponding to 210 microM CoA in the cell) consistent with CoA acting as a pool of disulfide reducing equivalents.
Collapse
|
47
|
Truszkiewicz W, Paszkowski A. Serine:glyoxylate aminotransferases from maize and wheat leaves: purification and properties. PHOTOSYNTHESIS RESEARCH 2004; 82:35-47. [PMID: 16228611 DOI: 10.1023/b:pres.0000040435.35784.6b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photorespiratory enzyme serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) was purified from green parts of seedlings of two Gramminae species with different photosynthetic pathways, maize (Zea mays L., C(4) species) and wheat (Triticum aestivum L., C(3) species). The preparation from wheat was homogeneous as judged by SDS-PAGE with silver staining for proteins; however, the same method revealed approximately 9% contamination in a highly purified maize preparation. Molecular masses of SGAT from maize and wheat were estimated by SDS-PAGE to be 44.1 and 44.6 kDa, respectively. C(4) enzyme exhibited a specific activity in homogenates that was seven times lower than wheat, and this was associated with lower K (m) values for all substrates examined as well as a more than two times lower turnover number k (cat) with serine and glyoxylate as a pair of substrates. In contrast, the ratio of the turnover number to K (m)(Ser)(k (cat)/K (m)(Ser)) for C(4) aminotransferase proved to be about two times higher than for C(3) aminotransferase. The sensitivity of two enzymes to some inhibitors, especially aminooxyacetate, was different and they also differed with respect to thermal stability and pH optimum - the maize enzyme required 0.6 unit higher pH (8.6) for maximal activity and was more heat-resistant.
Collapse
Affiliation(s)
- Wiesław Truszkiewicz
- Department of Biochemistry, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland,
| | | |
Collapse
|
48
|
Schut GJ, Brehm SD, Datta S, Adams MWW. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 2003; 185:3935-47. [PMID: 12813088 PMCID: PMC161589 DOI: 10.1128/jb.185.13.3935-3947.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first complete-genome DNA microarray was constructed for a hyperthermophile or a nonhalophilic archaeon by using the 2,065 open reading frames (ORFs) that have been annotated in the genome of Pyrococcus furiosus (optimal growth temperature, 100 degrees C). This was used to determine relative transcript levels in cells grown at 95 degrees C with either peptides or a carbohydrate (maltose) used as the primary carbon source. Approximately 20% (398 of 2065) of the ORFs did not appear to be significantly expressed under either growth condition. Of the remaining 1,667 ORFs, the expression of 125 of them (8%) differed by more than fivefold between the two cultures, and 82 of the 125 (65%) appear to be part of operons, indicating extensive coordinate regulation. Of the 27 operons that are regulated, 5 of them encode (conserved) hypothetical proteins. A total of 18 operons are up-regulated (greater than fivefold) in maltose-grown cells, including those responsible for maltose transport and for the biosynthesis of 12 amino acids, of ornithine, and of citric acid cycle intermediate products. A total of nine operons are up-regulated (greater than fivefold) in peptide-grown cells, including those encoding enzymes involved in the production of acyl and aryl acids and 2-ketoacids, which are used for energy conservation. Analyses of the spent growth media confirmed the production of branched-chain and aromatic acids during growth on peptides. In addition, six nonlinked enzymes in the pathways of sugar metabolism were regulated more than fivefold--three in maltose-grown cells that are unique to the unusual glycolytic pathway and three in peptide-grown cells that are unique to gluconeogenesis. The catalytic activities of 16 metabolic enzymes whose expression appeared to be highly regulated in the two cell types correlated very well with the microarray data. The degree of coordinate regulation revealed by the microarray data was unanticipated and shows that P. furiosus can readily adapt to a change in its primary carbon source.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
49
|
Shockley KR, Ward DE, Chhabra SR, Conners SB, Montero CI, Kelly RM. Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 2003; 69:2365-71. [PMID: 12676722 PMCID: PMC154833 DOI: 10.1128/aem.69.4.2365-2371.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collective transcriptional analysis of heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus was examined by using a targeted cDNA microarray in conjunction with Northern analyses. Differential gene expression suggests that P. furiosus relies on a cooperative strategy of rescue (thermosome [Hsp60], small heat shock protein [Hsp20], and two VAT-related chaperones), proteolysis (proteasome), and stabilization (compatible solute formation) to cope with polypeptide processing during thermal stress.
Collapse
Affiliation(s)
- Keith R Shockley
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Quérellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 2003; 47:1495-512. [PMID: 12622808 DOI: 10.1046/j.1365-2958.2003.03381.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.
Collapse
Affiliation(s)
- Georges N Cohen
- Institut Pasteur, 25,28 rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|