1
|
Evaluation of chemical composition, antioxidant, antibiofilm and antibacterial potency of essential oil extracted from gamma irradiated clove (Eugenia caryophyllata) buds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants (Basel) 2021; 10:1065. [PMID: 34356298 PMCID: PMC8301176 DOI: 10.3390/antiox10071065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter and the smallest signaling thiol metabolite with important roles in human health. The turnover of H2S in humans is mainly governed by enzymes of sulfur amino acid metabolism and also by the microbiome. As is the case with other small signaling molecules, disease-promoting effects of H2S largely depend on its concentration and compartmentalization. Genetic defects that impair the biogenesis and catabolism of H2S have been described; however, a gap in knowledge remains concerning physiological steady-state concentrations of H2S and their direct clinical implications. The small size and considerable reactivity of H2S renders its quantification in biological samples an experimental challenge. A compilation of methods currently employed to quantify H2S in biological specimens is provided in this review. Substantial discrepancy exists in the concentrations of H2S determined by different techniques. Available methodologies permit end-point measurement of H2S concentration, yet no definitive protocol exists for the continuous, real-time measurement of H2S produced by its enzymatic sources. We present a summary of available animal models, monogenic diseases that impair H2S metabolism in humans including structure-function relationships of pathogenic mutations, and discuss possible approaches to overcome current limitations of study.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ilia Derevenkov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Sergei V. Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
3
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
4
|
Shen T, Liu J, Wu Q, Xu Y. Increasing 2-furfurylthiol content in Chinese sesame-flavored Baijiu via inoculating the producer of precursor l-cysteine in Baijiu fermentation. Food Res Int 2020; 138:109757. [PMID: 33292940 DOI: 10.1016/j.foodres.2020.109757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
2-Furfurylthiol was an important contributor to the flavor of traditional fermented foods including Baijiu. It is essential to increase 2-furfurylthiol concentration to improve the quality of Baijiu. This study aimed to enrich the content of 2-furfurylthiol in Chinese sesame-flavored Baijiu via two strains we isolated from Baijiu fermentation, Bacillus subtilis LBM 10019 and Bacillus vallismortis LBM 10020, which could respectively produce 56.31 mg/L and 42.81 mg/L l-cysteine, the precursor of 2-furfurylthiol, in sorghum extract. After inoculation of these two strains, the maximal relative abundance of Bacillus increased from 7.48% to 40.38%, the final content of l-cysteine increased by 101.44% in Baijiu fermentation. Moreover, the concentration of 2-furfurylthiol increased by 89.15% in the production. This work provides a novel strategy to improve the quality of Chinese sesame-flavored Baijiu.
Collapse
Affiliation(s)
- Ting Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100037, China; Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Nichenametla SN, Mattocks DAL, Midya V, Shneyder J. Differential effects of sulfur amino acid-restricted and low-calorie diets on gut microbiome profile and bile acid composition in male C57BL6/J mice. J Gerontol A Biol Sci Med Sci 2020; 76:1922-1929. [PMID: 33106871 PMCID: PMC8514071 DOI: 10.1093/gerona/glaa270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/20/2022] Open
Abstract
Diet can affect health and longevity by altering the gut microbiome profile. Sulfur amino acid restriction (SAAR), like caloric restriction, extends lifespan. But, its effect on the gut microbiome profile and functional significance of such effects are understudied. We investigated whether SAAR alters the gut microbiome profile and bile acid composition, an index of microbial metabolism. We also compared these changes with those induced by a 12% low-calorie diet (LCD). Male 21-week-old C57BL6/J mice were fed control (CD; 0.86% methionine), SAAR (0.12% methionine), and LCD diets (0.86% methionine). After 10 weeks on the diet, plasma markers and fecal microbial profiles were determined. SAAR mice had lower body weights and IGF-1, and higher food intake and FGF-21 than CD mice. Compared to SAAR mice, LCD mice had higher body weights, and lower FGF-21 and food intake, but similar IGF-1. β-Diversity indices were different between SAAR and LCD, and LCD and CD, but not between CD and SAAR. In groupwise comparisons of individual taxa, differences were more discernable between SAAR and LCD than between other groups. Abundances of Firmicutes, Clostridiaceae, and Turicibacteraceae were higher, but Verrucomicrobia was lower in SAAR than in LCD. Secondary bile acids and the ratio of secondary to primary bile acids were lower in SAAR than in LCD. SAAR favored bile acid conjugation with glycine at the expense of taurine. Overall, SAAR and LCD diets induced distinct changes in the gut microbiome and bile acid profiles. Additional studies on the role of these changes in improving health and lifespan are warranted.
Collapse
Affiliation(s)
- Sailendra N Nichenametla
- Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, NY
| | - Dwight A L Mattocks
- Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, NY
| | - Vishal Midya
- Division of Biostatistics and Bioinformatics, Penn State College of Medicine, Penn State University, Hershey, PA
| | - Jelena Shneyder
- Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, NY
| |
Collapse
|
6
|
Singh AK, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:202-216. [PMID: 31029991 DOI: 10.1016/j.aquatox.2019.04.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The pulp paper industries release wastewater containing very complex organic and inorganic pollutants. These pollutants are discharged mainly pulping and bleaching process during paper manufacturing. The main gaseous pollutants hydrogen sulfides, sodium sulfide, methyl mercaptan, sulfur, and chlorine dioxide is reported for chronic, respiratory disorder and irritation to skin, eyes and cardiac problem along with nausea and headache. The major inorganic pollutants include ferrous, copper, zinc, nickel, and magnesium, which is reported for neurotoxicity, toxic to juvenile channel catfish (Ictalurus punctatus) and Accumulation to gill > liver > ovary > muscle. The detected major organic and inorganic pollutants are hexadecanoic acids, octacosane, β-sitosterol trimethylsilyl ether, 1-tetradecane, 2-methoxy phenol, trichlorocatechol, tetrachlorocatechol, chlorophenols, chloroguaiacols, chlorosyringols, chlorocatechols, terpenes, methanol, phenol, alkylated phenols, decalone, benzoic acid, abietic acid, and dehydroabietic acid. Several of these compounds are reported as endocrine-disrupting chemicals (EDCs). Therefore, direct toxicity of effluent to the reproductive system in aquatic flora and fauna are reported. Several reports have highlighted reduced gonad size, change in secondary sexual character, delayed maturity and suppression of sex hormone in fish rainbow trout (Oncorhynchus mykiss) and mosquitofish (Gambusia holbrooki) further the in-vitro studies of organic compounds on fish, Salmonella typhimurium, Vibrio fischeri, and Saccharomyces have shown inhibition in growth and luminescence properties. The presence of organic and inorganic pollutants in pulp paper industry wastewater causes phytotoxicity chromosomal aberration in Allium cepa. Thus the manuscript has concluded that detected pollutants produced foul odors and cause hermaphroditism in fish, hepatotoxicity and mutagenic effect. In addition, the growth of coliform bacteria in River and other aquatic resources has been reported due to contamination of PPI effluent. The studies also highlighted the presence of tannins, chlorophenols, dioxins, furans, biocide, fatty acids, and resin acids along with chlorolignine compounds as persistent organic pollutants (POP), which needs special attention for pollution prevention of rivers, lakes and other aquatic resources.
Collapse
Affiliation(s)
- Ajay Kumar Singh
- Department of Environmental Microbiology, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raibareli Road, Lucknow 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raibareli Road, Lucknow 226025, India.
| |
Collapse
|
7
|
Lensmire JM, Hammer ND. Nutrient sulfur acquisition strategies employed by bacterial pathogens. Curr Opin Microbiol 2019; 47:52-58. [DOI: 10.1016/j.mib.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
8
|
Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech 2019; 9:44. [PMID: 30675454 DOI: 10.1007/s13205-019-1572-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023] Open
Abstract
CysK (O-acetylserine sulfhydrylase) is a pyridoxal-5' phosphate-dependent enzyme which catalyzes the second step of the de novo cysteine biosynthesis pathway by converting O-acetyl serine (OAS) into l-cysteine in the presence of sulfide. The first step of the cysteine biosynthesis involves formation of OAS from serine and acetyl CoA by CysE (serine acetyltransferase). Apart from role of CysK in cysteine biosynthesis, recent studies have revealed various additional roles of this enzyme in bacterial physiology. Other than the suggested regulatory role in cysteine production, other activities of CysK include involvement of CysK-in contact-dependent toxin activation in Gram-negative pathogens, as a transcriptional regulator of CymR by stabilizing the CymR-DNA interactions, in biofilm formation by providing cysteine and via another mechanism not yet understood, in ofloxacin and tellurite resistance as well as in cysteine desulfurization. Some of these activities involve binding of CysK to another cellular partner, where the complex is regulated by the availability of OAS and/or sulfide (H2S). The aim of this study is to present an overview of current knowledge of multiple functions performed by CysK and identifying structural features involved in alternate functions. Due to possible role in disease, promoting or inhibiting a "moonlighting" function of CysK could be a target for developing novel therapeutic interventions.
Collapse
|
9
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
10
|
Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Appl Environ Microbiol 2017; 83:AEM.01475-17. [PMID: 28970229 DOI: 10.1128/aem.01475-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial sulfur metabolism plays crucial roles in various food and alcoholic beverage fermentations. 3-(Methylthio)-1-propanol and dimethyl disulfide are important sulfur compounds in fermented foods and alcoholic beverages. Here, we studied the dynamics of these two compounds during spontaneous Chinese liquor fermentation. The two compounds reached the maximum concentration at day 10 and the maximum production rate at day 3. Metatranscriptomic analysis at days 3 and 10 revealed a total of 354 metabolically active microorganisms. Saccharomyces and Lactobacillus were identified as core microbiota critical for sulfur compound production based on both the transcript abundances of the principal genes and the distribution frequencies of 31 enzymes involved in sulfur metabolism. Saccharomyces transcribed genes encoding 23 enzymes related to the generation of 3-(methylthio)-1-propanol and dimethyl disulfide, and Lactobacillus was active in the methyl cycle, which recycles methionine, the precursor of the two sulfur compounds. Furthermore, the sulfur metabolism-related characteristics of two representative species were studied in coculture during a simulated fermentation. Saccharomyces cerevisiae JZ109 produced 158.4 μg/liter 3-(methylthio)-1-propanol and 58.5 μg/liter dimethyl disulfide in monoculture, whereas Lactobacillus buchneri JZ-JN-2017 could not produce these two compounds in monoculture. Their coculture significantly enhanced the generation of 3-(methylthio)-1-propanol (350.0 μg/liter) and dimethyl disulfide (123.8 μg/liter). In addition, coculture significantly enhanced the gene transcriptions (fold change, 1.5 to ∼55.0) that convert methionine to these two compounds in S. cerevisiae and in the methyl cycle of L. buchneri This study reveals a novel synergistic effect between members of the core microbiota in the production of sulfur compounds via methionine recycling in spontaneous Chinese liquor fermentation.IMPORTANCE Sulfur compounds play a crucial role in the aroma quality of various fermented foods and alcoholic beverages. However, it is unclear how these compounds are produced by microbes during their spontaneous fermentations. Here, we identified the core microbiota (Saccharomyces and Lactobacillus) associated with sulfur metabolism by determining both transcript abundance and distribution frequency of each genus in spontaneous Chinese liquor fermentation. This study provides a system-level analysis of sulfur metabolism by the metatranscriptomic analysis and culture-dependent methods. It sheds new light on how the metabolic behavior of the microbiota contributes to the liquor aroma quality. Furthermore, this work reveals a novel synergistic effect between Saccharomyces and Lactobacillus in the production of sulfur compounds, in which Lactobacillus regenerates the precursor methionine for sulfur compound production by Saccharomyces Our findings can contribute to the enhancement of aroma characteristics in Chinese liquor and open new avenues for improving various food and alcoholic beverage fermentation processes.
Collapse
|
11
|
Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur Cycling and the Intestinal Microbiome. Dig Dis Sci 2017; 62:2241-2257. [PMID: 28766244 DOI: 10.1007/s10620-017-4689-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, MSCO3 2020, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Nathaniel L Ritz
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guy D Fauque
- CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, Université de Toulon, Campus de Luminy, Case 901, 13288, Marseille Cedex 09, France
| | - Henry C Lin
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
12
|
Zhao M, Wijayasinghe YS, Bhansali P, Viola RE, Blumenthal RM. A surprising range of modified-methionyl S-adenosylmethionine analogues support bacterial growth. MICROBIOLOGY-SGM 2015; 161:674-82. [PMID: 25717169 DOI: 10.1099/mic.0.000034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
S-Adenosyl-l-methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted in vitro into AdoMet analogues, and tested with an Escherichia coli strain lacking MAT (ΔmetK) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the S-adenosylated derivatives of all tested l-methionine analogues modified at the carboxyl moiety, and some others as well, showed in vivo functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.
Collapse
Affiliation(s)
- Mojun Zhao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | | | - Pravin Bhansali
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| |
Collapse
|
13
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
14
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
15
|
Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains. Bioprocess Biosyst Eng 2015; 38:2201-19. [DOI: 10.1007/s00449-015-1459-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
16
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC SYSTEMS BIOLOGY 2014; 8:79. [PMID: 24974895 PMCID: PMC4086706 DOI: 10.1186/1752-0509-8-79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. RESULTS We present EcoCyc-18.0-GEM, a genome-scale model of the E. coli K-12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc-18.0-GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc-18.0-GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model's derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc-18.0-GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. CONCLUSION Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.
Collapse
Affiliation(s)
- Daniel S Weaver
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Ingrid M Keseler
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| |
Collapse
|
18
|
Tabei Y, Era M, Ogawa A, Ninomiya J, Kawano T, Morita H. Selenium cannot substitute for sulfur in cell density-independent bioluminescence in Vibrio fischeri. J Basic Microbiol 2012; 53:175-80. [PMID: 22733648 DOI: 10.1002/jobm.201100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/09/2012] [Indexed: 11/10/2022]
Abstract
It has been proposed that selenium, an element chemically similar to sulfur, can participate in some of the same biological pathways as sulfur, although only a few studies have been confirmed this. In this study, we investigated the relationship between selenium and sulfur-dependent luminescence in Vibrio fischeri. The luminescence of V. fischeri was induced by the addition of sulfur-containing compounds such as Na₂SO₄ and L-cystine, and their luminescence was suppressed, in a dose-dependent manner, by the addition of the selenium-containing compounds Na₂SeO₄ and L-selenocystine. Since the viability of V. fischeri was not affected by the addition of low concentration of selenium-containing compounds, the decrease in luminescence intensity cannot be explained by cell death. Kinetic analysis performed using Lineweaver-Burk plots demonstrate that Na₂SeO₄ and L-selenocystine act as competitive suppressors in inorganic sulfur (Na₂SeO₄)-dependent luminescence. In contrast, these selenium-containing compounds act as uncompetitive suppressors in organic sulfur (L-cystine)-dependent luminescence.
Collapse
Affiliation(s)
- Yosuke Tabei
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Tabei Y, Era M, Ogawa A, Morita H. Requirements for sulfur in cell density-independent induction of luminescence in Vibrio fischeri under nutrient-starved conditions. J Basic Microbiol 2011; 52:216-23. [PMID: 21656822 DOI: 10.1002/jobm.201100055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/09/2011] [Indexed: 11/11/2022]
Abstract
Despite the universal requirement for sulfur in living organisms, it is not known whether the luminescence of Vibrio fischeri is sulfur-dependent and how sulfur affects the intensity of its luminescence. In this study, we investigated the requirement for sulfur in V. fischeri luminescence under nutrient-starved conditions. Full induction of V. fischeri luminescence required MgSO(4); in artificial seawater cultures that lacked sufficient MgSO(4), its luminescence was not fully induced. This induction of luminescence was not dependent on autoinduction because the cell density of V. fischeri did not reach the critical threshold concentration. In addition to MgSO(4), this cell density-independent luminescence was induced or maintained by nontoxic concentrations of l-cysteine, sulfate, sulfite, and thiosulfate. Moreover, the addition of N -3-oxo-hexanoyl homoserine lactone and N -octanoyl homoserine lactone, which are known autoinducers in V. fischeri, did not induce luminescence under these conditions. This result suggested that the underlying mechanism of luminescence may be different from the known autoinduction mechanism.
Collapse
Affiliation(s)
- Yosuke Tabei
- Faculty of Environment Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | | | | | | |
Collapse
|
20
|
El-Sayed AS. Microbial l-methioninase: production, molecular characterization, and therapeutic applications. Appl Microbiol Biotechnol 2010; 86:445-67. [DOI: 10.1007/s00253-009-2303-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 10/19/2022]
|
21
|
Goyer A, Collakova E, Shachar-Hill Y, Hanson AD. Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway. PLANT & CELL PHYSIOLOGY 2007; 48:232-42. [PMID: 17169919 DOI: 10.1093/pcp/pcl055] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Methionine gamma-lyase (MGL) catalyzes the degradation of L-methionine to alpha-ketobutyrate, methanethiol and ammonia. The Arabidopsis (Arabidopsis thaliana) genome includes a single gene (At1g64660) encoding a protein (AtMGL) with approximately 35% identity to bacterial and protozoan MGLs. When overexpressed in Escherichia coli, AtMGL allowed growth on L-methionine as sole nitrogen source and conferred a high rate of methanethiol emission. The purified recombinant protein exhibited a spectrum typical of pyridoxal 5'-phosphate enzymes, and had high activity toward l-methionine, L-ethionine, L-homocysteine and seleno-L-methionine, but not L-cysteine. Quantitation of mRNA showed that the AtMGL gene is expressed in aerial organs and roots, and that its expression in leaves was increased 2.5-fold by growth on low sulfate medium. Emission of methanethiol from Arabidopsis plants supplied with 10 mM L-methionine was undetectable (<0.5 nmol min(-1) g(-1) FW), suggesting that AtMGL is not an important source of volatile methanethiol. Knocking out the AtMGL gene significantly increased leaf methionine content (9.2-fold) and leaf and root S-methylmethionine content (4.7- and 7-fold, respectively) under conditions of sulfate starvation, indicating that AtMGL carries a significant flux in vivo. In Arabidopsis plantlets fed L-[(35)S]methionine on a low sulfate medium, label was incorporated into protein-bound cysteine as well as methionine, but incorporation into cysteine was significantly (30%) less in the knockout mutant. These data indicate that plants possess an alternative to the reverse trans-sulfuration pathway (methionine-->homocysteine-->cystathionine-->cysteine) in which methanethiol is an intermediate.
Collapse
Affiliation(s)
- Aymeric Goyer
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
22
|
Cholet O, Hénaut A, Bonnarme P. Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175. Appl Microbiol Biotechnol 2007; 74:1320-32. [PMID: 17225104 DOI: 10.1007/s00253-006-0772-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/28/2022]
Abstract
The expression of genes possibly involved in L-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added L-methionine. The expression of 27 genes of 39 selected genes differed significantly in L-methionine-enriched cultures. The expression of the gene encoding L-methionine gamma-lyase (MGL) is high in L-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding alpha-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by L-methionine, and are probably involved in the catabolism of alpha-ketobutyrate, the primary degradation product of L-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for L-methionine in B. linens and their possible regulation by L-methionine.
Collapse
Affiliation(s)
- Orianne Cholet
- Institut National de la Recherche Agronomique, UMR Génie et Microbiologie des Procédés Alimentaires, CBAI, 78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
23
|
Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I. Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 2006; 189:187-97. [PMID: 17056751 PMCID: PMC1797209 DOI: 10.1128/jb.01273-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.
Collapse
Affiliation(s)
- Marie-Françoise Hullo
- Unité de Génétique des Génomes Bactériens, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In most bacteria, inorganic sulfur is assimilated into cysteine, which provides sulfur for methionine biosynthesis via transsulfurylation. Here, cysteine is transferred to the terminal carbon of homoserine via its sulfhydryl group to form cystathionine, which is cleaved to yield homocysteine. In the enteric bacteria Escherichia coli and Salmonella enterica, these reactions are catalyzed by irreversible cystathionine-gamma-synthase and cystathionine-beta-lyase enzymes. Alternatively, yeast and some bacteria assimilate sulfur into homocysteine, which serves as a sulfhydryl group donor in the synthesis of cysteine by reverse transsulfurylation with a cystathionine-beta-synthase and cystathionine-gamma-lyase. Herein we report that the related enteric bacterium Klebsiella pneumoniae encodes genes for both transsulfurylation pathways; genetic and biochemical analyses show that they are coordinately regulated to prevent futile cycling. Klebsiella uses reverse transsulfurylation to recycle methionine to cysteine during periods of sulfate starvation. This methionine-to-cysteine (mtc) transsulfurylation pathway is activated by cysteine starvation via the CysB protein, by adenosyl-phosphosulfate starvation via the Cbl protein, and by methionine excess via the MetJ protein. While mtc mutants cannot use methionine as a sulfur source on solid medium, they will utilize methionine in liquid medium via a sulfide intermediate, suggesting that an additional nontranssulfurylation methionine-to-cysteine recycling pathway(s) operates under these conditions.
Collapse
Affiliation(s)
- Thomas A Seiflein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
25
|
Wheeler PR, Coldham NG, Keating L, Gordon SV, Wooff EE, Parish T, Hewinson RG. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria. J Biol Chem 2004; 280:8069-78. [PMID: 15576367 DOI: 10.1074/jbc.m412540200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.
Collapse
Affiliation(s)
- Paul R Wheeler
- Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Winzer K, Hardie KR, Williams P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:291-396. [PMID: 14696323 DOI: 10.1016/s0065-2164(03)53009-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Winzer
- Institute of Infection, Immunity and Inflammation, Queen's Medical Centre, C-Floor, West Block, Nottingham, NG7 2UH, U.K
| | | | | |
Collapse
|
27
|
Lemos EGDM, Alves LMC, Campanharo JC. Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol Lett 2003; 219:39-45. [PMID: 12594021 DOI: 10.1016/s0378-1097(02)01189-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Based on the genetic analysis of the phytopathogen Xylella fastidiosa genome, five media with defined composition were developed and the growth abilities of this fastidious prokaryote were evaluated in liquid media and on solid plates. All media had a common salt composition and included the same amounts of glucose and vitamins but differed in their amino acid content. XDM(1) medium contained amino acids threonine, serine, glycine, alanine, aspartic acid and glutamic acid, for which complete degradation pathways occur in X. fastidiosa; XDM(2) included serine and methionine, amino acids for which biosynthetic enzymes are absent, plus asparagine and glutamine, which are abundant in the xylem sap; XDM(3) had the same composition as XDM(2) but with asparagine replaced by aspartic acid due to the presence of complete degradation pathway for aspartic acid; XDM(4) was a minimal medium with glutamine as a sole nitrogen source; XDM(5) had the same composition as XDM(4), plus methionine. The liquid and solidified XDM(2) and XDM(3) media were the most effective for the growth of X. fastidiosa. This work opens the opportunity for the in silico design of bacterial defined media once their genome is sequenced.
Collapse
Affiliation(s)
- Eliana Gertrudes de Macedo Lemos
- Depto. de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Campus de Jaboticabal, Universidade Estadual Paulista, Jaboticabal, Brazil.
| | | | | |
Collapse
|
28
|
Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM. The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5'-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 2002; 43:1347-58. [PMID: 11918818 DOI: 10.1046/j.1365-2958.2002.02846.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The utilization of organosulphur compounds as sources of sulphur by Escherichia coli is strongly repressed by sulphate. To search for the signal enabling E. coli to alternate gene expression according to the sulphur source, we investigated the transcriptional control of the ssuEADCB operon, required for the transport and desulphonation of aliphatic sulphonates. We demonstrate that, of the two LysR-type regulators involved in expression from the ssu promoter, Cbl acts as a direct and sufficient activator of transcription in vivo and in vitro, whereas CysB downregulates the promoter efficiency. Most importantly, the Cbl-mediated transcription initiation at the ssu promoter in vitro is abolished in the presence of an early metabolite of the sulphate assimilatory pathway, adenosine 5'-phosphosulphate (APS). This role for APS was confirmed in vivo by measuring the expression of beta-galactosidase from a transcriptional ssu-lacZ fusion in strains containing different mutations blocking the synthesis and consumption of APS. Our data comprise the first evidence that APS may act as the negative cofactor of the transcriptional regulator Cbl, and that APS, and not sulphate itself, serves as the signalling molecule for sulphate excess.
Collapse
Affiliation(s)
- Tomasz Bykowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
29
|
Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH. Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. MICROBIOLOGY (READING, ENGLAND) 2002; 148:123-131. [PMID: 11782505 DOI: 10.1099/00221287-148-1-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different pleiotropic transcriptional regulators are known to function in the coordination of regulons concerned with carbon, nitrogen, sulfur, phosphorus and iron metabolism, but how expression profiles of these different regulons are coordinated with each other is not known. The basis for the effects of cysB mutations on carbon utilization in Escherichia coli and Salmonella typhimurium was examined. cysB mutations affected the utilization of some carbon sources more than others and these effects could be partially, but not completely, reversed by the inclusion of cysteine or djenkolate in the growth medium. Assays of transport systems and enzymes concerned with glucitol and alanine utilization showed that these activities were depressed in cysB mutants relative to isogenic wild-type strains, and cysteine or djenkolate present in the growth media partially restored these activities. Using transcriptional fusions to the fdo (formate dehydrogenase) and gut (glucitol) operons, it was shown that decreased expression resulted from defects at the transcriptional level. Furthermore, the effects of loss of CysB were much less pronounced under conditions of catabolite repression than in the absence of a catabolite-repressing carbon source, and cAMP largely reversed the effect of the loss of CysB. Comparable effects were seen for E. coli lacZ gene expression under the control of its own native promoter, and sulfur limitation in a cysB mutant depressed net cAMP production in a cAMP phosphodiesterase mutant. Adenylate cyclase thus appears to be responsive to sulfur deprivation. These observations may have physiological significance allowing carbon and sulfur regulon coordination during the growth of enteric bacteria in response to nutrient availability.
Collapse
Affiliation(s)
- John A Quan
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Barbara L Schneider
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Ian T Paulsen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Mamoru Yamada
- Department of Biochemistry, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan 7552
| | - Nicholas M Kredich
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA3
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| |
Collapse
|
30
|
Kolko MM, Kapetanovich LA, Lawrence JG. Alternative pathways for siroheme synthesis in Klebsiella aerogenes. J Bacteriol 2001; 183:328-35. [PMID: 11114933 PMCID: PMC94882 DOI: 10.1128/jb.183.1.328-335.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented.
Collapse
Affiliation(s)
- M M Kolko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|