1
|
Kuang L, Wang X, He Z, Zhang Y, Luo J, Zhang W, Fu Z, Tuo X. Explore the toxicological mechanism of 6PPD-Q on human health through a novel perspective: The interaction between lactate dehydrogenase and 6PPD-Q. Int J Biol Macromol 2024; 293:139266. [PMID: 39733892 DOI: 10.1016/j.ijbiomac.2024.139266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods. The findings indicate that 6PPD-Q can spontaneously embed in the coenzyme site of LDH and obviously change the biological activity of LDH by non-competitive inhibition. Simultaneously, this inhibitory effect is concentration-dependent. 6PPD-Q can affect both the level of LDH and the transcription of Ldha in AML-12 cells. Hydrogen bonding and van der Waals forces serve as the primary driving forces in LDH-6PPD-Q combination process. The apparent binding constant (Ka) value is (9.773 ± 0.699) × 103 L/mol (298 K). The presence of 6PPD-Q alters the conformation of LDH and decreases its structural stability. Moreover, the results of molecular docking indicate that the interaction of 6PPD-Q with Asp51 and Arg98 of LDH may be the reason that 6PPD-Q inhibits the biological activity of LDH. Meanwhile, the energy decomposition of residue analyses for LDH-6PPD-Q formation further highlight the energy contribution of Asp51 and Arg98 in this combination process.
Collapse
Affiliation(s)
- Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zimeng He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Zhang
- Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China; Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang 330029, China; Jiangxi Key Laboratory of Flood and Drought Disaster Defense, Nanchang 330029, China
| | - Zhengjiang Fu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
2
|
Ding P, Yang K, Wang H, Kuang L, Gao L, Luo J, Tuo X. Exploring the therapeutic potential of rutin through investigating its inhibitory mechanism on lactate dehydrogenase: Multi-spectral methods and computer simulation. Bioorg Chem 2024; 149:107503. [PMID: 38823312 DOI: 10.1016/j.bioorg.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel β-sheet, and β-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.
Collapse
Affiliation(s)
- Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Huixiao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
3
|
Liu J, Liu G, Han X, Tao F, Xu P. Characterization of the Pro101Gln mutation that enhances the catalytic performance of T. indicus NADH-dependent d-lactate dehydrogenase. Structure 2023; 31:1616-1628.e3. [PMID: 37729918 DOI: 10.1016/j.str.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
NADH-dependent d-lactate dehydrogenases (d-LDH) are important for the industrial production of d-lactic acid. Here, we identify and characterize an improved d-lactate dehydrogenase mutant (d-LDH1) that contains the Pro101Gln mutation. The specific enzyme activities of d-LDH1 toward pyruvate and NADH are 21.8- and 11.0-fold greater compared to the wild-type enzyme. We determined the crystal structure of Apo-d-LDH1 at 2.65 Å resolution. Based on our structural analysis and docking studies, we explain the differences in activity with an altered binding conformation of NADH in d-LDH1. The role of the conserved residue Pro101 in d-LDH was further probed in site-directed mutagenesis experiments. We introduced d-LDH1 into Bacillus licheniformis yielding a d-lactic acid production of 145.9 g L-1 within 60 h at 50°C, which was three times higher than that of the wild-type enzyme. The discovery of d-LDH1 will pave the way for the efficient production of d-lactic acid by thermophilic bacteria.
Collapse
Affiliation(s)
- Jiongqin Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongquan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Klöppel S, Richarz R, Wirtz DA, Vasenda N, König GM, Crüsemann M. A Specialized Dehydrogenase Provides l-Phenyllactate for FR900359 Biosynthesis. Chembiochem 2021; 23:e202100569. [PMID: 34846772 PMCID: PMC9299796 DOI: 10.1002/cbic.202100569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Indexed: 11/30/2022]
Abstract
d‐Phenyllactate (PLA) is a component of the selective Gq protein inhibitor and nonribosomal cyclic depsipeptide FR900359 (FR). Here we report a detailed biochemical investigation of pla biosynthesis and its incorporation into the natural product FR. The enzyme FrsC, member of the lactate/malate dehydrogenase superfamily, was shown to catalyze the formation of l‐PLA from phenylpyruvate. FrsC was kinetically characterized and its substrate specificity determined. Incorporation of l‐PLA was probed by assaying the adenylation domain FrsE‐A3 and feeding studies with a Chromobacterium vaccinii ΔfrsC mutant, confirming preferred activation of l‐PLA followed by on‐line epimerization to d‐pla. Finally, detailed bioinformatic analyses of FrsC revealed its close relation to malate dehydrogenases from primary metabolism and suggest extensions in the substrate binding loop to be responsible for its adaptation to accepting larger aromatic substrates with high specificity.
Collapse
Affiliation(s)
- Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Natalia Vasenda
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| |
Collapse
|
5
|
Xu JJ, Sun JZ, Si KL, Guo CF. 3-Phenyllactic acid production by Lactobacillus crustorum strains isolated from naturally fermented vegetables. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Tsuge Y, Kato N, Yamamoto S, Suda M, Jojima T, Inui M. Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade L- and D-lactic acid. Appl Microbiol Biotechnol 2019; 103:3381-3391. [PMID: 30877357 DOI: 10.1007/s00253-019-09737-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 01/22/2023]
Abstract
Strain development is critical for microbial production of bio-based chemicals. The stereo-complex form of polylactic acid, a complex of poly-L- and poly-D-lactic acid, is a promising polymer candidate due to its high thermotolerance. Here, we developed Corynebacterium glutamicum strains producing high amounts of L- and D-lactic acid through intensive metabolic engineering. Chromosomal overexpression of genes encoding the glycolytic enzymes, glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triosephosphate isomerase, and enolase, increased L- and D-lactic acid concentration by 146% and 56%, respectively. Chromosomal integration of two genes involved in the Entner-Doudoroff pathway (6-phosphogluconate dehydratase and 2-dehydro-3-deoxyphosphogluconate aldolase), together with a gene encoding glucose-6-phosphate dehydrogenase from Zymomonas mobilis, to bypass the carbon flow from glucose, further increased L- and D-lactic acid concentration by 11% and 44%, respectively. Finally, additional chromosomal overexpression of a gene encoding NADH dehydrogenase to modulate the redox balance resulted in the production of 212 g/L L-lactic acid with a 97.9% yield and 264 g/L D-lactic acid with a 95.0% yield. The optical purity of both L- and D-lactic acid was 99.9%. Because the constructed metabolically engineered strains were devoid of plasmids and antibiotic resistance genes and were cultivated in mineral salts medium, these strains could contribute to the cost-effective production of the stereo-complex form of polylactic acid in practical scale.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Naoto Kato
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
8
|
Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity. Protein Expr Purif 2014; 95:219-25. [DOI: 10.1016/j.pep.2013.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/26/2023]
|
9
|
Krizevski R, Bar E, Shalit OR, Levy A, Hagel JM, Kilpatrick K, Marsolais F, Facchini PJ, Ben-Shabat S, Sitrit Y, Lewinsohn E. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. PHYTOCHEMISTRY 2012; 81:71-9. [PMID: 22727117 DOI: 10.1016/j.phytochem.2012.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 05/13/2023]
Abstract
Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.
Collapse
Affiliation(s)
- Raz Krizevski
- Department of Aromatic, Medicinal and Spice Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol 2012; 95:1155-63. [PMID: 22782253 DOI: 10.1007/s00253-012-4269-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
3-Phenyllactic acid (PLA), which is an organic acid widely existing in honey and lactic acid bacteria fermented food, can be produced by many microorganisms, especially lactic acid bacteria. It was proved as an ideal antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi. In addition, it could be used as feed additives to replace antibiotics in livestock feeds. This article presented a review of recent studies on the existing resource, antimicrobial activity, and measurement of PLA. In addition, microorganism strains and dehydrogenases producing PLA were reviewed in detail, the metabolic pathway and regulation of PLA synthesis in LAB strains were discussed, and high-level bioproduction of PLA by microorganism fermentation was also summarized.
Collapse
|
11
|
Lobo FP, Rodrigues MR, Rodrigues GOL, Hilário HO, Souza RA, Tauch A, Miyoshi A, Franco GC, Azevedo V, Franco GR. KOMODO: a web tool for detecting and visualizing biased distribution of groups of homologous genes in monophyletic taxa. Nucleic Acids Res 2012; 40:W491-7. [PMID: 22675073 PMCID: PMC3394310 DOI: 10.1093/nar/gks490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enrichment analysis is a standard procedure to interpret ‘omics’ experiments that generate large gene lists as outputs, such as transcriptomics and protemics. However, despite the huge success of enrichment analysis in these classes of experiments, there is a surprising lack of application of this methodology to survey other categories of large-scale biological data available. Here, we report Kegg Orthology enrichMent-Online DetectiOn (KOMODO), a web tool to systematically investigate groups of monophyletic genomes in order to detect significantly enriched groups of homologous genes in one taxon when compared with another. The results are displayed in their proper biochemical roles in a visual, explorative way, allowing users to easily formulate and investigate biological hypotheses regarding the taxonomical distribution of genomic elements. We validated KOMODO by analyzing portions of central carbon metabolism in two taxa extensively studied regarding their carbon metabolism profile (Enterobacteriaceae family and Lactobacillales order). Most enzymatic activities significantly biased were related to known key metabolic traits in these taxa, such as the distinct fates of pyruvate (the known tendency of lactate production in Lactobacillales and its complete oxidation in Enterobacteriaceae), demonstrating that KOMODO could detect biologically meaningful differences in the frequencies of shared genomic elements among taxa. KOMODO is freely available at http://komodotool.org.
Collapse
Affiliation(s)
- Francisco P Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Campinas, São Paulo 13083 886, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Arai K, Ichikawa J, Nonaka S, Miyanaga A, Uchikoba H, Fushinobu S, Taguchi H. A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases. J Biochem 2011; 150:579-91. [PMID: 21828088 DOI: 10.1093/jb/mvr100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
l-Lactate dehydrogenase (l-LDH) of Lactobacillus casei (LCLDH) is a typical bacterial allosteric l-LDH that requires fructose 1,6-bisphosphate (FBP) for its enzyme activity. A mutant LCLDH was designed to introduce an inter-subunit salt bridge network at the Q-axis subunit interface, mimicking Lactobacillus pentosus non-allosteric l-LDH (LPLDH). The mutant LCLDH exhibited high catalytic activity with hyperbolic pyruvate saturation curves independently of FBP, and virtually the equivalent K(m) and V(m) values at pH 5.0 to those of the fully activated wild-type enzyme with FBP, although the K(m) value was slightly improved with FBP or Mn(2+) at pH 7.0. The mutant enzyme exhibited a markedly higher apparent denaturating temperature (T(1/2)) than the wild-type enzyme in the presence of FBP, but showed an even lower T(1/2) without FBP, where it exhibited higher activation enthalpy of inactivation (ΔH(‡)). This result is consistent with the fact that the active state is more unstable than the inactive state in allosteric equilibrium of LCLDH. The LPLDH-like network appears to be conserved in many bacterial non-allosteric l-LDHs and dimeric l-malate dehydrogenases, and thus to be a key for the functional divergence of bacterial l-LDHs during evolution.
Collapse
Affiliation(s)
- Kazuhito Arai
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ghadimi D, Hassan M, Njeru PN, de Vrese M, Geis A, Shalabi SI, Abdel-Razek ST, Abdel-Khair AEAA, Heller KJ, Schrezenmeir J. Suppression subtractive hybridization identifies bacterial genomic regions that are possibly involved in hBD-2 regulation by enterocytes. Mol Nutr Food Res 2011; 55:1533-42. [PMID: 21710560 DOI: 10.1002/mnfr.201100052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 02/05/2023]
Abstract
SCOPE Human β-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. It has been suggested that probiotic bacteria sustain gut barrier function via induction of defensins. The goals of this study were (i) to evaluate the potential immunomodulatory effects of 11 different Lactobacillus fermentum strains isolated from Kimere, an African fermented pearl millet (Pennisetum glaucum) dough, on the hBD-2 secretion by human intestinal CaCo-2 cell line and (ii) to examine genetic differences between two strains of L. fermentum (K2-Lb4 and K11-Lb3) which differed in their effect on the production of hBD-2 in this study. METHODS AND RESULTS Totally, 46 strains of L. fermentum from Kimere were isolated and characterized using molecular biology methods including pulsed-field gel electrophoresis patterns. After performing time- and dose-experiments, CaCo-2 cells were incubated with or without bacteria for 12 h. L. fermentum PZ1162 was included as the positive control. Cell-free supernatants were analyzed for hBD-2 protein by enzyme-linked immunosorbent assay (ELISA). To identify potential bacterial genes associated with hBD-2 regulation, suppression subtractive hybridization (SSH) was used. Among the 11 strains tested, only two strains of bacteria, K11-Lb3 and K2-Lb6, significantly induced the production of hBD-2 by CaCo-2 cells. This effect was strain-specific, dose-dependent and particularly seems to be bacterial genomic-dependent as manifested by SSH. L. fermentum strains with and without hBD-2 inducing effect differed in genes encoding proteins involved in glycosylation of cell-wall proteins e.g. glycosyltransferase, UDP-N-acetylglucosamine 2-epimerase, rod shape-determining protein MreC, lipoprotein precursors, sugar ABC transporters, and glutamine ABC transporter ATP-binding protein. CONCLUSION This study implies that certain strains of L. fermentum isolated from Kimere may stimulate the intestinal innate defense through the induction of hBD-2. The molecular basis of hBD-2 induction by L. fermentum strain K11-Lb3 may be based on glycosylated cell-surface structures synthesized with the aid of glycosyltransferase, UDP-N-acetylglucosamine 2-epimerase, and rod shape-determining protein MreC.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Hermann-Weigmann, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H, Wang K, Xu P. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PLoS One 2011; 6:e19030. [PMID: 21533054 PMCID: PMC3080406 DOI: 10.1371/journal.pone.0019030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/15/2011] [Indexed: 11/23/2022] Open
Abstract
Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- * E-mail: (CM); (PX)
| | - Chao Gao
- MOE Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fengsong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jiayang Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Haiwei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Kai Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- MOE Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail: (CM); (PX)
| |
Collapse
|
15
|
Arai K, Ishimitsu T, Fushinobu S, Uchikoba H, Matsuzawa H, Taguchi H. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase. Proteins 2010; 78:681-94. [PMID: 19787773 DOI: 10.1002/prot.22597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lactobacillus casei L-lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6-bisphosphate (FBP), respectively, and exhibits unusually high pH-dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 A resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q-axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra-helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L-lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P-axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q-axis related dimer through the rigid NAD-binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH-dependent allosteric equilibrium.
Collapse
Affiliation(s)
- Kazuhito Arai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Jia J, Mu W, Zhang T, Jiang B. Bioconversion of phenylpyruvate to phenyllactate: gene cloning, expression, and enzymatic characterization of D- and L1-lactate dehydrogenases from Lactobacillus plantarum SK002. Appl Biochem Biotechnol 2009; 162:242-51. [PMID: 19774350 DOI: 10.1007/s12010-009-8767-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/26/2009] [Indexed: 11/24/2022]
Abstract
Two DNA fragments containing the entire coding sequences of lactate dehydrogenase (LDH; ldhL1 and ldhD), whose enzymes have high activity for bioconversion of phenylpyruvate (PPA) to phenyllactate (PLA), were amplified from Lactobacillus plantarum SK002 using PCR. Sequencing showed open reading frames of 963 bp (ldhL1) and 999 bp (ldhD) encoding putative proteins of 320 and 332 amino acid residues, respectively. The LDH genes were cloned into an expression vector pET-22b(+) and expressed in Escherichia coli BL21(DE3). The purified recombinant L1-LDH and D-LDH had approximate (SDS-PAGE) molecular weights of 35 and 40 kDa, respectively. L1-LDH and D-LDH had PPA bioconversion specific activities of 71.06 and 215.84 U/mg with K (m) values of 3.96 and 5.4 mM, respectively. The rL1-LDH and rD-LDH showed maximum enzyme activity at 30 and 40 degrees C while both had optimum activity at pH 6.0. L1-LDH exhibited a higher pH and temperature stability than D-LDH. The results show that the his-tagged L. plantarum SK002 D- and L1-LDHs are efficient catalysts for bioconversion of PPA to PLA.
Collapse
Affiliation(s)
- Jianghua Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | | | | | | |
Collapse
|
17
|
Ishikura Y, Tsuzuki S, Takahashi O, Tokuda C, Nakanishi R, Shinoda T, Taguchi H. Recognition site for the side chain of 2-ketoacid substrate in d-lactate dehydrogenase. J Biochem 2009; 138:741-9. [PMID: 16428303 DOI: 10.1093/jb/mvi170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.
Collapse
Affiliation(s)
- Yoshirou Ishikura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | | | | | | | | | | | | |
Collapse
|
18
|
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 2008; 191:873-81. [PMID: 19047348 DOI: 10.1128/jb.01114-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.
Collapse
|
19
|
Mugford P, Wagner UG, Jiang Y, Faber K, Kazlauskas R. Enantiocomplementary Enzymes: Classification, Molecular Basis for Their Enantiopreference, and Prospects for Mirror-Image Biotransformations. Angew Chem Int Ed Engl 2008; 47:8782-93. [DOI: 10.1002/anie.200705159] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R. Enantiokomplementäre Enzyme: Klassifizierung, molekulare Grundlage der Enantiopräferenz und Prognosen für spiegelbildliche Biotransformationen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Li X, Jiang B, Pan B, Mu W, Zhang T. Purification and partial characterization of Lactobacillus species SK007 lactate dehydrogenase (LDH) catalyzing phenylpyruvic acid (PPA) conversion into phenyllactic acid (PLA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2392-2399. [PMID: 18333614 DOI: 10.1021/jf0731503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phenyllactic acid (PLA) is a novel antimicrobial compound synthesized by lactic acid bacteria (LAB), and its production from phenylpyruvic acid (PPA) is an effective approach. In this work, a lactate dehydrogenase (LDH), which catalyzes the reduction of PPA to PLA, has been purified to homogeneity from a cell-free extract of Lactobacillus sp. SK007 by precipitation with ammonium sulfate, ion exchange, and gel filtration chromatography. The purified enzyme had a dimeric form with a molecular mass of 78 kDa (size exclusion chromatography) or 39 kDa (SDS-PAGE). The ratio of enzyme activity with PPA to that with pyruvate being almost invariable at every purification step indicated that, in Lactobacillus sp. SK007, LDH is responsible for the conversion of PPA into PLA. HPLC profiles of PPA transformation into PLA by growing cells, cell-free extract, and purified LDH of Lactobacillus sp. SK007 were also investigated. Results showed that the presence of NADH was found to be necessary for the enzymatic production of PLA from PPA. The purified LDH displayed optimal activity for PPA at pH 6.0 and 40 degrees C. The Km values of the enzyme for PPA and pyruvate were 1.69 and 0.32 mM, respectively. Moreover, because other screened LAB strains exhibiting relatively high LDH activity toward PPA produced also considerable amounts of PLA, LDH activity for PPA could be therefore used as a screening marker for PLA-producing LAB.
Collapse
Affiliation(s)
- Xingfeng Li
- State Key Laboratory of Food Science and Technology (Jiangnan University), Wuxi, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Behr J, Israel L, Gänzle MG, Vogel RF. Proteomic approach for characterization of hop-inducible proteins in Lactobacillus brevis. Appl Environ Microbiol 2007; 73:3300-6. [PMID: 17369340 PMCID: PMC1907096 DOI: 10.1128/aem.00124-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to hops is a prerequisite for the capability of lactic acid bacteria to grow in beer and thus cause beer spoilage. Bactericidal hop compounds, mainly iso-alpha-acids, are described as ionophores which exchange H+ for cellular divalent cations, e.g., Mn2+, and thus dissipate ion gradients across the cytoplasmic membrane. The acid stress response of Lactobacillus brevis TMW 1.465 and hop adaptation in its variant L. brevis TMW 1.465A caused changes at the level of metabolism, membrane physiology, and cell wall composition. To identify the basis for these changes, a proteomic approach was taken. The experimental design allowed the discrimination of acid stress and hop stress. A strategy for improved protein identification enabled the identification of 84% of the proteins investigated despite the lack of genome sequence data for this strain. Hop resistance in L. brevis TMW 1.465A implies mechanisms to cope with intracellular acidification, mechanisms for energy generation and economy, genetic information fidelity, and enzyme functionality. Interestingly, the majority of hop-regulated enzymes are described as manganese or divalent cation dependent. Regulation of the manganese level allows fine-tuning of the metabolism, which enables a rapid response to environmental (stress) conditions. The hop stress response indicates adaptations shifting the metabolism into an energy-saving mode by effective substrate conversion and prevention of exhaustive protein de novo synthesis. The findings further demonstrate that hop stress in bacteria not only is associated with proton motive force depletion but obviously implies divalent cation limitation.
Collapse
Affiliation(s)
- Jürgen Behr
- Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, 85350 Freising, Germany
| | | | | | | |
Collapse
|
23
|
Jasso-Chávez R, García-Cano I, Marín-Hernández A, Mendoza-Cózatl D, Rendón JL, Moreno-Sánchez R. The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:181-90. [PMID: 16112076 DOI: 10.1016/j.bbabio.2005.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
The structural and kinetic analyses of the components of the lactate shuttle from heterotrophic Euglena gracilis were carried out. Mitochondrial membrane-bound, NAD(+)-independent d-lactate dehydrogenase (d-iLDH) was purified by solubilization with CHAPS and heat treatment. The active enzyme was a 62-kDa monomer containing non-covalently bound FAD as cofactor. d-iLDH was specific for d-lactate and it was able to reduce quinones of different redox potential values. Oxalate and l-lactate were mixed-type inhibitors of d-iLDH. Mitochondrial l-iLDH also catalyzed the reduction of quinones, but it was inactivated during the extraction with detergents. Both l-iLDH and d-iLDH were inhibited by the specific flavoprotein-inhibitor diphenyleneiodonium, suggesting that l-iLDH was also a flavoprotein. Affinity chromatography revealed that the E. gracilis cytosolic fraction contained two types of NAD(+)-dependent LDH specific for the generation of d- and l-lactate (d-nLDH and l-nLDH, respectively). These two enzymes were tetramers of 126-132 kDa and showed an ordered bi-bi kinetic mechanism. Kinetic properties were different in both enzymes. Pyruvate reduction by d-nLDH was inhibited by its two products; the d-lactate oxidation was 40-fold lower than forward reaction. l-lactate oxidation by l-nLDH was not detected, whereas pyruvate reduction was activated by fructose-1, 6-bisphosphate, K(+) or NH(4)(+). Interestingly, membrane-bound l- and d-lactate dehydrogenases with quinone reductase activity have been only detected in bacteria, whereas the activity of soluble d-nLDH has been identified in bacteria and some yeast. Also, FBP-activated l-nLDH has been found solely in lactic bacteria. Based on their similar kinetic and structural characteristics, a possible common origin among bacterial and E. gracilis lactic dehydrogenase enzymes is discussed.
Collapse
Affiliation(s)
- Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano #1, Col. Sección XVI, Tlalpan, México, D. F. 14080, México.
| | | | | | | | | | | |
Collapse
|
24
|
Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 2003; 104:241-52. [PMID: 12948642 DOI: 10.1016/s0168-1656(03)00162-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enzyme activities of the valine biosynthetic pathway and their regulation have been studied in the valine-producing strain, Corynebacterium glutamicum 13032DeltailvApJC1ilvBNCD. In this micro-organism, this pathway might involve up to five enzyme activities: acetohydroxy acid synthase (AHAS), acetohydroxy acid isomeroreductase (AHAIR), dihydroxyacid dehydratase and transaminases B and C. For each enzyme, kinetic parameters (optimal temperature, optimal pH and affinity for substrates) were determined. The first enzyme of the pathway, AHAS, was shown to exhibit a weak affinity for pyruvate (K(m)=8.3 mM). It appeared that valine and leucine inhibited the three first steps of the pathway (AHAS, AHAIR and DHAD). Moreover, the AHAS activity was inhibited by isoleucine. Considering the kinetic data collected during this work, AHAS would be a key enzyme for further strain improvement intending to increase the valine production by C. glutamicum.
Collapse
Affiliation(s)
- D Leyval
- Laboratoire Bioprocédés Agro-Alimentaires, ENSAIA, Institut National Polytechnique de Lorraine-2, Avenue de la Forêt de Haye, BP 172, F-54505 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | |
Collapse
|
25
|
Tokuda C, Ishikura Y, Shigematsu M, Mutoh H, Tsuzuki S, Nakahira Y, Tamura Y, Shinoda T, Arai K, Takahashi O, Taguchi H. Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement. J Bacteriol 2003; 185:5023-6. [PMID: 12897026 PMCID: PMC166478 DOI: 10.1128/jb.185.16.5023-5026.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single amino acid replacement of Tyr52 with Leu drastically increased the activity of Lactobacillus pentosus NAD-dependent D-lactate dehydrogenase toward larger aliphatic or aromatic 2-ketoacid substrates by 3 or 4 orders of magnitude and decreased the activity toward pyruvate by about 30-fold, converting the enzyme into a highly active D-2-hydroxyisocaproate dehydrogenase.
Collapse
Affiliation(s)
- Chizuka Tokuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Arai K, Hishida A, Ishiyama M, Kamata T, Uchikoba H, Fushinobu S, Matsuzawa H, Taguchi H. An absolute requirement of fructose 1,6-bisphosphate for the Lactobacillus casei L-lactate dehydrogenase activity induced by a single amino acid substitution. Protein Eng Des Sel 2002; 15:35-41. [PMID: 11842236 DOI: 10.1093/protein/15.1.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs.
Collapse
Affiliation(s)
- Kazuhito Arai
- Department of Applied Biological Science, Science University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|