1
|
Merker M, Rasigade JP, Barbier M, Cox H, Feuerriegel S, Kohl TA, Shitikov E, Klaos K, Gaudin C, Antoine R, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Crudu V, Supply P, Niemann S, Wirth T. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun 2022; 13:5105. [PMID: 36042200 PMCID: PMC9426364 DOI: 10.1038/s41467-022-32455-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a “perfect storm” that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens. An outbreak of the multidrug-resistant Mycobacterium tuberculosis lineage W148 has spread widely across Russia, Central Asia and Europe. Here, the authors use whole genome sequences of ~700 isolates of this lineage collected over ~20 years to analyze its spread, evolution of drug resistance, and impact of compensatory mutations.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Jean-Philippe Rasigade
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Maxime Barbier
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Helen Cox
- Division of Medical Microbiology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Egor Shitikov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Kadri Klaos
- SA TUH United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany.,Lung Clinic Grosshansdorf, German Center for Lung Research (DZL), Airway Research Center North (ARCN), 22927, Großhansdorf, Germany
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Valeriu Crudu
- National TB Reference Laboratory, Institute of Phthisiopneumology, Chisinau, Moldova
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Thierry Wirth
- EPHE, PSL University, Paris, France. .,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|
2
|
Cholo MC, Matjokotja MT, Osman AG, Anderson R. Role of the kdpDE Regulatory Operon of Mycobacterium tuberculosis in Modulating Bacterial Growth in vitro. Front Genet 2021; 12:698875. [PMID: 34394188 PMCID: PMC8358298 DOI: 10.3389/fgene.2021.698875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteria use K+-uptake transporters differentially for adaptation in varying growth conditions. In Mycobacterium tuberculosis, two K+-uptake systems, the Trk comprising the CeoB and CeoC proteins and the Kdp consisting of the two-component system (TCS), KdpDE and KdpFABC, have been characterized, but their selective utilization during bacterial growth has not been completely explored. In the current study, the roles of the M. tuberculosis KdpDE regulatory system alone and in association with the Trk transporters in bacterial growth were investigated by evaluating the growth of M. tuberculosis KdpDE-deletion and KdpDE/Trk (KT)-double knockout mutant strains in planktonic culture under standard growth conditions. The KT-double knockout mutant strain was first constructed using homologous recombination procedures and was evaluated together with the KdpDE-deletion mutant and the wild-type (WT) strains with respect to their rates of growth, K+-uptake efficiencies, and K+-transporter gene expression during planktonic growth. During growth at optimal K+ concentrations and pH levels, selective deletion of the TCS KdpDE (KdpDE-deletion mutant) led to attenuation of bacterial growth and an increase in bacterial K+-uptake efficiency, as well as dysregulated expression of the kdpFABC and trk genes. Deletion of both the KdpDE and the Trk systems (KT-double knockout) also led to severely attenuated bacterial growth, as well as an increase in bacterial K+-uptake efficiency. These results demonstrate that the KdpDE regulatory system plays a key role during bacterial growth by regulating K+ uptake via modulation of the expression and activities of both the KdpFABC and Trk systems and is important for bacterial growth possibly by preventing cytoplasmic K+ overload.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Maborwa T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ayman G Osman
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System. J Bacteriol 2015; 198:212-20. [PMID: 26350129 DOI: 10.1128/jb.00602-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kdp, one of three saturable K(+) uptake systems in Escherichia coli, is the system with the highest affinity for K(+) and the only one whose expression is strongly controlled by medium K(+) concentration. Expression is controlled by a two-component system of KdpD, the sensor kinase, and KdpE, the response regulator. There is general agreement that expression occurs when the growth rate of cells begins to become limited by K(+) availability. How K(+) limitation results in expression has been controversial. Studying the roles of the major components of the growth medium shows that KdpD senses at least two distinct signals inside the cell, those of Na(+) and NH4 (+), and it probably senses other monovalent cations in the cell. KdpD does not sense turgor. IMPORTANCE The expression of the Kdp K(+) transport system of E. coli occurs when cells become limited in their growth rate by the availability of K(+). Cells sense limited K(+) and try to compensate by taking up other monovalent cations, particularly Na(+) and NH4 (+). These cations are sensed in the cytoplasm by the KdpD response regulator, presumably to stimulate its kinase activity. It is shown that KdpD does not sense turgor, as was suggested earlier.
Collapse
|
4
|
Abstract
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.
Collapse
Affiliation(s)
- Zoë N. Freeman
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas R. Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Lüttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Görke B. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol 2009; 72:978-94. [PMID: 19400808 DOI: 10.1111/j.1365-2958.2009.06704.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins EI(Ntr), NPr and IIA(Ntr) form a phosphoryl group transfer chain (Ntr-PTS) working in parallel to the phosphoenolpyruvate:carbohydrate phosphotransferase system (transport-PTS) in Escherichia coli. Recently, it was shown that dephosphorylated IIA(Ntr) binds and inhibits TrkA, a low-affinity potassium transporter. Here we report that the Ntr-PTS also regulates expression of the high-affinity K+ transporter KdpFABC, which rescues K+ uptake at limiting K+ concentrations. Transcription initiation at the kdpFABC promoter is positively controlled by the two-component system KdpD/KdpE in response to K+ availability. We found that kdp promoter activity is stimulated by the dephosphorylated form of IIA(Ntr). Two-hybrid data and biochemical analysis revealed that IIA(Ntr) interacts with sensor kinase KdpD and stimulates kinase activity, resulting in increased levels of phosphorylated response regulator KdpE. The data suggest that exclusively dephosphorylated IIA(Ntr) binds and activates KdpD. As there is cross-talk between the Ntr-PTS and the transport-PTS, carbon source utilization affects kdpFABC expression. Expression is enhanced, when cells utilize preferred carbohydrates like glucose, which results in preferential dephosphorylation of the transport-PTS and also of IIA(Ntr). Taken together, the data show that the Ntr-PTS has an important role in maintaining K+ homeostasis and links K+ uptake to carbohydrate metabolism.
Collapse
Affiliation(s)
- Denise Lüttmann
- Georg-August-Universität Göttingen, Abteilung für Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Malone AS, Chung YK, Yousef AE. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 2006; 72:2661-71. [PMID: 16597971 PMCID: PMC1449011 DOI: 10.1128/aem.72.4.2661-2671.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seventeen Escherichia coli O157:H7 strains were treated with ultrahigh pressure at 500 MPa and 23 +/- 2 degrees C for 1 min. This treatment inactivated 0.6 to 3.4 log CFU/ml, depending on the strain. The diversity of these strains was confirmed by pulsed-field gel electrophoresis (PFGE) analysis, and there was no apparent association between PFGE banding patterns and pressure resistance. The pressure-resistant strain E. coli O157:H7 EC-88 (0.6-log decrease) and the pressure-sensitive strain ATCC 35150 (3.4-log decrease) were treated with a sublethal pressure (100 MPa for 15 min at 23 +/- 2 degrees C) and subjected to DNA microarray analysis using an E. coli K-12 antisense gene chip. High pressure affected the transcription of many genes involved in a variety of intracellular mechanisms of EC-88, including the stress response, the thiol-disulfide redox system, Fe-S cluster assembly, and spontaneous mutation. Twenty-four E. coli isogenic pairs with mutations in the genes regulated by the pressure treatment were treated with lethal pressures at 400 MPa and 23 +/- 2 degrees C for 5 min. The barotolerance of the mutants relative to that of the wild-type strains helped to explain the results obtained by DNA microarray analysis. This study is the first report to demonstrate that the expression of Fe-S cluster assembly proteins and the fumarate nitrate reductase regulator decreases the resistance to pressure, while sigma factor (RpoE), lipoprotein (NlpI), thioredoxin (TrxA), thioredoxin reductase (TrxB), a trehalose synthesis protein (OtsA), and a DNA-binding protein (Dps) promote barotolerance.
Collapse
Affiliation(s)
- Aaron S Malone
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
13
|
Epstein W. The roles and regulation of potassium in bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:293-320. [PMID: 14604015 DOI: 10.1016/s0079-6603(03)75008-9] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Potassium is the major intracellular cation in bacteria as well as in eucaryotic cells. Bacteria accumulate K+ by a number of different transport systems that vary in kinetics, energy coupling, and regulation. The Trk and Kdp systems of enteric organisms have been well studied and are found in many distantly related species. The Ktr system, resembling Trk in many ways, is also found in many bacteria. In most species two or more independent saturable K(+)-transport systems are present. The KefB and KefC type of system that is activated by treatment of cells with toxic electrophiles is the only specific K(+)-efflux system that has been well characterized. Pressure-activated channels of at least three types are found in bacteria; these represent nonspecific paths of efflux when turgor pressure is dangerously high. A close homolog of eucaryotic K+ channels is found in many bacteria, but its role remains obscure. K+ transporters are regulated both by ion concentrations and turgor. A very general property is activation of K+ uptake by an increase in medium osmolarity. This response is modulated by both internal and external concentrations of K+. Kdp is the only K(+)-transport system whose expression is regulated by environmental conditions. Decrease in turgor pressure and/or reduction in external K+ rapidly increase expression of Kdp. The signal created by these changes, inferred to be reduced turgor, is transmitted by the KdpD sensor kinase to the KdpE-response regulator that in turn stimulates transcription of the kdp genes. K+ acts as a cytoplasmic-signaling molecule, activating and/or inducing enzymes and transport systems that allow the cell to adapt to elevated osmolarity. The signal could be ionic strength or specifically K+. This signaling response is probably mediated by a direct sensing of internal ionic strength by each particular system and not by a component or system that coordinates this response by different systems to elevated K+.
Collapse
Affiliation(s)
- Wolfgang Epstein
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|