1
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
2
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
3
|
Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 2012; 194:5044-53. [PMID: 22797764 DOI: 10.1128/jb.00982-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant unable to utilize galactose was isolated in Sinorhizobium meliloti strain Rm1021. The mutation was found to be in a gene annotated dgoK1, a putative 2-keto-3-deoxygalactonokinase. The genetic region was isolated on a complementing cosmid and subsequently characterized. Based on genetic and bioinformatic evidence, the locus encodes all five enzymes (galD, dgoK, dgoA, SMc00883, and ilvD1) involved in the De Ley-Doudoroff pathway for galactose catabolism. Although all five genes are present, genetic analysis suggests that the galactonase (SMc00883) and the dehydratase (ilvD1) are dispensable with respect to the ability to catabolize galactose. In addition, we show that the transport of galactose is partially facilitated by the arabinose transporter (AraABC) and that both glucose and galactose compete with arabinose for transport. Quantitative reverse transcription-PCR (qRT-PCR) data show that in a dgoK background, the galactose locus is constitutively expressed, and the induction of the ara locus seems to be enhanced. Assays of competition for nodule occupancy show that the inability to catabolize galactose is correlated with an increased ability to compete for nodule occupancy.
Collapse
|
4
|
Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens. J Bacteriol 2011; 193:6586-96. [PMID: 21984786 DOI: 10.1128/jb.05790-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chvE-gguABC operon plays a critical role in both virulence and sugar utilization through the activities of the periplasmic ChvE protein, which binds to a variety of sugars. The roles of the GguA, GguB, and GguC are not known. While GguA and GguB are homologous to bacterial ABC transporters, earlier genetic analysis indicated that they were not necessary for utilization of sugars as the sole carbon source. To further examine this issue, in-frame deletions were constructed separately for each of the three genes. Our growth analysis clearly indicated that GguA and GguB play a role in sugar utilization and strongly suggests that GguAB constitute an ABC transporter with a wide range of substrates, including L-arabinose, D-fucose, D-galactose, D-glucose, and D-xylose. Site-directed mutagenesis showed that a Walker A motif was vital to the function of GguA. We therefore propose renaming gguAB as mmsAB, for multiple monosaccharide transport. A gguC deletion affected growth only on L-arabinose medium, suggesting that gguC encodes an enzyme specific to L-arabinose metabolism, and this gene was renamed araD1. Results from bioinformatics and experimental analyses indicate that Agrobacterium tumefaciens uses a pathway involving nonphosphorylated intermediates to catabolize L-arabinose via an L-arabinose dehydrogenase, AraA(At), encoded at the Atu1113 locus.
Collapse
|
5
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Zhong Z, Wang Y, Qiao F, Wang Z, Du X, Xu J, Zhao J, Qu Q, Dong S, Sun Y, Huang L, Huang K, Chen Z. Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology (Reading) 2009; 155:3392-3402. [DOI: 10.1099/mic.0.030619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Some Brucella rough mutants cause cytotoxicity that resembles oncosis and necrosis in macrophages. This cytotoxicity requires the type IV secretion system (T4SS). In rough mutants, the cell-surface O antigen is shortened and the T4SS structure is thus exposed on the surface. Cytotoxicity effector proteins can therefore be more easily secreted. This enhanced secretion of effector proteins might cause the increased levels of cytotoxicity observed. However, whether this cytotoxicity is unique to the rough mutant and is mediated by overexpression of the T4SS has not been definitively determined. To test this, in the present study, a virB inactivation mutant (BMΔvirB) and an overexpression strain (BM-VIR) of a smooth Brucella melitensis strain (BM) were constructed and their cytotoxicity for macrophages and intracellular survival capability were analysed and compared. Cytotoxicity was detected in macrophages infected with higher concentrations of strains BM or BM-VIR, but not in those infected with BMΔvirB. The quorum sensing signal molecule N-dodecanoyl-dl-homoserine lactone (C12-HSL), a molecule that can inhibit expression of virB, inhibited the cytotoxicity of BM and BM-VIR, but not of BMΔvirB. These results indicated that overexpression of virB is responsible for Brucella cytotoxicity in macrophages. Transcription analysis showed that virB is regulated in a cell-density-dependent manner both in in vitro culture and during macrophage infection. When compared with BM, BM-VIR showed a reduced survival capacity in macrophages and mice, but both strains demonstrated similar resistance to in vitro stress conditions designed to simulate intracellular environments. Taken together, the cytotoxicity of Brucella for macrophages is probably mediated by increased secretion of effector proteins that results from overexpression of virB or an increase in the number of bacterial cells. The observation that both inactivation and overexpression of virB are detrimental for Brucella intracellular survival also indicated that the expression of virB is tightly regulated in a cell-density-dependent manner.
Collapse
Affiliation(s)
- Zhijun Zhong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Feng Qiao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jin Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Qing Qu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Shicun Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| |
Collapse
|
7
|
Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J Bacteriol 2008; 190:3274-82. [PMID: 18310341 DOI: 10.1128/jb.01915-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella melitensis is an intracellular pathogen that establishes a replicative niche within macrophages. While the intracellular lifestyle of Brucella is poorly understood and few virulence factors have been identified, components of a quorum-sensing pathway in Brucella have recently been identified. The LuxR-type regulatory protein, VjbR, and an N-acylhomoserine lactone signaling molecule are both involved in regulating expression of the virB-encoded type IV secretion system. We have identified a second LuxR-type regulatory protein (BlxR) in Brucella. Microarray analysis of a blxR mutant suggests that BlxR regulates the expression of a number of genes, including those encoding the type IV secretion system and flagella. Confirming these results, deletion of blxR in B. melitensis reduced the transcriptional activities of promoters for the virB operon, flagellar genes, and another putative virulence factor gene, bopA. Furthermore, our data suggested that both BlxR and VjbR are positively autoregulated and cross-regulate the expression of each other. The blxR deletion strain exhibited reduced growth in macrophages, similar to that observed for a vjbR deletion strain. However, unlike the vjbR deletion, the blxR deletion did not fully attenuate virulence in mice. More strikingly, bioluminescent imaging revealed that dissemination of the blxR mutant was similar to that of wild-type B. melitensis, while the vjbR mutant was defective for systemic spread in IRF-1(-/-) mice, suggesting that these regulators are not functionally redundant but that they converge in a common pathway regulating bacterial processes.
Collapse
|
8
|
Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, De Bolle X, Köhler S. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol 2006; 8:1791-802. [PMID: 16803581 DOI: 10.1111/j.1462-5822.2006.00749.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Physiological adaptation of intracellular bacteria is critical for timely interaction with eukaryotic host cells. One mechanism of adaptation, the stringent response, is induced by nutrient stress via its effector molecule (p)ppGpp, synthesized by the action of RelA/SpoT homologues. The intracellular pathogen Brucella spp., causative agent of brucellosis, possesses a gene homologous to relA/spoT, named rsh, encoding a (p)ppGpp synthetase as confirmed by heterologous complementation of a relA mutant of Sinorhizobium meliloti. The Rsh deletion mutants in Brucella suis and Brucella melitensis were characterized by altered morphology, and by reduced survival under starvation conditions and in cellular and murine models of infection. Most interestingly, we evidenced that expression of virB, encoding the type IV secretion system, a major virulence factor of Brucella, was Rsh-dependent. All mutant phenotypes, including lack of VirB proteins, were complemented with the rsh gene of Brucella. In addition, RelA of S. meliloti functionally replaced Brucella Rsh, describing the capacity of a gene from a plant symbiont to restore virulence in a mammalian pathogen. We therefore concluded that in the intramacrophagic environment encountered by Brucella, Rsh might participate in the adaptation of the pathogen to low-nutrient environments, and indirectly in the VirB-mediated formation of the final replicative niche.
Collapse
Affiliation(s)
- Marie Dozot
- Research Unit in Molecular Biology, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jacob J, Hort GM, Overhoff P, Mielke MEA. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19. Microbes Infect 2005; 8:363-71. [PMID: 16239117 DOI: 10.1016/j.micinf.2005.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 06/14/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Brucella abortus is known to produce chronic infections in both humans and a variety of animal species. However, the mechanisms underlying the persistence of the bacteria in the presence of an ongoing immune response are still unknown. In this respect we made use of the observation that in vitro grown B. abortus S19 exhibits heterogenicity in colony size when plated onto TS agar, while experimental infection of mice uniformly results in the in vivo selection of the small colony variant. We demonstrate that the spontaneous smooth small colony variant is characterized not only by a slower growth rate in vitro but also by an increased tolerance to hyperosmotic medium and, most importantly, a less effective clearance from spleens and livers of experimentally infected mice. On a molecular level, a gene with homology to a formerly described galactoside transport ATP binding protein (mglA) was differentially expressed in small versus large colonies of B. abortus S19.
Collapse
Affiliation(s)
- J Jacob
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
Boigegrain RA, Salhi I, Alvarez-Martinez MT, Machold J, Fedon Y, Arpagaus M, Weise C, Rittig M, Rouot B. Release of periplasmic proteins of Brucella suis upon acidic shock involves the outer membrane protein Omp25. Infect Immun 2004; 72:5693-703. [PMID: 15385468 PMCID: PMC517528 DOI: 10.1128/iai.72.10.5693-5703.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The survival and replication of Brucella in macrophages is initially triggered by a low intraphagosomal pH. In order to identify proteins released by Brucella during this early acidification step, we analyzed Brucella suis conditioned medium at various pH levels. No significant proteins were released at pH 4.0 in minimal medium or citrate buffer, whereas in acetate buffer, B. suis released a substantial amount of soluble proteins. Comparison of 13 N-terminal amino acid sequences determined by Edman degradation with their corresponding genomic sequences revealed that all of these proteins possessed a signal peptide indicative of their periplasmic location. Ten proteins are putative substrate binding proteins, including a homologue of the nopaline binding protein of Agrobacterium tumefaciens. The absence of this homologue in Brucella melitensis was due to the deletion of a 7.7-kb DNA fragment in its genome. We also characterized for the first time a hypothetical 9.8-kDa basic protein composed of five amino acid repeats. In B. suis, this protein contained 9 repeats, while 12 were present in the B. melitensis orthologue. B. suis in acetate buffer depended on neither the virB type IV secretory system nor the omp31 gene product. However, the integrity of the omp25 gene was required for release at acidic pH, while the absence of omp25b or omp25c displayed smaller effects. Together, these results suggest that Omp25 is involved in the membrane permeability of Brucella in acidic medium.
Collapse
|
11
|
Delrue RM, Lestrate P, Tibor A, Letesson JJ, De Bolle X. Brucellapathogenesis, genes identified from random large-scale screens. FEMS Microbiol Lett 2004; 231:1-12. [PMID: 14979322 DOI: 10.1016/s0378-1097(03)00963-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenicity islands, specialized secretion systems, virulence plasmids, fimbriae, pili, adhesins, and toxins are all classical bacterial virulence factors. However, many of these factors, though widespread among bacterial pathogens, are not necessarily found among bacteria that colonize eukaryotic cells in a pathogenic/symbiotic relationship. Bacteria that form these relationships have developed other strategies to infect and grow in their hosts. This is particularly true for Brucella and other members of the class Proteobacteria. Thus far the identification of virulence factors for Brucella has been largely dependent on large-scale screens and testing in model systems. The genomes of the facultative intracellular pathogens Brucella melitensis and Brucella suis were sequenced recently. This has identified several more potential virulence factors for Brucella that were not found in large screens. Here, we present an overall view of Brucella virulence by compiling virulence data from the study of 184 attenuated mutants.
Collapse
Affiliation(s)
- Rose-May Delrue
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | | | | | | | | |
Collapse
|
12
|
Salhi I, Boigegrain RA, Machold J, Weise C, Cloeckaert A, Rouot B. Characterization of new members of the group 3 outer membrane protein family of Brucella spp. Infect Immun 2003; 71:4326-32. [PMID: 12874309 PMCID: PMC165991 DOI: 10.1128/iai.71.8.4326-4332.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impairment of the omp25 gene in Brucella spp. leads to attenuated strains and confers protection to the host. Omp25 and Omp31, whose functions remain unknown, were the first characterized members of group 3 outer membrane proteins (Omps) (25 to 34 kDa). Recently, genomic and proteomic approaches identified five new putative members of this family, some of which are produced in B. melitensis or B. abortus. In the present study, using protein microsequencing, we identified new members of group 3 Omps proteins produced in B. suis. Since several monoclonal antibodies (MAbs) against Omp25 cross-reacted with other members of group 3 Omps, we also performed Western immunoblotting to compare wild-type B. suis with mutants systematically having B. suis omp25-related genes knocked out. We demonstrate the production of three paralogs of Omp31 and/or Omp25 in B. suis, and the existence of a common site of signal peptide cleavage (AXAAD), which is very similar to that present in the five homologous Omps of Bartonella quintana. The seven group 3 Omps were classified in four-subgroups on the basis of percentage amino acid sequence identities: Omp25 alone, the Omp25b-Omp25c-Omp25d cluster, the Omp31/31b subgroup, and the less related Omp22 protein (also called Omp3b). Together with previous data, our results demonstrate that all new members of group 3 Omps are produced in B. suis or in other Brucella species and we propose a nomenclature that integrates all of these proteins to facilitate the understanding of future Brucella interspecies study results.
Collapse
Affiliation(s)
- Imed Salhi
- INSERM U431, Université de Montpellier 2, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
13
|
Rouot B, Alvarez-Martinez MT, Marius C, Menanteau P, Guilloteau L, Boigegrain RA, Zumbihl R, O'Callaghan D, Domke N, Baron C. Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect Immun 2003; 71:1075-82. [PMID: 12595417 PMCID: PMC148853 DOI: 10.1128/iai.71.3.1075-1082.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the virB operon, encoding the type IV secretion system required for Brucella suis virulence, occurred in the acidic phagocytic vacuoles of macrophages and could be induced in minimal medium at acidic pH values. To analyze the production of VirB proteins, polyclonal antisera against B. suis VirB5 and VirB8 were generated. Western blot analysis revealed that VirB5 and VirB8 were detected after 3 h in acidic minimal medium and that the amounts increased after prolonged incubation. Unlike what occurs in the related organism Agrobacterium tumefaciens, the periplasmic sugar binding protein ChvE did not contribute to VirB protein production, and B. suis from which chvE was deleted was fully virulent in a mouse model. Comparative analyses of various Brucella species revealed that in all of them VirB protein production increased under acidic conditions. However, in rich medium at neutral pH, Brucella canis and B. suis, as well as the Brucella abortus- and Brucella melitensis-derived vaccine strains S19, RB51, and Rev.1, produced no VirB proteins or only small amounts of VirB proteins, whereas the parental B. abortus and B. melitensis strains constitutively produced VirB5 and VirB8. Thus, the vaccine strains were still able to induce virB expression under acidic conditions, but the VirB protein production was markedly different from that in the wild-type strains at pH 7. Taken together, the data indicate that VirB protein production and probably expression of the virB operon are not uniformly regulated in different Brucella species. Since VirB proteins were shown to modulate Brucella phagocytosis and intracellular trafficking, the differential regulation of the production of these proteins reported here may provide a clue to explain their role(s) during the infection process.
Collapse
Affiliation(s)
- Bruno Rouot
- INSERM U431, Université de Montpellier 2, 34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ding Z, Christie PJ. Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 2003; 185:760-71. [PMID: 12533451 PMCID: PMC142831 DOI: 10.1128/jb.185.3.760-771.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study characterized the contribution of the twin-arginine translocation (TAT) pathway to growth, motility, and virulence of the phytopathogen Agrobacterium tumefaciens. In contrast to wild-type strain A348, a tatC null mutant failed to export the green fluorescent protein fused to the trimethylamine N-oxide reductase (TorA) signal sequence or to grow on nitrate as a sole electron acceptor during anaerobic growth. The tatC mutant displayed defects in growth rate and cell division but not in cell viability, and it also released abundant levels of several proteins into the culture supernatant when grown in rich medium or in vir induction minimal medium. Nearly all A348 cells were highly motile in both rich and minimal media. By contrast, approximately 0.1% of the tatC mutant cells were motile in rich medium, and <0.01% were motile in vir induction medium. Nonmotile tatC mutant cells lacked detectable flagella, whereas motile tatC mutant cells collected from the edge of a motility halo possessed flagella but not because of reversion to a functional TAT system. Motile tatC cells failed to exhibit chemotaxis toward sugars under aerobic conditions or towards nitrate under anaerobic conditions. The tatC mutant was highly attenuated for virulence, only occasionally (approximately 15% of inoculations) inciting formation of small tumors on plants after a prolonged incubation period of 6 to 8 weeks. However, an enriched subpopulation of motile tatC mutants exhibited enhanced virulence compared to the nonmotile variants. Finally, the tatC mutant transferred T-DNA and protein effectors to plant cells and a mobilizable IncQ plasmid to agrobacterial recipients at wild-type levels. Together, our findings establish that, in addition to its role in secretion of folded cofactor-bound enzymes functioning in alternative respiration, the TAT system of A. tumefaciens is an important virulence determinant. Furthermore, this secretion pathway contributes to flagellar biogenesis and chemotactic responses but not to sensory perception of plant signals or the assembly of a type IV secretion system.
Collapse
Affiliation(s)
- Zhiyong Ding
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Abstract
The metabolic capabilities of the species of Brucella were originally of interest as a means of distinguishing them from each other and from other genera. Certain unusual characteristics, especially erythritol utilization, were studied in the hopes they would shed light on the pathogenicity. With the advent of modern genetic methods and genomic sequencing, it is now possible to get a good idea of the total capabilities of the organism and to do tests to confirm these deductions. Brucella appears to be a fairly normal member of the alpha-proteobacteria, but with some differences. A few questions remain, such as whether Brucella uses the Entner-Doudoroff pathway. Some of the genes in carbohydrate utilization have been shown to be important in virulence.
Collapse
Affiliation(s)
- Richard C Essenberg
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
16
|
Eschenbrenner M, Wagner MA, Horn TA, Kraycer JA, Mujer CV, Hagius S, Elzer P, DelVecchio VG. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M. J Bacteriol 2002; 184:4962-70. [PMID: 12193611 PMCID: PMC135307 DOI: 10.1128/jb.184.18.4962-4970.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Accepted: 06/13/2002] [Indexed: 11/20/2022] Open
Abstract
The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1.
Collapse
Affiliation(s)
- Michel Eschenbrenner
- Institute of Molecular Biology and Medicine, The University of Scranton, Scranton, Pennsylvania 18510, USA
| | | | | | | | | | | | | | | |
Collapse
|