1
|
Abstract
Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons.
Collapse
|
2
|
A GK, K A, M H, K S, G D. Review on plastic wastes in marine environment - Biodegradation and biotechnological solutions. MARINE POLLUTION BULLETIN 2020; 150:110733. [PMID: 31767203 DOI: 10.1016/j.marpolbul.2019.110733] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/23/2023]
Abstract
The marine plastic pollution has drastic effect on marine species. The importance in environmental issues increases the demand to develop a significant technology which does not burden the marine environment or marine life forms. To mitigate the foreseen problems of micro and nanoplastic contamination, different biotechnological solutions has to be considered. Microbial communities exposed to plastic contaminated sites can adapt and form dense biofilms on the plastic surface and produce active catalytic enzymes. These enzymes can be able to degrade the synthetic polymers. In view of their high catalytic activity, microbial enzymes can be applicable for the degradation of synthetic polymers. This review highlights the toxicity of micro and nanoplastics on marine organisms, biodegradation of plastics and futuristic research needs to solve the issues of plastic pollution in marine environment.
Collapse
Affiliation(s)
- Ganesh Kumar A
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India.
| | - Anjana K
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Hinduja M
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Sujitha K
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Dharani G
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
3
|
Rogers JD, Thurman EM, Ferrer I, Rosenblum JS, Evans MV, Mouser PJ, Ryan JN. Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:256-268. [PMID: 30318550 DOI: 10.1039/c8em00291f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Collapse
Affiliation(s)
- Jessica D Rogers
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, 607 UCB, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0145-9] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
5
|
Complete Genome Sequence of Sphingopyxis macrogoltabida Strain 203N (NBRC 111659), a Polyethylene Glycol Degrader. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00529-16. [PMID: 27284142 PMCID: PMC4901233 DOI: 10.1128/genomea.00529-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We determined the complete genome sequence of Sphingopyxis macrogoltabida strain 203N, a polyethylene glycol degrader. Because the PacBio assembly (285× coverage) seemed to be full of nucleotide-level mismatches, the Newbler assembly of MiSeq mate-pair and paired-end data was used for finishing and the PacBio assembly was used as a reference. The PacBio assembly carried 414 nucleotide mismatches over 5,953,153 bases of the 203N genome.
Collapse
|
6
|
Complete Genome Sequence of Sphingopyxis terrae Strain 203-1 (NBRC 111660), a Polyethylene Glycol Degrader. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00530-16. [PMID: 27284143 PMCID: PMC4901234 DOI: 10.1128/genomea.00530-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of Sphingopyxis terrae strain 203-1, which is capable of growing on polyethylene glycol, was determined. The genome consisted of a chromosome with a size of 3.98 Mb and a plasmid with a size of 4,328 bp. The strain was deposited to the National Institute of Technology and Evaluation (Tokyo, Japan) under the number NBRC 111660.
Collapse
|
7
|
Complete Genome Sequence of Sphingopyxis macrogoltabida Type Strain NBRC 15033, Originally Isolated as a Polyethylene Glycol Degrader. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01401-15. [PMID: 26659674 PMCID: PMC4675939 DOI: 10.1128/genomea.01401-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingopyxis macrogoltabida strain 203, the type strain of the species, grew on polyethylene glycol (PEG) and has been deposited to the stock culture at the Biological Resource Center, National Institute of Technology and Evaluation (NITE), under the number NBRC 15033. Here, we report the complete genome sequence of strain NBRC 15033. Unfortunately, genes for PEG degradation were missing.
Collapse
|
8
|
Characterization of a Cryptic Plasmid, pSM103mini, from Polyethylene-Glycol DegradingSphingopyxis macrogoltabidaStrain 103. Biosci Biotechnol Biochem 2014; 75:295-8. [DOI: 10.1271/bbb.100650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Mu A, Boreham C, Leong HX, Haese RR, Moreau JW. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment. Front Microbiol 2014; 5:209. [PMID: 24860559 PMCID: PMC4030138 DOI: 10.3389/fmicb.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/19/2014] [Indexed: 01/08/2023] Open
Abstract
Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event.
Collapse
Affiliation(s)
- Andre Mu
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - Chris Boreham
- Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia ; Geoscience Australia Canberra, NSW, Australia
| | - Henrietta X Leong
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - Ralf R Haese
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - John W Moreau
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| |
Collapse
|
10
|
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013; 79:3724-33. [PMID: 23563954 DOI: 10.1128/aem.00518-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
Collapse
|
11
|
Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family. Int J Mol Sci 2013; 14:1218-31. [PMID: 23306149 PMCID: PMC3565318 DOI: 10.3390/ijms14011218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.
Collapse
|
12
|
|
13
|
Shetty KG, Huntzicker JV, Rein KS, Jayachandran K. Biodegradation of polyether algal toxins--isolation of potential marine bacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1850-1857. [PMID: 20954040 PMCID: PMC3516395 DOI: 10.1080/10934529.2010.520510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.
Collapse
Affiliation(s)
- Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, Florida 33199-0001, USA
| | | | | | | |
Collapse
|
14
|
Oprea S. Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.08.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Silicone oil emulsions stabilized by semi-solid nanostructures entrapped at the interface. J Colloid Interface Sci 2010; 351:102-7. [DOI: 10.1016/j.jcis.2010.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/02/2010] [Accepted: 07/03/2010] [Indexed: 11/21/2022]
|
16
|
Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80. J Lipids 2010; 2011:676535. [PMID: 21490808 PMCID: PMC3066834 DOI: 10.1155/2011/676535] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/21/2010] [Indexed: 12/03/2022] Open
Abstract
The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.
Collapse
|
17
|
Involvement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingopyxis macrogoltabida strain 103. Appl Microbiol Biotechnol 2008; 81:473-84. [PMID: 18719904 DOI: 10.1007/s00253-008-1635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Sphingopyxis terrae and the Sphingopyxis macrogoltabida strains 103 and 203 are able to degrade polyethylene glycol (PEG). They possess the peg operon, which is responsible for the conversion of PEG to PEG-carboxylate-coenzyme A (CoA). The upstream (3.0 kb) and downstream (6.5 kb) regions of the operon in strain 103 were cloned and sequenced. The structure was well conserved between S. macrogoltabida strain 203 and S. terrae, except that two sets of transposases are absent in strain 203. The downstream region contains the genes for PEG-carboxylate dehydrogenase (PCDH), glutathione S-transferase (GST), tautomerase, and a hypothetical protein. The genes for pcdh and gst were transcribed constitutively and monocistronically, indicating that their transcription is independent of the operon regulation. PCDH and GST were expressed in Escherichia coli and characterized biochemically. PCDH is a homotetramer of 64-kDa subunits and contains one molecule of flavin adenine dinucleotide per subunit. The enzyme dehydrogenates PEG-carboxylate to yield glyoxylate, suggesting that the enzyme is the third enzyme involved in PEG degradation. GST is a homodimer of 28-kDa subunits. GST activity was noncompetitively inhibited by acyl-CoA and PEG-carboxylate-CoA, suggesting the interaction of GST with them. The proposed role for GST is to buffer the toxicity of PEG-carboxylate-CoA.
Collapse
|
18
|
Tani A, Somyoonsap P, Minami T, Kimbara K, Kawai F. Polyethylene glycol (PEG)–carboxylate–CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103. Arch Microbiol 2007; 189:407-10. [DOI: 10.1007/s00203-007-0320-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/03/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
|
19
|
Dobslaw D, Dobslaw C, Fütterer N, Engesser KH. Biologische Abluftreinigung von Druckereiablüften: Optimierung eines Biowäschers. CHEM-ING-TECH 2007. [DOI: 10.1002/cite.200700069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Tani A, Charoenpanich J, Mori T, Takeichi M, Kimbara K, Kawai F. Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology (Reading) 2007; 153:338-346. [PMID: 17259605 DOI: 10.1099/mic.0.2006/000992-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingopyxis terrae, and Sphingopyxis macrogoltabida strains 103 and 203, can degrade polyethylene glycols (PEGs). They differ in the following respects: (i) different substrate specificities (chain length) of assimilable PEG, (ii) PEG-inducible or constitutive PEG-degradative proteins, and (iii) symbiotic or axenic degradation of PEG. S. terrae was able to incorporate PEG 6000, but strain 103 could not incorporate more than PEG 4000, suggesting that the difference in assimilable PEG chain length depends on the ability to take up substrate. PEG-degradative genes (pegB, C, D, A, E and R) from these strains were cloned. Their primary structures shared a high homology of more than 99 %. The peg genes encode a TonB-dependent receptor (pegB), a PEG-aldehyde dehydrogenase (pegC), a permease (pegD), a PEG dehydrogenase (pegA) and an acyl-CoA ligase (pegE), and in the opposite orientation, an AraC-type transcription regulator (pegR). The peg operon was flanked by two different sets of transposases. These three strains contained large plasmids and the operon was located in one of the large plasmids in S. terrae. The peg genes could be detected in other PEG-degrading sphingomonads. These results suggest that the peg genes have evolved in a plasmid-mediated manner. An insertion of a transposon gene (pegF) between pegD and pegA in strain 203 was found, which caused the constitutive expression of pegA in this strain.
Collapse
Affiliation(s)
- Akio Tani
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Jittima Charoenpanich
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Terumi Mori
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Mayuko Takeichi
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Kazuhide Kimbara
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Fusako Kawai
- Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| |
Collapse
|
21
|
Hu X, Fukutani A, Liu X, Kimbara K, Kawai F. Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases. Appl Microbiol Biotechnol 2007; 73:1407-13. [PMID: 17043822 DOI: 10.1007/s00253-006-0616-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/12/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Two bacterial consortia growing on a random copolymer of ethylene glycol and propylene glycol units were obtained by enrichment cultures from various microbial samples. Six major strains included in both consortia were purified and identified as Sphingomonads, Pseudomonas sp. and Stenotrophomonas maltophilia. Three of them (Sphingobium sp. strain EK-1, Sphingopyxis macrogoltabida strain EY-1, and Pseudomonas sp. strain PE-2) utilized both PEG and polypropylene glycol (PPG) as a sole carbon source. Four PEG-utilizing bacteria had PEG dehydrogenase (PEG-DH) activity, which was induced by PEG. PCR products from DNA of these bacteria generated with primers designed from a PEG-DH gene (AB196775 for S. macrogoltabida strain 103) indicated the presence of a sequence that is the homologous to the PEG-DH gene (99% identity). On the other hand, five PPG-utilizing bacteria had PPG dehydrogenase (PPG-DH) activity, but the activity was constitutive. PCR of a PPG-DH gene was performed using primers designed from a polyvinyl alcohol dehydrogenase (PVA-DH) gene (AB190288 for Sphingomonas sp. strain 113P3) because a PPG-DH gene has not been cloned yet, but both PPG-DH and PVA-DH were active toward PPG and PVA (Mamoto et al. 2006). PCR products of the five strains did not have similarity to each other or to oxidoreductases including PVA-DH.
Collapse
Affiliation(s)
- Xiaoping Hu
- Laboratory of Applied Microbiology, Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | | | | | | | | |
Collapse
|
22
|
Liu X, Tani A, Kimbara K, Kawai F. Xenoestrogenic short ethoxy chain nonylphenol is oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08. Appl Microbiol Biotechnol 2007; 73:1414-22. [PMID: 17131148 DOI: 10.1007/s00253-006-0620-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Revised: 07/12/2006] [Accepted: 08/08/2006] [Indexed: 11/26/2022]
Abstract
The ethoxy chains of short ethoxy chain nonylphenol (NPEO(av2.0), containing average 2.0 ethoxy units) were dehydrogenated by cell-free extracts from Ensifer sp. strain AS08 grown on a basal medium supplemented with NPEO(av2.0). The reaction was coupled with the reduction in 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and phenazine methosulfate. The enzyme (NPEO(av2.0) dehydrogenase; NPEO-DH) was purified to homogeneity with a yield of 20% and a 56-fold increase in specific activity. The molecular mass of the native enzyme was 120 kDa, consisting of two identical monomer units (60 kDa). The gene encoding NPEO-DH was cloned, which consisted of 1,659 bp, corresponding to a protein of 553 amino acid residues. The deduced amino acid sequence agreed with the N-terminal amino acid sequence of the purified NPEO-DH. The presence of a flavin adenine dinucleotide (FAD)-binding motif and glucose-methanol-choline (GMC) oxidoreductase signature motifs strongly suggested that the enzyme belongs to the GMC oxidoreductase family. The protein exhibited homology (40-45% identity) with several polyethylene glycol dehydrogenases (PEG-DHs) of this family, but the identity was lower than those (approximately 58%) among known PEG-DHs. The substrate-binding domain was more hydrophobic compared with those of glucose oxidase and PEG-DHs. The recombinant protein had the same molecular mass as the purified NPEO-DH and dehydrogenated PEG400-2000, NPEO(av2.0) and its components, and NPEOav10, but only slight or no activity was found using diethylene glycol, triethylene glycol, and PEG200.
Collapse
Affiliation(s)
- Xin Liu
- Laboratory of Applied Microbiology, Research Institute for Bioresources, Okayama University, Kurashiki, 2-20-1 Chuo, Kurashiki, 710-0046, Japan.
| | | | | | | |
Collapse
|
23
|
Charoenpanich J, Tani A, Moriwaki N, Kimbara K, Kawai F. Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology (Reading) 2006; 152:3025-3034. [PMID: 17005983 DOI: 10.1099/mic.0.29127-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genes for polyethylene glycol (PEG) catabolism (pegB,C,D,AandE) inSphingopyxis macrogoltabidastrain 103 were shown to form a PEG-inducible operon. ThepegRgene, encoding an AraC-type regulator in the downstream area of the operon, is transcribed in the reverse direction. The transcription start sites of the operon were mapped, and three putativeσ70-type promoter sites were identified in thepegB,pegAandpegRpromoters. A promoter activity assay showed that thepegBpromoter was induced by PEG and oligomeric ethylene glycols, whereas thepegAandpegRpromoters were induced by PEG. Deletion analysis of thepegBpromoter indicated that the region containing the activator-binding motif of an AraC/XylS-type regulator was required for transcription of thepegBCDAEoperon. Gel retardation assays demonstrated the specific binding of PegR to thepegBpromoter. Transcriptional fusion studies ofpegRwithpegAandpegBpromoters suggested that PegR regulates the expression of thepegBCDAEoperon positively through its binding to thepegBpromoter, but PegR does not bind to thepegApromoter. Two specific binding proteins for thepegApromoter were purified and identified as a GalR-type regulator and an H2A histone fragment (histone-like protein, HU). The binding motif of a GalR/LacI-type regulator was found in thepegAandpegRpromoters. These results suggested the dual regulation of thepegBCDAEoperon through thepegBpromoter by an AraC-type regulator, PegR (PEG-independent), and through thepegAandpegRpromoters by a GalR/LacI-type regulator together with HU (PEG-dependent).
Collapse
Affiliation(s)
- Jittima Charoenpanich
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Akio Tani
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Naoko Moriwaki
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Kazuhide Kimbara
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Fusako Kawai
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
24
|
Ohta T, Kawabata T, Nishikawa K, Tani A, Kimbara K, Kawai F. Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, using three-dimensional molecular modeling-based kinetic characterization of mutants. Appl Environ Microbiol 2006; 72:4388-96. [PMID: 16751555 PMCID: PMC1489635 DOI: 10.1128/aem.02174-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.
Collapse
Affiliation(s)
- Takeshi Ohta
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Liu X, Tani A, Kimbara K, Kawai F. Metabolic pathway of xenoestrogenic short ethoxy chain-nonylphenol to nonylphenol by aerobic bacteria, Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90. Appl Microbiol Biotechnol 2006; 72:552-9. [PMID: 16528514 DOI: 10.1007/s00253-005-0288-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90 degrading short ethoxy (EO) chain-nonylphenol (NP) [NPEO(av2.0) containing NP mono- approximately tetraethoxylates (NP1EO approximately NP4EO); average 2.0 EO units] were isolated by enrichment cultures. Both strains grew on NP but not on octyl- and nonylphenol polyethoxylates (NPEOs) (average 10 EO units). Growth and degradation of NPEO(av2.0) was increased with increased concentrations of yeast extract (0.02-0.5%) in a culture medium. Culture supernatants of both strains grown on NPEO(av2.0) were analyzed by high-performance liquid chromatography, showing degradation of NP4EO-NP1EO. The metabolites from nonylphenol diethoxylate (NP2EO) by resting cells of both strains were identified by gas chromatography-mass spectrometry as nonylphenoxyethoxyacetic acid, NP1EO, nonylphenoxyacetic acid (NP1EC), and NP, while those from NP1EO were identified as NP1EC and NP. Cell-free extracts from strain AS08 grown on NPEO(av2.0) dehydrogenated NPEOs, NPEO(av2.0), NP2EO, NP1EO, and PEG 400, but the extracts were inactive toward di- approximately tetraethylene glycol. Aldehydes were formed in the reaction mixture of each substrate with cell-free extracts. From these results, the aerobic metabolic pathway for short EO chain-NP is proposed: A terminal alcohol group of the EO chain is oxidized to a carboxylic acid via an aldehyde, and then one EO unit is removed. This process is repeated until NP is produced.
Collapse
Affiliation(s)
- Xin Liu
- Laboratory of Applied Microbiology, Research Institute for Bioresources, Okayama University, Kurashiki, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | | | | | | |
Collapse
|
26
|
Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F. Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. MICROBIOLOGY-SGM 2005; 151:1255-1262. [PMID: 15817792 DOI: 10.1099/mic.0.27655-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxidized polyvinyl alcohol hydrolase (OPH) and polyvinyl alcohol dehydrogenase were found to be constitutively present in the periplasm of Sphingomonas sp. strain 113P3 (formerly Pseudomonas sp. 113P3). The OPH was purified to homogeneity with a yield of 40 % and a 5.9-fold increase in specific activity. The enzyme was a homodimer consisting of 35 kDa subunits. Its activity was inhibited by PMSF, Hg(2+) and Zn(2+). The enzyme hydrolysed oxidized polyvinyl alcohol (oxidized PVA) and p-nitrophenyl acetate (PNPA), but did not hydrolyse any of the mono- or diketones tested. K(m) and V(max) values for oxidized PVA and PNPA were 0.2 and 0.3 mM, and 0.1 and 3.4 micromol min(-1) mg(-1), respectively. The gene for OPH was cloned and sequenced. Sequencing analysis revealed that the open reading frame consisted of 1095 bp, corresponding to a protein of 364 amino acids residues, encoding a signal peptide and a mature protein of 34 and 330 amino acids residues, respectively. The presence of a serine-hydrolase motif (a lipase box; Gly-X-Ser-X-Gly) strongly suggested that the enzyme belongs to the serine-hydrolase family. The protein exhibited homology with OPH of the Pseudomonas sp. strain VM15C (63 % identity) and the polyhydroxybutyrate depolymerases from Mesorhizobium loti, Rhizobium sp. and Sinorhizobium meliloti (29-32 % identity). The oph gene was expressed in Escherichia coli under the control of the lac promoter. The recombinant protein had the same molecular mass and N-terminal amino acid sequence as the purified OPH from strain 113P3.
Collapse
Affiliation(s)
- Wilailak Klomklang
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Akio Tani
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Kazuhide Kimbara
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Rie Mamoto
- Faculty of Nutrition, Kobegakuin University, Kobe, Hyogo 651-2180, Japan
| | - Takashi Ueda
- Faculty of Nutrition, Kobegakuin University, Kobe, Hyogo 651-2180, Japan
| | - Masayuki Shimao
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Fusako Kawai
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
27
|
Ohta T, Tani A, Kimbara K, Kawai F. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 2005; 68:639-46. [PMID: 15726348 DOI: 10.1007/s00253-005-1936-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/30/2005] [Accepted: 02/03/2005] [Indexed: 12/01/2022]
Abstract
A gene (pegC) encoding aldehyde dehydrogenase (ALDH) was located 3.4 kb upstream of a gene encoding polyethylene glycol (PEG) dehydrogenase (pegA) in Sphingomonas macrogoltabidus strain 103. ALDH was expressed in Escherichia coli and purified on a Ni-nitrilotriacetic acid agarose column. The recombinant enzyme was a homotetramer consisting of four 46.1-kDa subunits. The alignment of the putative amino acid sequence of the cloned enzyme showed high similarity with a group of NAD(P)-dependent ALDHs (identity 36-52%); NAD-binding domains (Rossmann fold and four glycine residues) and catalytic residues (Glu225 and Cys259) were well conserved. The cofactor, which was extracted from the purified enzyme, was tightly bound to the enzyme and identified as NADP. The enzyme contained 0.94 mol NADP per subunit. The enzyme was activated by Ca(2+), but by no other metals; no metal (Zn, Fe, Mg, or Mn) was detected in the purified recombinant enzyme. Activity was inhibited by p-chloromercuric benzoate, and heavy metals such as Hg, Cu, Pb and Cd, indicating that a cysteine residue is involved in the activity. Enzyme activity was independent of N,N-dimethyl-p-nitrosoaniline as an electron acceptor. Trans-4-(N,N-dimethylamino)-cinnamaldehyde was not oxidized as a substrate, but the compound worked as an inhibitor for the enzyme, as did pyrazole. The enzyme acted on n-aldehydes C(2)-C(14)) and PEG-aldehydes. Thus the enzyme was concluded to be a novel Ca(2+)-activating nicotinoprotein (NADP-containing) PEG-aldehyde dehydrogenase involved in the degradation of PEG in S. macrogoltabidus strain 103.
Collapse
Affiliation(s)
- T Ohta
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan
| | | | | | | |
Collapse
|
28
|
Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 2004; 338:1-14. [PMID: 15302401 DOI: 10.1016/j.gene.2004.04.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 04/13/2004] [Accepted: 04/22/2004] [Indexed: 11/17/2022]
Abstract
Cellobiose dehydrogenases (CDHs) are extracellular hemoflavoenzymes that are thought to be involved in the degradation of two of the most abundant biopolymers in the biosphere, cellulose and lignin. To date, these enzymes, consisting of a cytochrome domain and a flavin domain, have been detected and sequenced exclusively in the kingdom of fungi. Independent phylogenetic analyses of two distinct domains of CDH genes reveal that they evolved in parallel as fused genes. Whereas the cytochrome domains are unique sequence motifs, the flavin domains clearly belong to the glucose-methanol-choline (GMC) oxidoreductase family--an evolution line of widespread flavoproteins extending from the Archae to higher eukaryotes. The most probable unrooted phylogenetic tree obtained from our analysis of 52 selected GMC members reveals five principal evolutionary branches: cellobiose dehydrogenase, cholesterol oxidase (COX), hydroxynitrile lyase, alcohol oxidase (AOX)/glucose oxidase (GOX)/choline dehydrogenase, and a branch of dehydrogenases with various specificities containing also an Archaeon open reading frame (ORF). Cellobiose dehydrogenases cluster with cholesterol oxidases and the clade of various specificities, whereas hydroxynitrile lyases are closely related to glucose oxidases, alcohol oxidases, and choline dehydrogenases. The results indicate that the evolutionary line from a primordial GMC flavoprotein to extant cellobiose dehydrogenases was augmented after an early acquisition of the cytochrome domain to form two distinct branches for basidiomycetes and ascomycetes. One ascomycetous evolutionary line of CDHs has acquired a carbohydrate-binding module (CBM) of type 1, the sequence of which is similar to that of corresponding domains in several glycosidases. This is the first attempt towards a comprehensive phylogenetic analysis of cellobiose dehydrogenases.
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | | | |
Collapse
|
29
|
Basta T, Keck A, Klein J, Stolz A. Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 2004; 186:3862-72. [PMID: 15175300 PMCID: PMC419928 DOI: 10.1128/jb.186.12.3862-3872.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A systematic survey for the presence of plasmids in 17 different xenobiotic-degrading Sphingomonas strains was performed. In almost all analyzed strains, two to five plasmids with sizes of about 50 to 500 kb were detected by using pulsed-field gel electrophoresis. A comparison of plasmid preparations untreated or treated with S1 nuclease suggested that, in general, Sphingomonas plasmids are circular. Hybridization experiments with labeled gene probes suggested that large plasmids are involved in the degradation of dibenzo-p-dioxin, dibenzofuran, and naphthalenesulfonates in S. wittichii RW1, Sphingomonas sp. HH69, and S. xenophaga BN6, respectively. The plasmids which are responsible for the degradation of naphthalene, biphenyl, and toluene by S. aromaticivorans F199 (pNL1) and of naphthalenesulfonates by S. xenophaga BN6 (pBN6) were site-specifically labeled with a kanamycin resistance cassette. The conjugative transfer of these labeled plasmids was attempted with various bacterial strains as putative recipient strains. Thus, a conjugative transfer of plasmid pBN6 from S. xenophaga BN6 to a cured mutant of strain BN6 and to Sphingomonas sp. SS3 was observed. The conjugation experiments with plasmid pNL1 suggested a broader host range of this plasmid, because it was transferred without any obvious structural changes to S. yanoikuyae B1, Sphingomonas sp. SS3, and S. herbicidovorans. In contrast, major plasmid rearrangements were observed in the transconjugants after the transfer of plasmid pNL1 to Sphingomonas sp. HH69 and of pBN6 to Sphingomonas sp. SS3. No indications for the transfer of a Sphingomonas plasmid to bacteria outside of the Sphingomonadaceae were obtained.
Collapse
Affiliation(s)
- Tamara Basta
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
30
|
Wu L, Zaborina O, Zaborin A, Chang EB, Musch M, Holbrook C, Shapiro J, Turner JR, Wu G, Lee KYC, Alverdy JC. High-molecular-weight polyethylene glycol prevents lethal sepsis due to intestinal Pseudomonas aeruginosa. Gastroenterology 2004; 126:488-98. [PMID: 14762786 DOI: 10.1053/j.gastro.2003.11.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS During stress, erosion of protective intestinal mucus occurs in association with adherence to and disruption of the intestinal epithelial barrier by invading opportunistic microbial pathogens. The aims of this study were to test the ability of a high-molecular-weight polyethylene glycol compound, polyethylene glycol 15-20, to protect the intestinal epithelium against microbial invasion during stress. METHODS The ability of polyethylene glycol 15-20 to protect the intestinal epithelium against the opportunistic pathogen Pseudomonas aeruginosa was tested in cultured Caco-2 cells. Bacterial virulence gene expression, bacterial adherence, and transepithelial electrical resistance were examined in response to apical inoculation of P. aeruginosa onto Caco-2 cells. Complementary in vivo studies were performed in a murine model of lethal sepsis due to intestinal P. aeruginosa in which surgical stress (30% hepatectomy) was combined with direct inoculation of P. aeruginosa into the cecum. RESULTS High-molecular-weight polyethylene glycol (polyethylene glycol 15-20) conferred complete protection against the barrier-dysregulating effects of P. aeruginosa in Caco-2 cells. Intestinal application of polyethylene glycol 15-20 in stressed mice protected against the lethal effects of intestinal P. aeruginosa. Mechanisms of this effect seem to involve the ability of polyethylene glycol 15-20 to distance P. aeruginosa from the intestinal epithelium and render it completely insensate to key environmental stimuli that activate its virulence. CONCLUSIONS High-molecular-weight polyethylene glycol has the potential to function as a surrogate mucin within the intestinal tract of a stressed host by inhibiting key interactive events between colonizing microbes and their epithelial cell targets.
Collapse
Affiliation(s)
- Licheng Wu
- Department of Surgery, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tachibana S, Kuba N, Kawai F, Duine JA, Yasuda M. Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiol Lett 2003; 218:345-9. [PMID: 12586415 DOI: 10.1111/j.1574-6968.2003.tb11540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous work has shown that when the bacterium Stenotrophomonas maltophilia is grown on polypropylene glycol, different dye-linked polypropylene glycol dehydrogenase (PPG-DH) activities are induced during growth. Here the purification and characterization of the dehydrogenase activity induced in the stationary phase, and present in the periplasmic space, is described. The homogeneous enzyme preparation obtained consists of a homodimeric protein with a molecular mass of about 123 kDa and an isoelectric point of 5.9. The cofactor of the enzyme appeared to be pyrroloquinoline quinone (PQQ), no heme c was present, and holo-enzyme contained two PQQ molecules per enzyme molecule. In these respects, PPG-DH described here is similar to already known quinoprotein alcohol dehydrogenases, but in other respects, it is different. Therefore, it is suggested that PPG-DH could be a new type of quinoprotein alcohol dehydrogenase. Based on its strong preference for polyols, PPG-DH seems well fitted to carry out the first step in the degradation of PPGs, synthetic polymers containing a variety of hydroxyl groups.
Collapse
Affiliation(s)
- Shinjiro Tachibana
- Department of Bioscience, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, 903-0213, Okinawa, Japan
| | | | | | | | | |
Collapse
|