1
|
Shen L, Peraglie C, Podlesainski D, Stracke C, Ojha RS, Caliebe F, Kaiser M, Forchhammer K, Hagemann M, Gutekunst K, Snoep JL, Bräsen C, Siebers B. Structure function analysis of ADP-dependent cyanobacterial phosphofructokinase reveals new phylogenetic grouping in the PFK-A family. J Biol Chem 2024; 300:107868. [PMID: 39393572 DOI: 10.1016/j.jbc.2024.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Depending on the light conditions, photosynthetic organisms switch between carbohydrate synthesis or breakdown, for which the reversibility of carbohydrate metabolism, including glycolysis, is essential. Kinetic regulation of phosphofructokinase (PFK), a key-control point in glycolysis, was studied in the cyanobacterium Synechocystis sp. PCC 6803. The two PFK iso-enzymes (PFK- A1, PFK-A2), were found to use ADP instead of ATP, and have similar kinetic characteristics, but differ in their allosteric regulation. PFK-A1 is inhibited by 3-phosphoglycerate, a product of the Calvin-Benson-Bassham cycle, while PFK-A2 is inhibited by ATP, which is provided by photosynthesis. This regulation enables cyanobacteria to switch PFK off in light, and on in darkness. ADP dependence has not been reported before for the PFK-A enzyme family and was thought to be restricted to the PFK-B ribokinase superfamily. Phosphate donor specificity within the PFK-A family could be related to specific binding motifs in ATP-, ADP-, and PPi-dependent PFK-As. Phylogenetic analysis revealed a distribution of ADP-PFK-As in cyanobacteria and in a few alphaproteobacteria, which was confirmed in enzymatic studies.
Collapse
Affiliation(s)
- Lu Shen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmen Peraglie
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - David Podlesainski
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ravi Shankar Ojha
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Frauke Caliebe
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kirstin Gutekunst
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Jacky L Snoep
- Biochemistry, University of Stellenbosch, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Perby LK, Richter S, Weber K, Hieber AJ, Hess N, Crocoll C, Mogensen HK, Pribil M, Burow M, Nielsen TH, Mustroph A. Cytosolic phosphofructokinases are important for sugar homeostasis in leaves of Arabidopsis thaliana. ANNALS OF BOTANY 2022; 129:37-52. [PMID: 34549262 PMCID: PMC8752397 DOI: 10.1093/aob/mcab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focuses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. METHODS We isolated homozygous knockout individual mutants (pfk1, pfk3, pfk6 and pfk7) and two double mutants (pfk1/7 and pfk3/6), and characterized their growth and metabolic phenotypes. KEY RESULTS In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and showed a clear visual and metabolic phenotype with reduced shoot growth, early flowering and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. CONCLUSIONS We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently in source-sink relationships in A. thaliana, while PFK3 and PFK6 only play a minor role under normal growth conditions.
Collapse
Affiliation(s)
- Laura Kathrine Perby
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Simon Richter
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany
| | - Konrad Weber
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Alina Johanna Hieber
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany
| | - Natalia Hess
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany
| | - Christoph Crocoll
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Helle Kildal Mogensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tom Hamborg Nielsen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany
- For correspondence. E-mail
| |
Collapse
|
3
|
Chiba Y, Miyakawa T, Shimane Y, Takai K, Tanokura M, Nozaki T. Structural comparisons of phosphoenolpyruvate carboxykinases reveal the evolutionary trajectories of these phosphodiester energy conversion enzymes. J Biol Chem 2019; 294:19269-19278. [PMID: 31662435 DOI: 10.1074/jbc.ra119.010920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Inorganic pyrophosphate (PPi) consists of two phosphate molecules and can act as an energy and phosphate donor in cellular reactions, similar to ATP. Several kinases use PPi as a substrate, and these kinases have recently been suggested to have evolved from ATP-dependent functional homologs, which have significant amino acid sequence similarity to PPi-utilizing enzymes. In contrast, phosphoenolpyruvate carboxykinase (PEPCK) can be divided into three types according to the phosphate donor (ATP, GTP, or PPi), and the amino acid sequence similarity of these PEPCKs is too low to confirm that they share a common ancestor. Here we solved the crystal structure of a PPi-PEPCK homolog from the bacterium Actinomyces israelii at 2.6 Å resolution and compared it with previously reported structures from ATP- and GTP-specific PEPCKs to assess the degrees of similarities and divergences among these PEPCKs. These comparisons revealed that they share a tertiary structure with significant value and that amino acid residues directly contributing to substrate recognition, except for those that recognize purine moieties, are conserved. Furthermore, the order of secondary structural elements between PPi-, ATP-, and GTP-specific PEPCKs was strictly conserved. The structure-based comparisons of the three PEPCK types provide key insights into the structural basis of PPi specificity and suggest that all of these PEPCKs are derived from a common ancestor.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuhiro Shimane
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Ken Takai
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
|
5
|
Taillefer M, Sparling R. Glycolysis as the Central Core of Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:55-77. [PMID: 26907549 DOI: 10.1007/10_2015_5003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increasing concerns of greenhouse gas emissions have increased the interest in dark fermentation as a means of productions for industrial chemicals, especially from renewable cellulosic biomass. However, the metabolism, including glycolysis, of many candidate organisms for cellulosic biomass conversion through consolidated bioprocessing is still poorly understood and the genomes have only recently been sequenced. Because a variety of industrial chemicals are produced directly from sugar metabolism, the careful understanding of glycolysis from a genomic and biochemical point of view is essential in the development of strategies for increasing product yields and therefore increasing industrial potential. The current review discusses the different pathways available for glycolysis along with unexpected variations from traditional models, especially in the utilization of alternate energy intermediates (GTP, pyrophosphate). This reinforces the need for a careful description of interactions between energy metabolites and glycolysis enzymes for understanding carbon and electron flux regulation.
Collapse
Affiliation(s)
- M Taillefer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - R Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
6
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
7
|
Chiba Y, Kamikawa R, Nakada-Tsukui K, Saito-Nakano Y, Nozaki T. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria. J Biol Chem 2015; 290:23960-70. [PMID: 26269598 DOI: 10.1074/jbc.m115.672907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/15/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.
Collapse
Affiliation(s)
- Yoko Chiba
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Ryoma Kamikawa
- the Graduate School of Environmental Studies, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Kyoto, Kyoto 606-8501, Japan
| | - Kumiko Nakada-Tsukui
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Yumiko Saito-Nakano
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Tomoyoshi Nozaki
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| |
Collapse
|
8
|
Najeeb U, Bange MP, Tan DKY, Atwell BJ. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AOB PLANTS 2015; 7:plv080. [PMID: 26194168 PMCID: PMC4565423 DOI: 10.1093/aobpla/plv080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton. Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species. The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adaptations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity. We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging. We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Management practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes.
Collapse
Affiliation(s)
- Ullah Najeeb
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Michael P Bange
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia CSIRO Agriculture Flagship, Australian Cotton Research Institute, Narrabri, NSW 2390, Australia
| | - Daniel K Y Tan
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Brian J Atwell
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Pedruzzi I, Rivoire C, Auchincloss AH, Coudert E, Keller G, de Castro E, Baratin D, Cuche BA, Bougueleret L, Poux S, Redaschi N, Xenarios I, Bridge A. HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res 2014; 43:D1064-70. [PMID: 25348399 PMCID: PMC4383873 DOI: 10.1093/nar/gku1002] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.
Collapse
Affiliation(s)
- Ivo Pedruzzi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Catherine Rivoire
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Andrea H Auchincloss
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Elisabeth Coudert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Guillaume Keller
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Edouard de Castro
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Delphine Baratin
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Béatrice A Cuche
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lydie Bougueleret
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland Department of Biochemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Rozova ON, Khmelenina VN, Trotsenko YA. Characterization of recombinant PPi-dependent 6-phosphofructokinases from Methylosinus trichosporium OB3b and Methylobacterium nodulans ORS 2060. BIOCHEMISTRY (MOSCOW) 2013; 77:288-95. [PMID: 22803946 DOI: 10.1134/s0006297912030078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The properties of the purified recombinant PPi-dependent 6-phosphofructokinases (PPi-PFKs) from the methanotroph Methylosinus trichosporium OB3b and rhizospheric phytosymbiont Methylobacterium nodulans ORS 2060 were determined. The dependence of activities of PPi-PFK-His(6)-tag from Ms. trichosporium OB3b (6 × 45 kDa) and PPi-PFK from Mb. nodulans ORS 2060 (4 × 43 kDa) on the concentrations of substrates of forward and reverse reactions conformed to Michaelis-Menten kinetics. Besides fructose-6-phosphate, the enzymes also phosphorylated sedoheptulose-7-phosphate. ADP or AMP (1 mM each) inhibited activity of the Ms. trichosporium PPi-PFK but did not affect the activity of the Mb. nodulans enzyme. Preference of PPi-PFKs to fructose-1,6-bisphosphate implied a predominant function of the enzymes in hexose phosphate synthesis in these bacteria. PPi-PFKs from the methylotrophs have low similarity of translated amino acid sequences (17% identity) and belong to different phylogenetic subgroups of type II 6-phosphofructokinases. The relationship of PPi-PFKs with microaerophilic character of Ms. trichosporium OB3b and adaptation of Mb. nodulans ORS 2060 to anaerobic phase of phytosymbiosis are discussed.
Collapse
Affiliation(s)
- O N Rozova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
11
|
Characterization of the recombinant pyrophosphate-dependent 6-phosphofructokinases from Methylomicrobium alcaliphilum 20Z and Methylococcus capsulatus Bath. Methods Enzymol 2011. [PMID: 21419911 DOI: 10.1016/b978-0-12-386905-0.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The Embden-Meyerhof-Parnas (EMP) glycolysis is the starting point of the core carbon metabolism. Aerobic methanotrophs possessing activity of the pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) instead of the classical glycolytic enzyme ATP-dependent 6-phosphofructokinase (ATP-PFK) are promising model bacteria for elucidation of the role of inorganic pyrophosphate (PPi) and PPi-dependent glycolysis in microorganisms. Characterization of the His(6)-tagged PPi-PFKs from two methanotrophs, halotolerant alkaliphilic Methylomicrobium alcaliphilum 20Z and thermotolerant Methylococcus capsulatus Bath, showed differential capabilities of PPi-PFKs to phosphorylate sedoheptulose-7-phosphate and this property correlated well with the metabolic patterns of these bacteria assimilating C(1) substrate either via the ribulosemonophosphate (RuMP) pathway (Mm. alcaliphilum 20Z) or simultaneously via the RuMP and serine pathways and the Calvin cycle (Mc. capsulatus Bath). Analysis of the genomic draft of Mm. alcaliphilum 20Z (https://www.genoscope.cns.fr/agc/mage) has provided in silico evidence for the existence of a PPi-dependent pyruvate-phosphate dikinase (PPDK). Expression of the ppdk gene at oxygen limitation along with the presence of PPi-PFK in Mm. alcaliphilum 20Z implied functioning of PPi-dependent glycolysis and PPi recycling under conditions when oxidative phosphorylation is hampered.
Collapse
|
12
|
Rozova ON, Khmelenina VN, Vuilleumier S, Trotsenko YA. Characterization of recombinant pyrophosphate-dependent 6-phosphofructokinase from halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Res Microbiol 2010; 161:861-8. [PMID: 20868748 DOI: 10.1016/j.resmic.2010.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
Pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) was obtained as His₆-tagged protein by cloning of the pfp gene from the aerobic obligate methanotroph Methylomicrobium alcaliphilum 20Z and characterized. The recombinant PPi-PFK (4×45 kDa) was highly active, non-allosteric and stringently specific to pyrophosphate as the phosphoryl donor. The enzyme was more specific for the reverse reaction substrate fructose-1,6-bisphosphate (K(m) 0.095 mM, V(max) 805 U/mg of protein) than for the forward reaction substrate fructose-6-phosphate (K(m) 0.64 mM, V(max) 577 U/mg of protein). It also phosphorylated sedoheptulose-7-phosphate with much lower efficiency (K(m) 1.01 mM, V(max) 0.118 U/mg of protein). The kinetic properties of the M. alcaliphilum PP(i)-PFK were analyzed and compared with those of PP(i)-PFKs from other methanotrophs. The PP(i)-PFK from M. alcaliphilum shows highest sequence identity to PPi-PFK from obligate mesophilic methanotroph Methylomonas methanica (89%), and only low identity to the enzyme from thermotolerant Methylococcus capsulatus Bath (16%). This extensive sequence divergence of PPi-PFKs correlated with differential ability to phosphorylate sedoheptulose-7-phosphate and with the metabolic patterns of these bacteria assimilating C₁ substrate either via the ribulose monophoshate (RuMP) cycle or simultaneously via the RuMP and the Calvin cycles. Based on enzymic and genomic data, the involvement of PPi-PFK in pyrophosphate-dependent glycolysis in M. alcaliphilum 20Z was fist proposed.
Collapse
Affiliation(s)
- Olga N Rozova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Prospect Nauki 5, Pushchino 142290, Moscow, Russia
| | | | | | | |
Collapse
|
13
|
Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 2009; 19:613-9. [PMID: 19897356 DOI: 10.1016/j.gde.2009.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022]
Abstract
Horizontal gene transfer (HGT) is known to have contributed to the content of eukaryotic genomes, but the direct effects of HGT on eukaryotic evolution are more obscure because many of the best supported cases involve a new gene replacing a functionally similar homologue. Here, several cases of HGT conferring a plausible adaptive advantage are reviewed to examine emerging trends in such transfer events. In particular, HGT seems to play an important role in adaptation to parasitism and pathogenesis, as well as to other specific environmental conditions such as anaerobiosis or nitrogen and iron limitation in marine environments. Most, but not all, of the functionally significant HGT to eukaryotes comes from bacteria, in part due to chance, but probably also because bacteria have greater metabolic diversity to offer.
Collapse
|
14
|
Baart GJE, Langenhof M, van de Waterbeemd B, Hamstra HJ, Zomer B, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Expression of phosphofructokinase in Neisseria meningitidis. MICROBIOLOGY-SGM 2009; 156:530-542. [PMID: 19797358 DOI: 10.1099/mic.0.031641-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis serogroup B is a pathogen that can infect diverse sites within the human host. According to the N. meningitidis genomic information and experimental observations, glucose can be completely catabolized through the Entner-Doudoroff pathway and the pentose phosphate pathway. The Embden-Meyerhof-Parnas pathway is not functional, because the gene for phosphofructokinase (PFK) is not present. The phylogenetic distribution of PFK indicates that in most obligate aerobic organisms, PFK is lacking. We conclude that this is because of the limited contribution of PFK to the energy supply in aerobically grown organisms in comparison with the energy generated through oxidative phosphorylation. Under anaerobic or microaerobic conditions, the available energy is limiting, and PFK provides an advantage, which explains the presence of PFK in many (facultatively) anaerobic organisms. In accordance with this, in silico flux balance analysis predicted an increase of biomass yield as a result of PFK expression. However, analysis of a genetically engineered N. meningitidis strain that expressed a heterologous PFK showed that the yield of biomass on substrate decreased in comparison with a pfkA-deficient control strain, which was associated mainly with an increase in CO(2) production, whereas production of by-products was similar in the two strains. This might explain why the pfkA gene has not been obtained by horizontal gene transfer, since it is initially unfavourable for biomass yield. No large effects related to heterologous expression of pfkA were observed in the transcriptome. Although our results suggest that introduction of PFK does not contribute to a more efficient strain in terms of biomass yield, achievement of a robust, optimal metabolic network that enables a higher growth rate or a higher biomass yield might be possible after adaptive evolution of the strain, which remains to be investigated.
Collapse
Affiliation(s)
- Gino J E Baart
- Wageningen University, Food and Bioprocess Engineering Group, PO Box 8129, 6700 EV Wageningen, The Netherlands.,Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Marc Langenhof
- Wageningen University, Food and Bioprocess Engineering Group, PO Box 8129, 6700 EV Wageningen, The Netherlands.,Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Bas van de Waterbeemd
- Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Bert Zomer
- Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Leo A van der Pol
- Netherlands Vaccine Institute (NVI), Unit Research and Development, PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - E C Beuvery
- PAT consultancy, Kerkstraat 66, 4132 BG Vianen, The Netherlands
| | - Johannes Tramper
- Wageningen University, Food and Bioprocess Engineering Group, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Dirk E Martens
- Wageningen University, Food and Bioprocess Engineering Group, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
15
|
Stein M, Gabdoulline RR, Wade RC. Cross-species analysis of the glycolytic pathway by comparison of molecular interaction fields. MOLECULAR BIOSYSTEMS 2009; 6:152-64. [PMID: 20024078 DOI: 10.1039/b912398a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrostatic potential of an enzyme is a key determinant of its substrate interactions and catalytic turnover. Here we invoke comparative analysis of protein electrostatic potentials, along with sequence and structural analysis, to classify and characterize all the enzymes in an entire pathway across a set of different organisms. The electrostatic potentials of the enzymes from the glycolytic pathway of 11 eukaryotes were analyzed by qPIPSA (quantitative protein interaction property similarity analysis). The comparison allows the functional assignment of neuron-specific isoforms of triosephosphate isomerase from zebrafish, the identification of unusual protein surface interaction properties of the mosquito glucose-6-phosphate isomerase and the functional annotation of ATP-dependent phosphofructokinases and cofactor-dependent phosphoglycerate mutases from plants. We here show that plants possess two parallel pathways to convert glucose. One is similar to glycolysis in humans, the other is specialized to let plants adapt to their environmental conditions. We use differences in electrostatic potentials to estimate kinetic parameters for the triosephosphate isomerases from nine species for which published parameters are not available. Along the core glycolytic pathway, phosphoglycerate mutase displays the most conserved electrostatic potential. The largest cross-species variations are found for glucose-6-phosphate isomerase, enolase and fructose-1,6-bisphosphate aldolase. The extent of conservation of electrostatic potentials along the pathway is consistent with the absence of a single rate-limiting step in glycolysis.
Collapse
Affiliation(s)
- Matthias Stein
- EML Research gGmbH, Molecular and Cellular Modelling, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Mony BM, Mehta M, Jarori GK, Sharma S. Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. Int J Parasitol 2009; 39:1441-53. [PMID: 19505469 DOI: 10.1016/j.ijpara.2009.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/23/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022]
Abstract
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK beta and alpha subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene beta and alpha regions were cloned and expressed as His(6)- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9beta possessed catalytic activity. Monoclonal antibodies against the recombinant beta protein confirmed that the PfPFK9 protein has beta and alpha domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.
Collapse
Affiliation(s)
- Binny M Mony
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India.
| | | | | | | |
Collapse
|
17
|
Lal S, Cheema S, Kalia VC. Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 2008; 48:228-42. [PMID: 23100716 PMCID: PMC3450171 DOI: 10.1007/s12088-008-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022] Open
Abstract
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.
Collapse
Affiliation(s)
- Sadhana Lal
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Simrita Cheema
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| |
Collapse
|
18
|
Huang S, Colmer TD, Millar AH. Does anoxia tolerance involve altering the energy currency towards PPi? TRENDS IN PLANT SCIENCE 2008; 13:221-7. [PMID: 18439868 DOI: 10.1016/j.tplants.2008.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 05/09/2023]
Abstract
Oxygen deficit is an important abiotic stress influencing plants, because this condition results in an 'energy crisis'. Most species only survive short periods of anoxia, but several wetland species tolerate prolonged anoxia. Transcriptomic and proteomic studies, using anoxia-tolerant rice and anoxia-intolerant Arabidopsis, have provided evidence for the selective adoption of pyrophosphate (PPi) over ATP as high-energy donor molecules, which may contribute to anoxia tolerance. The use of PPi in some tolerant plant species is similar to that observed in many anaerobic prokaryotes. Investigations are being performed to better understand the origin and regulation of reversible PPi-dependent glycolytic enzymes such as cytosolic pyruvate phosphate dikinase, as well as PPi-consuming enzymes, which are engaged during the anoxic energy crisis. This will be crucial in unraveling this currency switch and its contribution to anoxia tolerance.
Collapse
Affiliation(s)
- Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Life and Physical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | | | | |
Collapse
|
19
|
Mustroph A, Sonnewald U, Biemelt S. Characterisation of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana. FEBS Lett 2007; 581:2401-10. [PMID: 17485088 DOI: 10.1016/j.febslet.2007.04.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 11/18/2022]
Abstract
Plants possess two different types of phosphofructokinases, an ATP-dependent (PFK) and a pyrophosphate-dependent form (PFP). While plant PFPs have been investigated in detail, cDNA clones coding for PFK have not been identified in Arabidopsis thaliana. Searching the A. thaliana genome revealed 11 putative members of a phosphofructokinase gene family. Among those, four sequences showed high homology to the alpha- or beta-subunits of plant PFPs. Seven cDNAs resulted in elevated PFK, but not PFP activity after transient expression in tobacco leaves suggesting that they encode Arabidopsis PFKs. RT-PCR revealed different tissue-specific expression of the individual forms. Furthermore, analysis of GFP fusion proteins indicated their presence in different sub-cellular compartments.
Collapse
Affiliation(s)
- Angelika Mustroph
- Humboldt-University Berlin, Institute of Biology, AG Plant Physiology, Philippstrasse 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
20
|
Tanneberger K, Kirchberger J, Bär J, Schellenberger W, Rothemund S, Kamprad M, Otto H, Schöneberg T, Edelmann A. A novel form of 6-phosphofructokinase. Identification and functional relevance of a third type of subunit in Pichia pastoris. J Biol Chem 2007; 282:23687-97. [PMID: 17522059 DOI: 10.1074/jbc.m611547200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classically, 6-phosphofructokinases are homo- and hetero-oligomeric enzymes consisting of alpha subunits and alpha/beta subunits, respectively. Herein, we describe a new form of 6-phosphofructokinase (Pfk) present in several Pichia species, which is composed of three different types of subunit, alpha, beta, and gamma. The sequence of the gamma subunit shows no similarity to classic Pfk subunits or to other known protein sequences. In-depth structural and functional studies revealed that the gamma subunit is a constitutive component of Pfk from Pichia pastoris (PpPfk). Analyses of the purified PpPfk suggest a heterododecameric assembly from the three different subunits. Accordingly, it is the largest and most complex Pfk identified yet. Although, the gamma subunit is not required for enzymatic activity, the gamma subunit-deficient mutant displays a decreased growth on nutrient limitation and reduced cell flocculation when compared with the P. pastoris wild-type strain. Subsequent characterization of purified Pfks from wild-type and gamma subunit-deficient strains revealed that the allosteric regulation of the PpPfk by ATP, fructose 2,6-bisphosphate, and AMP is fine-tuned by the gamma subunit. Therefore, we suggest that the gamma subunit contributes to adaptation of P. pastoris to energy resources.
Collapse
Affiliation(s)
- Katrin Tanneberger
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Winkler C, Delvos B, Martin W, Henze K. Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. FEBS J 2006; 274:429-38. [PMID: 17229148 DOI: 10.1111/j.1742-4658.2006.05590.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite its importance in plant metabolism, no sequences of higher plant ATP-dependent phosphofructokinase (EC 2.7.1.11) are annotated in the databases. We have purified the enzyme from spinach leaves 309-fold to electrophoretic homogeneity. The purified enzyme was a homotetramer of approximately 52 kDa subunits with a specific activity of 600 mU x mg(-1) and a Km value for ATP of 81 microm. The purified enzyme was not activated by phosphate, but slightly inhibited instead, suggesting that it was the chloroplast isoform. The inclusion of adenosine 5'-(beta,gamma-imido)triphosphate was conducive to enzyme activity during the purification protocol. The sequences of eight tryptic peptides from the final protein preparation, which did not utilize pyrophosphate as a phosphoryl donor, were determined and an exactly corresponding cDNA was cloned. The sequence of enzymatically active spinach ATP-dependent phosphofructokinase suggests that a large family of genomics-derived higher plant sequences currently annotated in the databases as putative pyrophosphate-dependent phosphofructokinases according to sequence similarity is misannotated with respect to the cosubstrate.
Collapse
|
22
|
Stechmann A, Baumgartner M, Silberman JD, Roger AJ. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evol Biol 2006; 6:101. [PMID: 17123440 PMCID: PMC1665464 DOI: 10.1186/1471-2148-6-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/23/2006] [Indexed: 11/29/2022] Open
Abstract
Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST) survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP) to pyruvate (or the reverse reaction) as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral outcomes of a gene transfer 'ratchet' from food or endosymbiotic organisms or a combination of both processes.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| | - Manuela Baumgartner
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstraße 67, D-80638 München, Germany
| | - Jeffrey D Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Canadian Institute for Advanced Research, Evolutionary Biology Program, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| |
Collapse
|
23
|
Martinez-Oyanedel J, McNae IW, Nowicki MW, Keillor JW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. The first crystal structure of phosphofructokinase from a eukaryote: Trypanosoma brucei. J Mol Biol 2006; 366:1185-98. [PMID: 17207816 DOI: 10.1016/j.jmb.2006.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022]
Abstract
The crystal structure of the ATP-dependent phosphofructokinase (PFK) from Trypanosoma brucei provides the first detailed description of a eukaryotic PFK, and enables comparisons to be made with the crystal structures of bacterial ATP-dependent and PPi-dependent PFKs. The structure reveals that two insertions (the 17-20 and 329-348 loops) that are characteristic of trypanosomatid PFKs, but absent from bacterial and mammalian ATP-dependent PFKs, are located within and adjacent to the active site, and are in positions to play important roles in the enzyme's mechanism. The 90 residue N-terminal extension forms a novel domain that includes an "embracing arm" across the subunit boundary to the symmetry-related subunit in the tetrameric enzyme. Comparisons with the PPi-dependent PFK from Borrelia burgdorferi show that several features thought to be characteristic of PPi-dependent PFKs are present in the trypanosome ATP-dependent PFK. These two enzymes are generally more similar to each other than to the bacterial or mammalian ATP-dependent PFKs. However, there are critical differences at the active site of PPi-dependent PFKs that are sufficient to prevent the binding of ATP. This crystal structure of a eukaryotic PFK has enabled us to propose a detailed model of human muscle PFK that shows active site and other differences that offer opportunities for structure-based drug discovery for the treatment of sleeping sickness and other diseases caused by the trypanosomatid family of protozoan parasites.
Collapse
Affiliation(s)
- José Martinez-Oyanedel
- Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, Scotland
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
25
|
Slamovits CH, Keeling PJ. Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. EUKARYOTIC CELL 2006; 5:148-54. [PMID: 16400177 PMCID: PMC1360263 DOI: 10.1128/ec.5.1.148-154.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In pyrophosphate-dependent glycolysis, the ATP/ADP-dependent enzymes phosphofructokinase (PFK) and pyruvate kinase are replaced by the pyrophosphate-dependent PFK and pyruvate phosphate dikinase (PPDK), respectively. This variant of glycolysis is widespread among bacteria, but it also occurs in a few parasitic anaerobic eukaryotes such as Giardia and Entamoeba spp. We sequenced two genes for PPDK from the amitochondriate oxymonad Streblomastix strix and found evidence for PPDK in Trichomonas vaginalis and other parabasalia, where this enzyme was thought to be absent. The Streblomastix and Giardia genes may be related to one another, but those of Entamoeba and perhaps Trichomonas are distinct and more closely related to bacterial homologues. These findings suggest that pyrophosphate-dependent glycolysis is more widespread in eukaryotes than previously thought, enzymes from the pathway coexists with ATP-dependent more often than previously thought and may be spread by lateral transfer of genes for pyrophosphate-dependent enzymes from bacteria.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
26
|
Bapteste E, Moreira D, Philippe H. Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene 2004; 318:185-91. [PMID: 14585511 DOI: 10.1016/s0378-1119(03)00797-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous work on the evolution of the phosphofructokinase (PFK) has shown that this key regulatory enzyme of glycolysis has undergone an intricate evolutionary history. Here, we have used a comprehensive data set to address the taxonomic distribution of the different types of PFK (ATP-dependent and PPi-dependent ones) and to estimate the frequency of horizontal gene transfer (HGT) events. Numerous HGT events appear to have occurred. In addition, we focused on the analysis of sites 104 and 124 (usually Gly(104)+Gly(124) or Asp(104)+Lys(124)), known to be involved in catalysis (J. Biol. Chem. 275 (2000) 35677). It revealed the existence of numerous sequences from distantly related species carrying atypical combinations of amino acids. Several adaptive changes of phospho-donors, probably requiring a single mutation at position 104, have likely occurred independently in many lineages. The analysis of this gene suggests the existence of a high rate of both HGT and substitution in its active sites. These rampant HGT events and flexibility in phospho-donor use illustrate the importance of tinkering in molecular evolution.
Collapse
Affiliation(s)
- Eric Bapteste
- Equipe Phylogénie, Bioinformatique et Génome, UMR CNRS 7622, Université Pierre et Marie Curie, 9 quai St. Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
27
|
Hannaert V, Bringaud F, Opperdoes FR, Michels PAM. Evolution of energy metabolism and its compartmentation in Kinetoplastida. KINETOPLASTID BIOLOGY AND DISEASE 2003; 2:11. [PMID: 14613499 PMCID: PMC317351 DOI: 10.1186/1475-9292-2-11] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 10/28/2003] [Indexed: 04/27/2023]
Abstract
Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties.In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups.Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and hydrogenosomes of extant eukaryotes. Furthermore, indications are presented that Kinetoplastida may have acquired other enzymes of energy and carbohydrate metabolism by various lateral gene transfer events different from those that involved the algal- and alpha-proteobacterial-like endosymbionts responsible for the respective formation of the glycosomes and mitochondria.
Collapse
Affiliation(s)
- Véronique Hannaert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Frédéric Bringaud
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen, Bordeaux II, UMR-CNRS 5016, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Fred R Opperdoes
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Paul AM Michels
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| |
Collapse
|
28
|
Wu G, Müller M. Glycogen Phosphorylase Sequences from the Amitochondriate Protists, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica and Giardia intestinalis1. J Eukaryot Microbiol 2003; 50:366-72. [PMID: 14563176 DOI: 10.1111/j.1550-7408.2003.tb00151.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycogen phosphorylase genes or messages from four amitochondriate eukaryotes, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica (two genes) and Giardia intestinalis, have been isolated and sequenced. The sequences of the amitochondriate protist enzymes appear to share a most recent common ancestor. The clade containing these sequences is closest to that of another protist, the slime mold (Dictyostelium discoideum), and is more closely related to fungal and plant phosphorylases than to mammalian and eubacterial homologs. Structure-based amino acid alignment shows conservation of the residues and domains involved in catalysis and allosteric regulation by glucose 6-phosphate but high divergence at domains involved in phosphorylation-dependent regulation and AMP binding in fungi and animals. Protist phosphorylases, as their prokaryotic and plant counterparts, are probably not regulated by phosphorylation.
Collapse
Affiliation(s)
- Gang Wu
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
29
|
López C, Chevalier N, Hannaert V, Rigden DJ, Michels PAM, Ramirez JL. Leishmania donovani phosphofructokinase. Gene characterization, biochemical properties and structure-modeling studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3978-89. [PMID: 12180974 DOI: 10.1046/j.1432-1033.2002.03086.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The characterization of the gene encoding Leishmania donovani phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported. L. donovani has a single PFK gene copy per haploid genome that encodes a polypeptide with a deduced molecular mass of 53 988 and a pI of 9.26. The predicted amino acid sequence contains a C-terminal tripeptide that conforms to an established signal for glycosome targeting. L. donovani PFK showed most sequence similarity to inorganic pyrophosphate (PPi)-dependent PFKs, despite being ATP-dependent. It thereby resembles PFKs from other Kinetoplastida such as Trypanosoma brucei, Trypanoplasma borreli (characterized in this study), and a PFK found in Entamoeba histolytica. It exhibited hyperbolic kinetics with respect to ATP whereas the binding of the other substrate, fructose 6-phosphate, showed slight positive cooperativity. PPi, even at high concentrations, did not have any effect. AMP acted as an activator of PFK, shifting its kinetics for fructose 6-phosphate from slightly sigmoid to hyperbolic, and increasing considerably the affinity for this substrate, whereas GDP did not have any effect. Modelling studies and site-directed mutagenesis were employed to shed light on the structural basis for the AMP effector specificity and on ATP/PPi specificity among PFKs.
Collapse
Affiliation(s)
- Claudia López
- Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|