1
|
Li G, Yao Y. TorR/TorS Two-Component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli. Gene 2022; 821:146295. [PMID: 35181503 DOI: 10.1016/j.gene.2022.146295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/26/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023]
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle. Acid resistance is an indispensable mechanism that allows neutralophilic bacteria, such as E. coli, to survive in the gastrointestinal tract. Escherichia coli acid tolerance has been extensively studied over the past decades, and most studies have focused on mechanisms of gene regulation. Bacterial two-component signal transduction systems sense and respond to external environmental changes through regulating genes expression. However, there has been little research on the mechanism of the TorR/TorS system in acid resistance, and how TorR/TorS regulate the expression ofacid-resistantgenes is still unclear. We found that TorR/TorS deletion in E. coli cells led to a growth defect in extreme acid conditions,andthis defectmightdepend on the nutritional conditionsand growth phase.TorS/TorR sensed an extremely acidic environment, and this TorR phosphorylation process might not be entirely dependent on TorS.RNA-seqand RT-qPCR results suggested that TorR regulated expressions of gadB, gadC, hdeA, gadE, mdtE, mdtF, gadX, and slp acid-resistant genes. Compared with wild-type cells, the stress response factor RpoSlevels and itsexpressions were significantly decreased in Δ torR cellsstimulated by extreme acid. And under these circumstances, the expression of iraM was significantly reduced to 0.6-fold inΔ torR cells. Electrophoreticmobility shift assay showed that TorR-His6 could interact with the rpoS promoter sequence in vitro. β-galactosidase activity assayresultsapprovedthat TorR might bind the rpoS promoter region in vivo. After the mutation of the TorR-box in the rpoS promoter region, these interactions were no longer observed. Taken together, we propose thatTorS and potential Hanks model Ser/Thr kinase received an external acid stress signal and then phosphorylated TorR, which guided the expressions of a variety of acid resistance genes. Moreover,TorRcoped with extreme acid environmentsthroughRpoS, levels of which might be maintained byIraM. Finally,TorR may confer E. coli with the abilityto resist gastric acid, allowing the bacterium to reach the surface of the terminal ileum and large intestine mucosal epithelial cells through the gastric acid barrier, andestablishcolonization and pathogenicity.
Collapse
Affiliation(s)
- Guotao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
| |
Collapse
|
2
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
3
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory Role of PlaR (YiaJ) for Plant Utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415. [PMID: 31892694 PMCID: PMC6958661 DOI: 10.1038/s41598-019-56886-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Outside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization). The natural hosts of enterobacterium Escherichia coli are warm-blooded animals, but even outside hosts, E. coli can survive even under stressful environments. On earth, the most common organic materials to be used as nutrients by E. coli are plant-derived components, but up to the present time, the genetic system of E. coli for plant utilization is poorly understand. In the course of gSELEX screening of the regulatory targets for hitherto uncharacterized TFs, we identified in this study the involvement of the IclR-family YiaJ in the regulation of about 20 genes or operons, of which the majority are related to the catabolism of plant-derived materials such as ascorbate, galacturonate, sorbitol, fructose and fructoselysine. Therefore, we propose to rename YiaJ to PlaR (regulator of plant utilization).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan. .,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan.
| | - Yui Yokoyama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Takumi Anzai
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan. .,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
5
|
Carey JN, Mettert EL, Fishman-Engel DR, Roggiani M, Kiley PJ, Goulian M. Phage integration alters the respiratory strategy of its host. eLife 2019; 8:49081. [PMID: 31650957 PMCID: PMC6814406 DOI: 10.7554/elife.49081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Temperate bacteriophages are viruses that can incorporate their genomes into their bacterial hosts, existing there as prophages that refrain from killing the host cell until induced. Prophages are largely quiescent, but they can alter host phenotype through factors encoded in their genomes (often virulence factors) or by disrupting host genes as a result of integration. Here we describe another mechanism by which a prophage can modulate host phenotype. We show that a temperate phage that integrates in Escherichia coli reprograms host regulation of an anaerobic respiratory system, thereby inhibiting a bet hedging strategy. The phage exerts this effect by upregulating a host-encoded signal transduction protein through transcription initiated from a phage-encoded promoter. We further show that this phenomenon occurs not only in a laboratory strain of E. coli, but also in a natural isolate that contains a prophage at this site. Animals and plants can all fall prey to viruses – and so can bacteria. The viruses that infect bacteria are called bacteriophages (or phages for short), and they are found everywhere bacteria live and probably outnumber bacteria by at least ten to one. While some phages quickly kill every bacterial cell they infect, others enter a dormant state by inserting their DNA into the DNA of their host cell. Here they lie in wait for a signal that reactivates them, triggering the production of more phages and the death of the host cell. While the phage lies dormant its DNA may harm the host by interfering with nearby bacterial genes, or it may actually provide new genes that benefit the host. In most cases the effects of dormant phages are unknown. A bacterium known as Escherichia coli is commonly found in the intestines of humans and other mammals. It can use a nutrient called trimethylamine oxide (TMAO) to help it survive rapid decreases in oxygen levels that can occur in its environment. When a phage called HK022 infects E. coli, the phage enters a dormant state by inserting its DNA between two genes that are critical for E. coli to use TMAO. However, it is not clear what effect, if any, HK022 has on E. coli’s behavior. To address this question, Carey et al. used genetic approaches to study E. coli cells carrying dormant HK022 phages. The experiments showed that the bacteria lost the ability to use TMAO to survive rapid decreases in oxygen because the dormant phages switched on one of the neighboring E. coli genes. Unexpectedly, the phage achieved this by neatly replacing the gene’s own promoter – the stretch of DNA that contains information about when the gene should be switched on, and how strongly – with a substitute promoter carried in the phage’s DNA. This substitute promoter is stronger than the normal version – meaning that the gene is more active than it should be. Phages are key players in every natural population of microbes and are therefore entwined in the health of humans and the environment. The findings of Carey et al. show a new mechanism through which phages modify their hosts. In the future it may be possible to develop this mechanism into a tool to manipulate bacteria in complex environments like infection sites, for example by introducing phages that block the mechanisms that allow bacteria to tolerate antibiotics.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, United States
| | | | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, United States
| | - Mark Goulian
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biology, University of Pennsylvania, Philadelphia, United States.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
6
|
Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2019. [PMID: 29529243 PMCID: PMC5934670 DOI: 10.1093/nar/gky138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Ogasawara
- Shinshu University, Research Center for Supports to Advanced Science, Division of Gene Research, Ueda, Nagano 386-8567, Japan.,Shinshu University, Research Center for Fungal and Microbial Dynamism, Kamiina, Nagano 399-4598, Japan
| | - Akira Ishihama
- Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
7
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Carey JN, Goulian M. A bacterial signaling system regulates noise to enable bet hedging. Curr Genet 2018; 65:65-70. [PMID: 29947971 DOI: 10.1007/s00294-018-0856-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
Phenotypic diversity helps populations persist in changing and often unpredictable environments. One diversity-generating strategy is for individuals to switch randomly between phenotypic states such that one subpopulation has high fitness in the present environment, and another subpopulation has high fitness in an environment that might be encountered in the future. This sort of biological bet hedging can be found in all domains of life. Here, we discuss a recently described example from the bacterium Escherichia coli. When exposed to both oxygen and trimethylamine oxide (TMAO), E. coli hedges its bets on the possibility of oxygen loss by generating high cell-to-cell variability in the expression of the TMAO respiratory system. If oxygen is rapidly depleted from the environment, only those cells that had been expressing the TMAO respiratory system at high levels can continue to grow. This particular bet-hedging scheme possesses some unusual characteristics, most notably the decoupling of gene expression noise from the mean expression level. This decoupling allows bacteria to sense oxygen and regulate the amount of variability in TMAO reductase expression (that is, to turn bet hedging on or off) without having to adjust the mean TMAO reductase expression level. In this review, we discuss the features of the TMAO signaling pathway that permit the decoupling of gene expression noise from the mean and the regulation of bet hedging. We also highlight some open questions regarding the TMAO respiratory system and its regulatory architecture that may be relevant to many signaling systems.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Goulian
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. Regulated Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental Change. Cell 2018; 173:196-207.e14. [PMID: 29502970 DOI: 10.1016/j.cell.2018.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S Myers
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Yin QJ, Zhang WJ, Qi XQ, Zhang SD, Jiang T, Li XG, Chen Y, Santini CL, Zhou H, Chou IM, Wu LF. High Hydrostatic Pressure Inducible Trimethylamine N-Oxide Reductase Improves the Pressure Tolerance of Piezosensitive Bacteria Vibrio fluvialis. Front Microbiol 2018; 8:2646. [PMID: 29375513 PMCID: PMC5767261 DOI: 10.3389/fmicb.2017.02646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022] Open
Abstract
High hydrostatic pressure (HHP) exerts severe effects on cellular processes including impaired cell division, abolished motility and affected enzymatic activities. Transcriptomic and proteomic analyses showed that bacteria switch the expression of genes involved in multiple energy metabolism pathways to cope with HHP. We sought evidence of a changing bacterial metabolism by supplying appropriate substrates that might have beneficial effects on the bacterial lifestyle at elevated pressure. We isolated a piezosensitive marine bacterium Vibrio fluvialis strain QY27 from the South China Sea. When trimethylamine N-oxide (TMAO) was used as an electron acceptor for energy metabolism, QY27 exhibited a piezophilic-like phenotype with an optimal growth at 30 MPa. Raman spectrometry and biochemistry analyses revealed that both the efficiency of the TMAO metabolism and the activity of the TMAO reductase increased under high pressure conditions. Among the two genes coding for TMAO reductase catalytic subunits, the expression level and enzymatic activity of TorA was up-regulated by elevated pressure. Furthermore, a genetic interference assay with the CRISPR-dCas9 system demonstrated that TorA is essential for underpinning the improved pressure tolerance of QY27. We extended the study to Vibrio fluvialis type strain ATCC33809 and observed the same phenotype of TMAO-metabolism improved the pressure tolerance. These results provide compelling evidence for the determinant role of metabolism in the adaption of bacteria to the deep-sea ecosystems with HHP.
Collapse
Affiliation(s)
- Qun-Jian Yin
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiao-Qing Qi
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Sheng-Da Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ting Jiang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying Chen
- Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Claire-Lise Santini
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| | - Hao Zhou
- Engineering Laboratory of Engineering Department, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| |
Collapse
|
11
|
The ChrSA and HrrSA Two-Component Systems Are Required for Transcriptional Regulation of the hemA Promoter in Corynebacterium diphtheriae. J Bacteriol 2016; 198:2419-30. [PMID: 27381918 DOI: 10.1128/jb.00339-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/20/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Corynebacterium diphtheriae utilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. In C. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters for hmuO, hrtAB, and hemA ChrSA and HrrSA activate transcription at the hmuO promoter and repress transcription at hemA in an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor at hemA and that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression of hemA by ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to the hemA promoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylated in vitro by the sensor kinase ChrS, whereas no kinase activity was observed with HrrS in vitro Phosphorylated ChrA was not observed in vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observed in vivo regardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrA in vivo Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at the hemA promoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes. IMPORTANCE Understanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogen C. diphtheriae The findings here underscore the complex interactions between the ChrSA and HrrSA systems in the regulation of the hemA promoter and demonstrate how the two systems complement one another to refine and control transcription in the presence and absence of Hb.
Collapse
|
12
|
Silversmith RE, Wang B, Fulcher NB, Wolfgang MC, Bourret RB. Phosphoryl Group Flow within the Pseudomonas aeruginosa Pil-Chp Chemosensory System: DIFFERENTIAL FUNCTION OF THE EIGHT PHOSPHOTRANSFERASE AND THREE RECEIVER DOMAINS. J Biol Chem 2016; 291:17677-91. [PMID: 27354279 DOI: 10.1074/jbc.m116.737528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Bacterial chemosensory signal transduction systems that regulate motility by type IV pili (T4P) can be markedly more complex than related flagellum-based chemotaxis systems. In T4P-based systems, the CheA kinase often contains numerous potential sites of phosphorylation, but the signaling mechanisms of these systems are unknown. In Pseudomonas aeruginosa, the Pil-Chp system regulates T4P-mediated twitching motility and cAMP levels, both of which play roles in pathogenesis. The Pil-Chp histidine kinase (ChpA) has eight "Xpt" domains; six are canonical histidine-containing phosphotransfer (Hpt) domains and two have a threonine (Tpt) or serine (Spt) in place of the histidine. Additionally, there are two stand-alone receiver domains (PilG and PilH) and a ChpA C-terminal receiver domain (ChpArec). Here, we demonstrate that the ChpA Xpts are functionally divided into three categories as follows: (i) those phosphorylated with ATP (Hpt4-6); (ii) those reversibly phosphorylated by ChpArec (Hpt2-6), and (iii) those with no detectable phosphorylation (Hpt1, Spt, and Tpt). There was rapid phosphotransfer from Hpt2-6 to ChpArec and from Hpt3 to PilH, whereas transfer to PilG was slower. ChpArec also had a rapid rate of autodephosphorylation. The biochemical results together with in vivo cAMP and twitching phenotypes of key ChpA phosphorylation site point mutants supported a scheme whereby ChpArec functions both as a phosphate sink and a phosphotransfer element linking Hpt4-6 to Hpt2-3. Hpt2 and Hpt3 are likely the dominant sources of phosphoryl groups for PilG and PilH, respectively. The data are synthesized in a signaling circuit that contains fundamental features of two-component phosphorelays.
Collapse
Affiliation(s)
| | - Boya Wang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nanette B Fulcher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthew C Wolfgang
- From the Department of Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
13
|
Chambonnier G, Roux L, Redelberger D, Fadel F, Filloux A, Sivaneson M, de Bentzmann S, Bordi C. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006032. [PMID: 27176226 PMCID: PMC4866733 DOI: 10.1371/journal.pgen.1006032] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.
Collapse
Affiliation(s)
- Gaël Chambonnier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Lorène Roux
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - David Redelberger
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Firas Fadel
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
- Aix Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Alain Filloux
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Melissa Sivaneson
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Sophie de Bentzmann
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Christophe Bordi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Zhang SD, Santini CL, Zhang WJ, Barbe V, Mangenot S, Guyomar C, Garel M, Chen HT, Li XG, Yin QJ, Zhao Y, Armengaud J, Gaillard JC, Martini S, Pradel N, Vidaud C, Alberto F, Médigue C, Tamburini C, Wu LF. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200. Extremophiles 2016; 20:301-10. [PMID: 27039108 DOI: 10.1007/s00792-016-0822-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.
Collapse
Affiliation(s)
- Sheng-Da Zhang
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Claire-Lise Santini
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Wei-Jia Zhang
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | | | | | - Charlotte Guyomar
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Marc Garel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Hai-Tao Chen
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Xue-Gong Li
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Qun-Jian Yin
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Séverine Martini
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Nathalie Pradel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | | | - François Alberto
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China
| | - Claudine Médigue
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CEA/DSV/IG/Genoscope and CNRS-UMR 8030 and Univ. Evry Val d'Esssone, Evry, France
| | - Christian Tamburini
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288, Marseille, France
| | - Long-Fei Wu
- LCB UMR 7257, Aix-Marseille Université, CNRS, IMM, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France. .,France-China Bio-Mineralization and Nano-Structure Laboratory (LIA-BioMNSL), LCB-CNRS, Marseille, France/SIDSSE-CAS, Sanya, China.
| |
Collapse
|
15
|
Page SC, Silversmith RE, Collins EJ, Bourret RB. Imidazole as a Small Molecule Analogue in Two-Component Signal Transduction. Biochemistry 2015; 54:7248-60. [PMID: 26569142 DOI: 10.1021/acs.biochem.5b01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In two-component signal transduction systems (TCSs), responses to stimuli are mediated through phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule analogues of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that additionally utilize Asp → His phosphotransfer through the use of an additional component, the histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to imidazole required the intact RR active site, indicating that the RR provided the core catalytic machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated RR·imidazole complex showed imidazole oriented in the RR active site similarly to the His of an Hpt. Imidazole interacted with RR nonconserved active site residues, which influenced the relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences exhibited by the YPD1 Hpt.
Collapse
Affiliation(s)
- Stephani C Page
- Department of Biochemistry & Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599-7260, United States
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| | - Edward J Collins
- Department of Biochemistry & Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599-7260, United States.,Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
16
|
Abstract
Escherichia coli is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and S- and N-oxides. Anaerobic respiration using S- and N-oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine N-oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of S- and N-oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme c subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the dmsABC and torCAD operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.
Collapse
|
17
|
Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay. J Bacteriol 2015; 197:1976-87. [PMID: 25825431 DOI: 10.1128/jb.00074-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. IMPORTANCE Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus regulating the variance but not the mean output of a signaling system.
Collapse
|
18
|
Denby KJ, Rolfe MD, Crick E, Sanguinetti G, Poole RK, Green J. Adaptation of anaerobic cultures of Escherichia coli K-12 in response to environmental trimethylamine-N-oxide. Environ Microbiol 2015; 17:2477-91. [PMID: 25471524 PMCID: PMC4949985 DOI: 10.1111/1462-2920.12726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022]
Abstract
Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli
K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively.
Collapse
Affiliation(s)
- Katie J Denby
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ellen Crick
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Guido Sanguinetti
- School of Informatics, Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK
| | - Robert K Poole
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jeffrey Green
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
19
|
Identification of a second two-component signal transduction system that controls fosfomycin tolerance and glycerol-3-phosphate uptake. J Bacteriol 2014; 197:861-71. [PMID: 25512306 DOI: 10.1128/jb.02491-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagic Escherichia coli (EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression of torR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression of glpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.
Collapse
|
20
|
A load driver device for engineering modularity in biological networks. Nat Biotechnol 2014; 32:1268-75. [PMID: 25419739 PMCID: PMC4262674 DOI: 10.1038/nbt.3044] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
The behavior of gene modules in complex synthetic circuits is often unpredictable1–4. Upon joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function1,5. Here we devise a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle of time scale separation: inclusion of the load driver’s fast phosphotransfer processes restores the capability of a slower transcriptional circuit to respond to time-varying input signals even in the presence of substantial load. Without the load driver, we observe circuit behavior that suffers from 76% delay in response time and a 25% decrease in system bandwidth due to load. With the addition of a load driver, circuit performance is almost completely restored. Load drivers will serve as fundamental building blocks in the creation of complex, higher level genetic circuits.
Collapse
|
21
|
Prajapat MK, Saini S. Role of feedback and network architecture in controlling virulence gene expression in Bordetella. MOLECULAR BIOSYSTEMS 2014; 9:2635-44. [PMID: 24056999 DOI: 10.1039/c3mb70213h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bordetella is a Gram-negative bacterium responsible for causing whooping cough in a broad range of host organisms. For successful infection, Bordetella controls expression of four distinct classes of genes (referred to as class 1, 2, 3, and 4 genes) at distinct times in the infection cycle. This control is executed by a single two-component system, BvgAS. Interestingly, the transmembrane component of the two-component system, BvgS, consists of three phospho-transfer domains leading to phosphorylation of the response regulator, BvgA. Phosphorylated BvgA then controls expression of virulence genes and also controls bvgAS transcription. In this work, we perform simulations to characterize the role of the network architecture in governing gene expression in Bordetella. Our results show that the wild-type network is locally optimal for controlling the timing of expression of the different classes of genes involved in infection. In addition, the interplay between environmental signals and positive feedback aids the bacterium identify precise conditions for and control expression of virulence genes.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, Maharashtra, India.
| | | |
Collapse
|
22
|
An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. Structure 2012; 20:729-41. [PMID: 22483119 DOI: 10.1016/j.str.2012.02.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/01/2012] [Accepted: 02/26/2012] [Indexed: 12/29/2022]
Abstract
The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase.
Collapse
|
23
|
Goulian M. Two-component signaling circuit structure and properties. Curr Opin Microbiol 2010; 13:184-9. [PMID: 20149717 DOI: 10.1016/j.mib.2010.01.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Various modeling and experimental studies have analyzed the reactions, interconnections, and motifs in two-component systems, with an eye toward understanding their physiological implications and the differences between alternative designs. Examples where recent progress has been made include aspects of autoregulation, signal integration in branched pathways, cross-talk suppression, and cross-regulation via connector proteins.
Collapse
Affiliation(s)
- Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|
24
|
Kim JR, Cho KH. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises. Comput Biol Chem 2006; 30:438-44. [PMID: 17112785 DOI: 10.1016/j.compbiolchem.2006.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 09/27/2006] [Indexed: 11/30/2022]
Abstract
E. coli has two-component systems composed of histidine kinase proteins and response regulator proteins. For a given extracellular stimulus, a histidine kinase senses the stimulus, autophosphorylates and then passes the phosphates to the cognate response regulators. The histidine kinase in an orthodox two-component system has only one histidine domain where the autophosphorylation occurs, but a histidine kinase in some unusual two-component systems (unorthodox two-component systems) has two histidine domains and one aspartate domain. So, the unorthodox two-component systems have more complex phosphorelay mechanisms than orthodox two-component systems. In general, the two-component systems are required to promptly respond to external stimuli for survival of E. coli. In this respect, the complex multi-step phosphorelay mechanism seems to be disadvantageous, but there are several unorthodox two-component systems in E. coli. In this paper, we investigate the reason why such unorthodox two-component systems are present in E. coli. For this purpose, we have developed simplified mathematical models of both orthodox and unorthodox two-component systems and analyzed their dynamical characteristics through extensive computer simulations. We have finally revealed that the unorthodox two-component systems realize ultrasensitive responses to external stimuli and also more robust responses to noises than the orthodox two-component systems.
Collapse
Affiliation(s)
- Jeong-Rae Kim
- Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul 151-818, Republic of Korea
| | | |
Collapse
|
25
|
Baraquet C, Théraulaz L, Guiral M, Lafitte D, Méjean V, Jourlin-Castelli C. TorT, a Member of a New Periplasmic Binding Protein Family, Triggers Induction of the Tor Respiratory System upon Trimethylamine N-Oxide Electron-acceptor Binding in Escherichia coli. J Biol Chem 2006; 281:38189-99. [PMID: 17040909 DOI: 10.1074/jbc.m604321200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In anaerobiosis, Escherichia coli can use trimethylamine N-oxide (TMAO) as a terminal electron acceptor. Reduction of TMAO in trimethylamine (TMA) is mainly performed by the respiratory TMAO reductase. This system is encoded by the torCAD operon, which is induced in the presence of TMAO. This regulation involves a two-component system comprising TorS, an unorthodox histidine kinase, and TorR, a response regulator. A third protein, TorT, sharing homologies with periplasmic binding proteins, plays a key role in this regulation because disruption of the torT gene abolishes tor expression. In this study we showed that TMAO protects TorT against degradation by the GluC endoproteinase and modifies its temperature-induced CD spectrum. We also isolated a TorT negative mutant that is no longer protected by TMAO from degradation by GluC. Isothermal titration calorimetry confirmed that TorT binds TMAO with a binding constant of 150 mum. Therefore, we conclude that TorT binds TMAO and that this binding promotes a conformational change of TorT. We also showed that TorT interacts with the periplasmic domain of TorS in both the presence and absence of TMAO but the TorT-TMAO complex induces a higher GluC protection of TorS than TorT alone. These results support the idea that TMAO binding to TorT induces a cascade of conformational changes from TorT to TorS, leading to TorS activation. We identified several homologues of the TorT protein that define a new family of periplasmic binding proteins. We thus propose that the members of this family bind TMAO or related compounds and that they are involved in signal transduction or even substrate transport.
Collapse
Affiliation(s)
- Claudine Baraquet
- Laboratoire de Chimie Bactérienne, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
26
|
Malpica R, Sandoval GRP, Rodríguez C, Franco B, Georgellis D. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 2006; 8:781-95. [PMID: 16771670 DOI: 10.1089/ars.2006.8.781] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Arc two-component system is a complex signal transduction system that plays a key role in regulating energy metabolism at the level of transcription in bacteria. This system comprises the ArcB protein, a tripartite membrane-associated sensor kinase, and the ArcA protein, a typical response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates the expression of its target operons. Under aerobic conditions, ArcB acts as a phosphatase that catalyzes the dephosphorylation of ArcA-P and thereby releasing its transcriptional regulation. The events for Arc signaling, including signal reception and kinase regulation, signal transmission, amplification, as well as signal output and decay are discussed.
Collapse
Affiliation(s)
- Roxana Malpica
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | |
Collapse
|
27
|
Majdalani N, Heck M, Stout V, Gottesman S. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 2005; 187:6770-8. [PMID: 16166540 PMCID: PMC1251585 DOI: 10.1128/jb.187.19.6770-6778.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rcs phosphorelay pathway components were originally identified as regulators of capsule synthesis. In addition to the transmembrane sensor kinase RcsC, the RcsA coregulator, and the response regulator RcsB, two new components have been characterized, RcsD and RcsF. RcsD, the product of the yojN gene, now renamed rcsD, acts as a phosphorelay between RcsC and RcsB. Transcription of genes for capsule synthesis (cps) requires both RcsA and RcsB; transcription of other promoters, including that for the small RNA RprA, requires only RcsB. RcsF was described as an alternative sensor kinase for RcsB. We have examined the role of RcsF in the activation of both the rprA and cps promoters. We find that a number of signals that lead to activation of the phosphorelay require both RcsF and RcsC; epistasis experiments place RcsF upstream of RcsC. The RcsF sequence is characteristic of lipoproteins, consistent with a role in sensing cell surface perturbation and transmitting this signal to RcsC. Activation of RcsF does not require increased transcription of the gene, suggesting that modification of the RcsF protein may act as an activating signal. Signals from RcsC require RcsD to activate RcsB. Sequencing of an rcsC allele, rcsC137, that leads to high-level constitutive expression of both cps and rprA suggests that the response regulator domain of RcsC plays a role in negatively regulating the kinase activity of RcsC. The phosphorelay and the variation in the activation mechanism (dependent upon or independent of RcsA) provide multiple steps for modulating the output from this system.
Collapse
Affiliation(s)
- Nadim Majdalani
- National Cancer Institute, 9000 Rockville Pike, Bldg. 37, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
McCrindle SL, Kappler U, McEwan AG. Microbial Dimethylsulfoxide and Trimethylamine-N-Oxide Respiration. Adv Microb Physiol 2005; 50:147-98. [PMID: 16221580 DOI: 10.1016/s0065-2911(05)50004-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last two decades, the biochemistry and genetics of dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) respiration has been characterised, particularly in Escherichia coli marine bacteria of the genus Shewanella and the purple phototrophic bacteria, Rhodobacter sphaeroides and R. capsulatus. All of the enzymes (or catalytic subunits) involved the final step in DMSO and TMAO respiration contain a pterin molybdenum cofactor and are members of the DMSO reductase family of molybdoenzymes. In E. coli, the dimethylsulfoxide reductase (DmsABC) can be purified from membranes as a complex, which exhibits quinol-DMSO oxidoreductase activity. The enzyme is anchored to the membrane via the DmsC subunit and its catalytic subunit DmsA is now considered to face the periplasm. Electron transfer to DmsA involves the DmsB subunit, which is a polyferredoxin related to subunits found in other molybdoenzymes such as nitrate reductase and formate dehydrogenase. A characteristic of the DmsAB-type DMSO reductase is its ability to reduce a variety of S- and N-oxides. E. coli contains a trimethylamine-N-oxide reductase (TorA) that is highly specific for N-oxides. This enzyme is located in the periplasm and is connected to the quinone pool via a membrane-bound penta-haem cytochrome (TorC). DorCA in purple phototrophic bacteria of the genus Rhodobacter is very similar to TorCA with the critical difference that DorA catalyses reduction of both DMSO and TMAO. It is known as a DMSO reductase because the S-oxide is the best substrate. Crystal structures of DorA and TorA have revealed critical differences at the Mo active site that may explain the differences between substrate specificity between the two enzymes. DmsA, TorA and DorA possess a "twin arginine" N-terminal signal sequence consistent with their secretion via the TAT secretory system and not the Sec system. The enzymes are secreted with their bound prosthetic groups: this take place in the cytoplasm and the biogenesis involves a chaperone protein, which is cognate for each enzyme. Expression of the DMSO and TMAO respiratory operons is induced in response to a fall in oxygen tension. dmsABC expression is positively controlled by the oxygen-responsive transcription factor, Fnr and ModE, a transcription factor that binds molybdate. In contrast, torCAD expression is not under Fnr- or ModE-control but is dependent upon a sensor histidine kinase-response regulator pair, TorSR, which activate gene expression under conditions of low oxygen tension in the presence of N- or S-oxide. Regulation of dorCDA expression is similar to that seen for torCAD but it appears that the expression of the sensor histidine kinase-response regulator pair, DorSR is regulated by Fnr and there is an additional tier of regulation involving the ModE-homologue MopB, molybdate and the transcription factor DorX. Analysis of microbial genomes has revealed the presence of dms and tor operons in a wide variety of bacteria and in some archaea and duplicate dms and tor operons have been identified in E. coli. Challenges ahead will include the determination of the significance of the presence of the dms operon in bacterial pathogens and the determination of the significance of DMSO respiration in the global turnover of marine organo-sulfur compounds.
Collapse
Affiliation(s)
- Sharon L McCrindle
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
29
|
Tomich M, Mohr CD. Genetic characterization of a multicomponent signal transduction system controlling the expression of cable pili in Burkholderia cenocepacia. J Bacteriol 2004; 186:3826-36. [PMID: 15175296 PMCID: PMC419935 DOI: 10.1128/jb.186.12.3826-3836.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cable pili are peritrichous organelles expressed by certain strains of Burkholderia cenocepacia, believed to facilitate colonization of the lower respiratory tract in cystic fibrosis patients. The B. cenocepacia cblBACDS operon encodes the structural and accessory proteins required for the assembly of cable pili, as well as a gene designated cblS, predicted to encode a hybrid sensor kinase protein of bacterial two-component signal transduction systems. In this study we report the identification of two additional genes, designated cblT and cblR, predicted to encode a second hybrid sensor kinase and a response regulator, respectively. Analyses of the deduced amino acid sequences of the cblS and cblT gene products revealed that both putative sensor kinases have transmitter and receiver domains and that the cblT gene product has an additional C-terminal HPt domain. Mutagenesis of the cblS, cblT, or cblR gene led to a block in expression of CblA, the major pilin subunit, and a severe decrease in cblA transcript abundance. Using transcriptional fusion analyses, the decrease in the abundance of the cblA transcript in the cblS, cblT, and cblR mutants was shown to be due to a block in transcription from the cblB-proximal promoter, located upstream of the cblBACDS operon. Furthermore, ectopic expression of either cblS or cblR in wild-type B. cenocepacia strain BC7 led to a significant increase, while ectopic expression of cblT resulted in a dramatic decrease, in abundance of the CblA major pilin and the cblA transcript. Our results demonstrate that the B. cenocepacia cblS, cblT, and cblR genes are essential for cable pilus expression and that their effect is exerted at the level of transcription of the cblBACDS operon. These findings are consistent with the proposed function of the cblSTR gene products as a multicomponent signal transduction pathway controlling the expression of cable pilus biosynthetic genes in B. cenocepacia.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
30
|
Affiliation(s)
- Peggy A Cotter
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | |
Collapse
|
31
|
Appleman JA, Chen LL, Stewart V. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol 2003; 185:4872-82. [PMID: 12897007 PMCID: PMC166472 DOI: 10.1128/jb.185.16.4872-4882.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HAMP linker, a predicted structural element observed in many sensor kinases and methyl-accepting chemotaxis proteins, transmits signals between sensory input modules and output modules. HAMP linkers are located immediately inside the cytoplasmic membrane and are predicted to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. HAMP linkers are found in the Escherichia coli nitrate- and nitrite-responsive sensor kinases NarX and NarQ (which respond to ligand by increasing kinase activity) and the sensor kinase CpxA (which responds to ligand by decreasing kinase activity). We constructed a series of hybrids with fusion points throughout the HAMP linker, in which the sensory modules of NarX or NarQ are fused to the transmitter modules of NarX, NarQ, or CpxA. A hybrid of the NarX sensor module and the CpxA HAMP linker and transmitter module (NarX-CpxA-1) responded to nitrate by decreasing kinase activity, whereas a hybrid in which the HAMP linker of NarX was replaced by that of CpxA (NarX-CpxA-NarX-1) responded to nitrate by increasing kinase activity. However, sequence variations between HAMP linkers do not allow free exchange of HAMP linkers or their components. Certain deletions in the NarX HAMP linker resulted in characteristic abnormal responses to ligand; similar deletions in the NarQ and NarX-CpxA-1 HAMP linkers resulted in responses to ligand generally similar to those seen in NarX. We conclude that the structure and action of the HAMP linker are conserved and that the HAMP linker transmits a signal to the output domain that ligand is bound.
Collapse
Affiliation(s)
- J Alex Appleman
- Section of Microbiology, University of California, Davis, California 95616-8665, USA.
| | | | | |
Collapse
|
32
|
Bordi C, Théraulaz L, Méjean V, Jourlin-Castelli C. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol Microbiol 2003; 48:211-23. [PMID: 12657056 DOI: 10.1046/j.1365-2958.2003.03428.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The torCAD operon encoding the TMAO reductase respiratory system is induced in the presence of TMAO by the two-component regulatory system TorS/TorR. The TorS sensor detects TMAO and transphosphorylates the TorR response regulator via a four-step phosphorelay. Once phosphorylated, TorR activates expression of the torCAD structural operon. In order to identify new genes regulated by the Tor regulatory system, we performed a genome-wide transcriptional analysis by using the DNA array technology. We identified seven new transcriptional units whose expression is modulated by the TorS/TorR phosphorelay system. One unit, tnaLAB, is positively regulated whereas the other six, gadA, gadBC, hdeAB, hdeD, yhiE and yhiM, are negatively regulated by this system. Interestingly, the products of some of these units seem to play a role in the survival of E. coli in conditions of extreme pH. The TnaA tryptophanase has been proposed to counteract alkaline stress, whereas the GadA and GadB glutamate decarboxylases and the HdeA and HdeB proteins are involved in the defence against acid stress. Our hypothesis is that the TorS/TorR phosphorelay triggers alkaline-stress defence to limit alkalinization resulting from the reduction of TMAO in alkaline TMA by the Tor respiratory system. The fact that a DeltatnaLAB mutant showed a dramatic decrease in survival as a result of TMAO respiration is in agreement with such a model. As regulation of these genes by the TorS/TorR system does not depend on pH modification but rather on the presence of TMAO, we propose that E. coli anticipates alkalinization of the medium due to TMA production by base-resistance gene activation and acid-resistance gene repression.
Collapse
Affiliation(s)
- Christophe Bordi
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
33
|
Bordi C, Iobbi-Nivol C, Méjean V, Patte JC. Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis. J Bacteriol 2003; 185:2042-5. [PMID: 12618472 PMCID: PMC150150 DOI: 10.1128/jb.185.6.2042-2045.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated three Shewanella oneidensis mutants specifically impaired in trimethylamine oxide (TMAO) respiration. The mutations arose from insertions of an ISSo2 element into torA, torR, and torS, encoding, respectively, the TMAO reductase TorA, the response regulator TorR, and the sensor TorS. Although TorA is not the sole enzyme reducing TMAO in S. oneidensis, growth analysis showed that it is the main respiratory TMAO reductase. Use of a plasmid-borne torE'-lacZ fusion confirmed that the TorS-TorR phosphorelay mediates TMAO induction of the torECAD operon.
Collapse
Affiliation(s)
- Christophe Bordi
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
34
|
Gon S, Patte JC, Dos Santos JP, Méjean V. Reconstitution of the trimethylamine oxide reductase regulatory elements of Shewanella oneidensis in Escherichia coli. J Bacteriol 2002; 184:1262-9. [PMID: 11844754 PMCID: PMC134858 DOI: 10.1128/jb.184.5.1262-1269.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Accepted: 11/15/2001] [Indexed: 11/20/2022] Open
Abstract
Several bacteria can grow by using small organic compounds such as trimethylamine oxide (TMAO) as electron acceptors. In Shewanella species, the TMAO reductase respiratory system is encoded by the torECAD operon. We showed that production of the TMAO reductase of S. oneidensis was induced by TMAO and repressed by oxygen, and we noticed that a three-gene cluster (torSTR) encoding a complex two-component regulatory system was present downstream of the torECAD operon. We introduced the torSTR gene cluster into Escherichia coli and showed that this regulatory gene cluster is involved in TMAO induction of the torE promoter but plays no role in the oxygen control. The TorR response regulator was purified, and gel shift and footprinting experiments revealed that TorR binds to a single region located about 70 bases upstream of the transcription start site of the tor structural operon. By deletion analysis, we confirmed that the TorR operator site is required for induction of the tor structural promoter. As the TMAO regulatory system of S. oneidensis is homologous to that of E. coli, we investigated a possible complementation between the TMAO regulatory components of the two bacteria. Interestingly, TorS(ec), the TMAO sensor of E. coli, was able to transphosphorylate TorR(so), the TMAO response regulator of S. oneidensis.
Collapse
Affiliation(s)
- Stéphanie Gon
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
35
|
Gon S, Jourlin-Castelli C, Théraulaz L, Méjean V. An unsuspected autoregulatory pathway involving apocytochrome TorC and sensor TorS in Escherichia coli. Proc Natl Acad Sci U S A 2001; 98:11615-20. [PMID: 11562502 PMCID: PMC58778 DOI: 10.1073/pnas.211330598] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) respiration is carried out mainly by the Tor system in Escherichia coli. This system is encoded by the torCAD operon and comprises a periplasmic TMAO reductase (TorA) and a c-type cytochrome (TorC), which shuttles electrons to TorA. Expression of the tor operon is positively controlled by the TorS/TorR phosphorelay system in response to TMAO availability and negatively regulated by apocytochrome TorC. Interaction studies showed that, when immature, TorC can no longer bind TorA efficiently but can bind the periplasmic detector region of sensor TorS. ApoTorC negative autoregulation and TMAO induction are thus mediated by the same sensor protein. As apocytochromes related to TorC could not down-regulate the tor operon, we concluded that this negative control is highly specific. Moreover, the N-terminal half of apoTorC played no role in this control but the immature C-terminal domain of TorC strongly down-regulated the tor operon and interacted with the TorS detector region. This sophisticated autoregulatory pathway thus involves the C-terminal domain of apoTorC and allows optimal TorC biogenesis by preventing from saturation the c-type cytochrome maturation machinery.
Collapse
Affiliation(s)
- S Gon
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|