1
|
Furusawa G, Hartzell PL, Navaratnam V. Calcium is required for ixotrophy of Aureispira sp. CCB-QB1. Microbiology (Reading) 2015; 161:1933-1941. [DOI: 10.1099/mic.0.000158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Patricia L. Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | - Visweswaran Navaratnam
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
2
|
Tian F, Yu C, Li H, Wu X, Li B, Chen H, Wu M, He C. Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of Xanthomonas oryzae pv. oryzae. Microbiol Res 2015; 170:177-83. [DOI: 10.1016/j.micres.2014.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/04/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
3
|
Voronina OL, Kunda MS, Aksenova EI, Ryzhova NN, Semenov AN, Petrov EM, Didenko LV, Lunin VG, Ananyina YV, Gintsburg AL. The characteristics of ubiquitous and unique Leptospira strains from the collection of Russian centre for leptospirosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:649034. [PMID: 25276806 PMCID: PMC4167648 DOI: 10.1155/2014/649034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND AIM Leptospira, the causal agent of leptospirosis, has been isolated from the environment, patients, and wide spectrum of animals in Russia. However, the genetic diversity of Leptospira in natural and anthropurgic foci was not clearly defined. METHODS The recent MLST scheme was used for the analysis of seven pathogenic species. 454 pyrosequencing technology was the base of the whole genome sequencing (WGS). RESULTS The most wide spread and prevalent Leptospira species in Russia were L. interrogans, L. kirschneri, and L. borgpetersenii. Five STs, common for Russian strains: 37, 17, 199, 110, and 146, were identified as having a longtime and ubiquitous distribution in various geographic areas. Unexpected properties were revealed for the environmental Leptospira strain Bairam-Ali. WGS of this strain genome suggested that it combined the features of the pathogenic and nonpathogenic strains and may be a reservoir of the natural resistance genes. Results of the comparative analysis of rrs and rpoB genes and MLST loci for different Leptospira species strains and phenotypic and serological properties of the strain Bairam-Ali suggested that it represented separate Leptospira species. CONCLUSIONS Thus, the natural and anthropurgic foci supported ubiquitous Leptospira species and the pool of genes important for bacterial adaptivity to various conditions.
Collapse
Affiliation(s)
- Olga L. Voronina
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Marina S. Kunda
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Ekaterina I. Aksenova
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Natalia N. Ryzhova
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Andrey N. Semenov
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Evgeny M. Petrov
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Lubov V. Didenko
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Vladimir G. Lunin
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Yuliya V. Ananyina
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Alexandr L. Gintsburg
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| |
Collapse
|
4
|
The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology. J Bacteriol 2008; 191:600-7. [PMID: 19011030 DOI: 10.1128/jb.01288-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron cryotomography was used to analyze the structure of the Lyme disease spirochete, Borrelia burgdorferi. This methodology offers a new means for studying the native architecture of bacteria by eliminating the chemical fixing, dehydration, and staining steps of conventional electron microscopy. Using electron cryotomography, we noted that membrane blebs formed at the ends of the cells. These blebs may be precursors to vesicles that are released from cells grown in vivo and in vitro. We found that the periplasmic space of B. burgdorferi was quite narrow (16.0 nm) compared to those of Escherichia coli and Pseudomonas aeruginosa. However, in the vicinity of the periplasmic flagella, this space was considerably wider (42.3 nm). In contrast to previous results, the periplasmic flagella did not form a bundle but rather formed a tight-fitting ribbon that wraps around the protoplasmic cell cylinder in a right-handed sense. We show how the ribbon configuration of the assembled periplasmic flagella is more advantageous than a bundle for both swimming and forming the flat-wave morphology. Previous results indicate that B. burgdorferi motility is dependent on the rotation of the periplasmic flagella in generating backward-moving waves along the length of the cell. This swimming requires that the rotation of the flagella exerts force on the cell cylinder. Accordingly, a ribbon is more beneficial than a bundle, as this configuration allows each periplasmic flagellum to have direct contact with the cell cylinder in order to exert that force, and it minimizes interference between the rotating filaments.
Collapse
|
5
|
Miyata M. [Molecular mechanism of Mycoplasma gliding; a unique biomotility]. Nihon Saikingaku Zasshi 2007; 62:347-61. [PMID: 17891999 DOI: 10.3412/jsb.62.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University
| |
Collapse
|
6
|
Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 2006; 60:417-26. [PMID: 16573690 PMCID: PMC2754204 DOI: 10.1111/j.1365-2958.2006.05096.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Factors that enhance the transmission of pathogens are poorly understood. We show that Vibrio cholerae shed in human 'rice-water' stools have a 10-fold lower oral infectious dose in an animal model than in vitro grown V. cholerae, which may aid in transmission during outbreaks. Furthermore, we identify a bacterial factor contributing to this enhanced infectivity: The achievement of a transient motile but chemotaxis-defective state upon shedding from humans. Rice-water stool V. cholerae have reduced levels of CheW-1, which is essential for chemotaxis, and were consequently shown to have a chemotaxis defect when tested in capillary assays. Through mutational analyses, such a state is known to enhance the infectivity of V. cholerae. This is the first report of a pathogen altering its chemotactic state in response to human infection in order to enhance its transmission.
Collapse
Affiliation(s)
- Susan M. Butler
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Eric J. Nelson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Nityananda Chowdhury
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka 1212, Bangladesh
| | - Shah M. Faruque
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka 1212, Bangladesh
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Howard Hughes Medical Institute, 136 Harrison Avenue, Boston, MA 02111, USA
- For correspondence. E-mail ; Tel. (+1) 617 636 2144; Fax (+1) 617 636 2175
| |
Collapse
|
7
|
Abstract
Chemotaxis is the process by which motile cells move in a biased manner both towards favourable and away from unfavourable environments. The requirement of this process for infection has been examined in several bacterial pathogens, including Vibrio cholerae. The single polar flagellum of Vibrio species is powered by a sodium-motive force across the inner membrane, and can rotate to produce speeds of up to 60 cell-body lengths (approximately 60microm) per second. Investigating the role of the chemotactic control of rapid flagellar motility during V. cholerae infection has revealed some unexpected and intriguing results.
Collapse
Affiliation(s)
- Susan M Butler
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
8
|
Abstract
Several species of mycoplasmas glide on solid surfaces, in the direction of their membrane protrusion at a cell pole, by an unknown mechanism. Our recent studies on the fastest species, Mycoplasma mobile, suggested that the gliding machinery, localized at the base of the membrane protrusion (the "neck"), is composed of two huge proteins. This machinery forms spikes sticking out from the neck and propels the cell by alternately binding and unbinding the spikes to a solid surface. Here, to study the intracellular mechanisms for gliding, we established a permeabilized gliding ghost model, analogous to the "Triton model" of the eukaryotic axoneme. Treatment with Triton X-100 stopped the gliding and converted the cells to permeabilized "ghosts." When ATP was added exogenously, approximately 85% of the ghosts were reactivated, gliding at speeds similar to those of living cells. The reactivation activity and inhibition by various nucleotides and ATP analogs, as well as their kinetic parameters, showed that the machinery is driven by the hydrolysis of ATP to ADP plus phosphate, caused by an unknown ATPase.
Collapse
Affiliation(s)
- Atsuko Uenoyama
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | |
Collapse
|
9
|
Law AMJ, Aitken MD. Continuous-flow capillary assay for measuring bacterial chemotaxis. Appl Environ Microbiol 2005; 71:3137-43. [PMID: 15933013 PMCID: PMC1151859 DOI: 10.1128/aem.71.6.3137-3143.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/04/2005] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.
Collapse
Affiliation(s)
- Aaron M J Law
- Department of Environmental Sciences and Engineering, CB 7431, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA.
| | | |
Collapse
|
10
|
Bardy SL, Ng SYM, Jarrell KF. Recent advances in the structure and assembly of the archaeal flagellum. J Mol Microbiol Biotechnol 2004; 7:41-51. [PMID: 15170402 DOI: 10.1159/000077868] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaeal motility occurs through the rotation of flagella that are distinct from the flagella found on bacteria. The differences between the two structures include the multi-flagellin nature of the archaeal filament, the widespread posttranslational modification of the flagellins and the presence of a short signal peptide on each flagellin that is cleaved by a specific signal peptidase prior to the incorporation of the mature flagellin into the flagellar filament. Research has revealed similarities between the archaeal flagellum and the type IV pilus, including the presence of similar unusual signal peptides on the flagellins and pilins, similarities in the amino acid sequences of the major structural proteins themselves, as well as similarities between potential assembly and processing components. The recent suggestion that type IV pili are part of a family of cell surface complexes, coupled with the similarities between type IV pili and archaeal flagella, raise questions about the evolution of these systems and possible inclusion of archaeal flagella into this surface complex family.
Collapse
Affiliation(s)
- Sonia L Bardy
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont, Canada
| | | | | |
Collapse
|
11
|
Nascimento ALTO, Verjovski-Almeida S, Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Digiampietri LA, Harstkeerl RA, Ho PL, Marques MV, Oliveira MC, Setubal JC, Haake DA, Martins EAL. Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 2004; 37:459-77. [PMID: 15064809 PMCID: PMC2666282 DOI: 10.1590/s0100-879x2004000400003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.
Collapse
|
12
|
Bardy SL, Ng SYM, Jarrell KF. Prokaryotic motility structures. MICROBIOLOGY (READING, ENGLAND) 2003; 149:295-304. [PMID: 12624192 DOI: 10.1099/mic.0.25948-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prokaryotes use a wide variety of structures to facilitate motility. The majority of research to date has focused on swimming motility and the molecular architecture of the bacterial flagellum. While intriguing questions remain, especially concerning the specialized export system involved in flagellum assembly, for the most part the structural components and their location within the flagellum and function are now known. The same cannot be said of the other apparati including archaeal flagella, type IV pili, the junctional pore, ratchet structure and the contractile cytoskeleton used by a variety of organisms for motility. In these cases, many of the structural components have yet to be identified and the mechanism of action that results in motility is often still poorly understood. Research on the bacterial flagellum has greatly aided our understanding of not only motility but also protein secretion and genetic regulation systems. Continued study and understanding of all prokaryotic motility structures will provide a wealth of knowledge that is sure to extend beyond the bounds of prokaryotic movement.
Collapse
Affiliation(s)
- Sonia L Bardy
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Sandy Y M Ng
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ken F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
13
|
Birck C, Chen Y, Hulett FM, Samama JP. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J Bacteriol 2003; 185:254-61. [PMID: 12486062 PMCID: PMC141828 DOI: 10.1128/jb.185.1.254-261.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhoP from Bacillus subtilis belongs to the OmpR subfamily of response regulators. It regulates the transcription of several operons and participates in a signal transduction network that controls adaptation of the bacteria to phosphate deficiency. The receiver domains of two members of this subfamily, PhoB from Escherichia coli and DrrD from Thermotoga maritima, have been structurally characterized. These modules have similar overall folds but display remarkable differences in the conformation of the beta4-alpha4 and alpha4 regions. The crystal structure of the receiver domain of PhoP (PhoPN) described in this paper illustrates yet another geometry in this region. Another major issue of the structure determination is the dimeric state of the protein and the novel mode of association between receiver domains. The protein-protein interface is provided by two different surfaces from each protomer, and the tandem unit formed through this asymmetric interface leaves free interaction surfaces. This design is well suited for further association of PhoP dimers to form oligomeric structures. The interprotein interface buries 970 A(2) from solvent and mostly involves interactions between charged residues. As described in the accompanying paper, mutations of a single residue in one salt bridge shielded from solvent prevented dimerization of the unphosphorylated and phosphorylated response regulator and had drastic functional consequences. The three structurally documented members of the OmpR family (PhoB, DrrD, and PhoP) provide a framework to consider possible relationships between structural features and sequence signatures in critical regions of the receiver domains.
Collapse
Affiliation(s)
- Catherine Birck
- Groupe de Cristallographie Biologique, IPBS-CNRS, 31077 Toulouse, France
| | | | | | | |
Collapse
|
14
|
de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1173-1180. [PMID: 12423023 DOI: 10.1094/mpmi.2002.15.11.1173] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type and nonmotile mutants all mutants had a strongly reduced competitive root colonizing ability after 7 days of plant growth, both in a gnotobiotic sand system as well as in nonsterile potting soil. The differences were significant on all root parts and increased from root base to root tip. Significant differences at the root tip could already be detected after 2 to 3 days. These experiments show that chemotaxis is an important competitive colonization trait. The best competitive root-tip colonizer, strain WCS365, was tested for chemotaxis toward tomato root exudate and its major identified components. A chemotactic response was detected toward root exudate, some organic acids, and some amino acids from this exudate but not toward its sugars. Comparison of the minimal concentrations required for a chemotactic response with concentrations estimated for exudates suggested that malic acid and citric acid are among major chemo-attractants for P. fluorescens WCS365 cells in the tomato rhizosphere.
Collapse
Affiliation(s)
- Sandra de Weert
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mattison K, Oropeza R, Kenney LJ. The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 2002; 277:32714-21. [PMID: 12077136 DOI: 10.1074/jbc.m204122200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
16
|
Birck C, Malfois M, Svergun D, Samama J. Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 2002; 321:447-57. [PMID: 12162958 DOI: 10.1016/s0022-2836(02)00651-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two-component regulatory systems mediate most of the bacterial cells responses to a variety of signals. In Sinorhizobium meliloti, the FixL-FixJ couple controls the expression of the nitrogen fixation genes through the binding of the two-domains response regulator FixJ to the fixK and nifA promoters. Phosphorylation of the N-terminal regulatory domain activates the protein and releases the inhibition of the C-terminal DNA-binding domain that occurs in the unphosphorylated protein. Insights into the transition from the inactive to the active form are provided by the architecture of the unphosphorylated response regulator reported in this study. The relative position and orientation of the N and C-terminal domains were defined from the molecular envelope restored from small-angle X-ray scattering (SAXS) data. The involvement of the alpha4-beta5-alpha5 surface of the regulatory domain, the linker region and the C-terminal helix of the DNA-binding domain in the interdomain interface of unphosphorylated FixJ was supported by biochemical investigations. These results, together with the previously reported studies on the phosphorylated regulatory domain of FixJ, emphasize the role of the alpha4-beta5-alpha5 surface in mediating a flow of information in this response regulator. This first study by SAXS of proteins from two-component systems suggests that the method could be successfully applied to other members of this family and could be suitable for the study of multidomain proteins and protein-protein complexes regulated through molecular interfaces in the low micromolar range.
Collapse
Affiliation(s)
- Catherine Birck
- Groupe de Cristallographie Biologique, CNRS-IPBS, 205 route de Narbonne, 31077- Cedex, Toulouse, France
| | | | | | | |
Collapse
|
17
|
Zhao H, Msadek T, Zapf J, Hoch JA, Varughese KI. DNA complexed structure of the key transcription factor initiating development in sporulating bacteria. Structure 2002; 10:1041-50. [PMID: 12176382 DOI: 10.1016/s0969-2126(02)00803-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sporulation in Bacillus species, the ultimate bacterial adaptive response, requires the precisely coordinated expression of a complex genetic pathway, and is initiated through the accumulation of the phosphorylated form of Spo0A, a pleiotropic response regulator transcription factor. Spo0A controls the transcription of several hundred genes in all spore-forming Bacilli including genes for sporulation and toxin regulation in pathogens such as Bacillus anthracis. The crystal structure of the effector domain of Spo0A from Bacillus subtilis in complex with its DNA target was determined. In the crystal lattice, two molecules form a tandem dimer upon binding to adjacent sites on DNA. The protein:protein and protein:DNA interfaces revealed in the crystal provide a basis for interpreting the transcription activation process and for the design of drugs to counter infections by these bacteria.
Collapse
Affiliation(s)
- Haiyan Zhao
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
There is accumulating evidence that motile bacteria are chemotactically attracted to environmental pollutants that they can degrade. Chemotaxis, the ability of motile bacteria to detect and respond to specific chemicals in the environment, can increase an organism's chances of locating useful sources of carbon, nitrogen and energy, and could thus play an important role in the biodegradation process. Recent evidence demonstrating that chemotaxis and biodegradation genes are coordinately regulated suggests that these processes are intimately linked in nature.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, 3-730 Bowen Science Building, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
19
|
Khan S. Forcing mycoplasma mobile into line. J Bacteriol 2002; 184:1817. [PMID: 11889084 PMCID: PMC134941 DOI: 10.1128/jb.184.7.1817.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shahid Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| |
Collapse
|