1
|
Sandberg TE, Wise KS, Dalldorf C, Szubin R, Feist AM, Glass JI, Palsson BO. Adaptive evolution of a minimal organism with a synthetic genome. iScience 2023; 26:107500. [PMID: 37636038 PMCID: PMC10448532 DOI: 10.1016/j.isci.2023.107500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/28/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The bacterial strain JCVI-syn3.0 stands as the first example of a living organism with a minimized synthetic genome, derived from the Mycoplasma mycoides genome and chemically synthesized in vitro. Here, we report the experimental evolution of a syn3.0- derived strain. Ten independent replicates were evolved for several hundred generations, leading to growth rate improvements of > 15%. Endpoint strains possessed an average of 8 mutations composed of indels and SNPs, with a pronounced C/G- > A/T transversion bias. Multiple genes were repeated mutational targets across the independent lineages, including phase variable lipoprotein activation, 5 distinct; nonsynonymous substitutions in the same membrane transporter protein, and inactivation of an uncharacterized gene. Transcriptomic analysis revealed an overall tradeoff reflected in upregulated ribosomal proteins and downregulated DNA and RNA related proteins during adaptation. This work establishes the suitability of synthetic, minimal strains for laboratory evolution, providing a means to optimize strain growth characteristics and elucidate gene functionality.
Collapse
Affiliation(s)
- Troy E. Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kim S. Wise
- J. Craig Venter Institute, San Diego, La Jolla, CA, USA
| | - Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - John I. Glass
- J. Craig Venter Institute, San Diego, La Jolla, CA, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
2
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound Emerg Dis 2018; 65 Suppl 1:91-109. [PMID: 29582590 DOI: 10.1111/tbed.12860] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/07/2023]
Abstract
There is a worldwide problem of disease caused by Mycoplasma (M.) bovis in cattle; it has a significant detrimental economic and animal welfare impact on cattle rearing. Infection can manifest as a plethora of clinical signs including mastitis, pneumonia, arthritis, keratoconjunctivitis, otitis media and genital disorders that may result in infertility and abortion. Current diagnosis and control information are reviewed and analysed to identify gaps in knowledge of the causative organism in respect of the disease pathology, diagnosis and control methods. The main considerations are as follows: no vaccines are commercially available; antimicrobial resistance is increasing; diagnostic and antimicrobial sensitivity testing needs to be improved; and a pen-side test would facilitate more rapid diagnosis and implementation of treatment with antimicrobials. More data on host susceptibility, stress factors, immune response and infectious dose levels are required. The impact of asymptomatic carriers, M. bovis survival in the environment and the role of wildlife in transmitting the disease also needs investigation. To facilitate development of vaccines, further analysis of more M. bovis genomes, its pathogenic mechanisms, including variable surface proteins, is required, along with reproducible disease models.
Collapse
Affiliation(s)
| | | | - K Sachse
- Friedrich-Loeffler-Institut, Jena, Germany.,Department of RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Jena, Germany
| | - L K Fox
- Washington State University, Pullman, WA, USA
| | | | - R D Ayling
- Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
5
|
Genetic analysis of a Treponema phagedenis locus encoding antigenic lipoproteins with potential for antigenic variation. Vet Microbiol 2016; 189:91-8. [PMID: 27259832 DOI: 10.1016/j.vetmic.2016.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
Abstract
Digital dermatitis (DD) is a painful and debilitating claw disease in cattle. Spirochetes of the genus Treponema are found in high numbers in the lesions and are likely to be involved in the pathogenesis. The occurrence of Treponema phagedenis in DD lesions, especially near the interface of healthy and diseased tissue, suggests that this species contributes to the development and/or progression of the lesions. In this study we characterized a genetic locus in T. phagedenis that contains coding regions for three antigenic proteins, PrrA, VpsA, and VpsB. Comparative analysis of homologous loci from fifteen strains suggests that prrA may be transposed into or out of this locus. Alterations in the copy number of TA repeats within the putative promoter region may regulate VpsA/B expression. The vpsA and prrA genes occur in allelic variants in different T. phagedenis isolates and may provide one explanation for the antigenic variation observed in T. phagedenis DD isolates.
Collapse
|
6
|
Li Y, Wang Y, Wang R, Zhu Y, Liu S, Wang Q, Shao J, Chen Y, Gao L, Zhou C, Liu H, Wang X, Zheng H, Xin J. Changes in pathogenicity and immunogenicity of Mycoplasma mycoides subsp. mycoides strains revealed by comparative genomics analysis. Sci Rep 2016; 6:19081. [PMID: 26750304 PMCID: PMC4707488 DOI: 10.1038/srep19081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Mycoplasma mycoides subsp. mycoides is the causative agent of contagious bovine pleuropneumonia. A pathogenic strain BEN-1 was isolated from bovine lung and underwent continuous passages in rabbits for 468 generations. During this process, the strain's strong virulence became weak and, gradually, it lost the ability to confer protective immunity in cattle but developed virulence in rabbits. In order to gain insight into the mechanisms behind the reduction in virulence and the loss of immunogenicity, we sequenced five representative strains of the BEN series, including the original strain (BEN-1), the strain generation that first acquired virulence in rabbits (BEN-50), the two vaccine strain generations (BEN-181 and BEN-326), and the strain generation showing the greatest loss of immunogenicity (BEN-468). The gene mutation rate in the four different propagation stages varied greatly, and over half of variations observed in each generation were removed during the propagation process. However, the variation maintained in the BEN-468 generation might contribute to its changes in virulence and immunogenicity. We thus identified 18 genes associated with host adaptation, six genes contributing to virulence in cattle, and 35 genes participating in conferring immunity in cattle. These findings might help us optimize the vaccine to obtain more effective immunization results.
Collapse
Affiliation(s)
- Yuan Li
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yang Wang
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Rui Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Suli Liu
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Qi Wang
- College of Resources and Environmental, Northeast Agricultural University, Harbin, China
| | - Jiari Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liping Gao
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Changping Zhou
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Henggui Liu
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Xiumei Wang
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jiuqing Xin
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
7
|
Complete Genome Sequence of Mycoplasma yeatsii Strain GM274B (ATCC 43094). GENOME ANNOUNCEMENTS 2015; 3:3/2/e00328-15. [PMID: 25908137 PMCID: PMC4408338 DOI: 10.1128/genomea.00328-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mycoplasma yeatsii is a goat mycoplasma species that, although an obligate parasite, accommodates this lifestyle as an inapparent commensalist. High-frequency transformation has also been reported for this species. The complete 895,051-bp genome sequence of strain GM274B has been determined, enabling an analysis of the features of this potential cloning host.
Collapse
|
8
|
Highly dynamic genomic loci drive the synthesis of two types of capsular or secreted polysaccharides within the Mycoplasma mycoides cluster. Appl Environ Microbiol 2014; 81:676-87. [PMID: 25398856 DOI: 10.1128/aem.02892-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas of the Mycoplasma mycoides cluster are all ruminant pathogens. Mycoplasma mycoides subsp. mycoides is responsible for contagious bovine pleuropneumonia and is known to produce capsular polysaccharide (CPS) and exopolysaccharide (EPS). Previous studies have strongly suggested a role for Mycoplasma mycoides subsp. mycoides polysaccharides in pathogenicity. Mycoplasma mycoides subsp. mycoides-secreted EPS was recently characterized as a β(1→6)-galactofuranose homopolymer (galactan) identical to the capsular product. Here, we extended the characterization of secreted polysaccharides to all other members of the M. mycoides cluster: M. capricolum subsp. capripneumoniae, M. capricolum subsp. capricolum, M. leachii, and M. mycoides subsp. capri (including the LC and Capri serovars). Extracted EPS was characterized by nuclear magnetic resonance, resulting in the identification of a homopolymer of β(1→2)-glucopyranose (glucan) in M. capricolum subsp. capripneumoniae and M. leachii. Monoclonal antibodies specific for this glucan and for the Mycoplasma mycoides subsp. mycoides-secreted galactan were used to detect the two polysaccharides. While M. mycoides subsp. capri strains of serovar LC produced only capsular galactan, no polysaccharide could be detected in strains of serovar Capri. All strains of M. capricolum subsp. capripneumoniae and M. leachii produced glucan CPS and EPS, whereas glucan production and localization varied among M. capricolum subsp. capricolum strains. Genes associated with polysaccharide synthesis and forming a biosynthetic pathway were predicted in all cluster members. These genes were organized in clusters within two loci representing genetic variability hot spots. Phylogenetic analysis showed that some of these genes, notably galE and glf, were acquired via horizontal gene transfer. These findings call for a reassessment of the specificity of the serological tests based on mycoplasma polysaccharides.
Collapse
|
9
|
Characterization of the in vitro core surface proteome of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia. Vet Microbiol 2013; 168:116-23. [PMID: 24332827 DOI: 10.1016/j.vetmic.2013.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/13/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides (Mmm) is a severe cattle disease, present in many countries in sub-Saharan Africa. The development of improved diagnostic tests and vaccines for CBPP control remains a research priority. Polyacrylamide gel electrophoresis and mass spectrometry were used to characterize the Triton X-114 soluble proteome of nine Mmm strains isolated from Europe or Africa. Of a total of 250 proteins detected, 67 were present in all strains investigated. Of these, 44 were predicted to be lipoproteins or cytoplasmic membrane-associated proteins and are thus likely to be members of the core in vitro surface membrane-associated proteome of Mmm. Moreover, the presence of all identified proteins in other ruminant Mycoplasma pathogens were investigated. Two proteins of the core proteome were identified only in other cattle pathogens of the genus Mycoplasma pointing towards a role in host-pathogen interactions. The data generated will facilitate the identification and prioritization of candidate Mycoplasma antigens for improved control measures, as it is likely that surface-exposed membrane proteins will include those that are involved in host-pathogen interactions.
Collapse
|
10
|
Complete genome sequences of Mycoplasma leachii strain PG50T and the pathogenic Mycoplasma mycoides subsp. mycoides small colony biotype strain Gladysdale. J Bacteriol 2012; 194:4448-9. [PMID: 22843585 DOI: 10.1128/jb.00761-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma mycoides subsp. mycoides small colony biotype (SC) is the high-consequence animal pathogen causing contagious bovine pleuropneumonia. We report the complete genome sequences of the pathogenic strain M. mycoides subsp. mycoides SC Gladysdale and a close phylogenetic relative, Mycoplasma leachii PG50(T), another bovine pathogen of the M. mycoides phylogenetic clade.
Collapse
|
11
|
Arcangioli MA, Aslan H, Tardy F, Poumarat F, Grand DL. The use of pulsed-field gel electrophoresis to investigate the epidemiology of Mycoplasma bovis in French calf feedlots. Vet J 2012; 192:96-100. [DOI: 10.1016/j.tvjl.2011.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 04/13/2011] [Accepted: 05/05/2011] [Indexed: 11/30/2022]
|
12
|
Schubert E, Sachse K, Jores J, Heller M. Serological testing of cattle experimentally infected with Mycoplasma mycoides subsp. mycoides Small Colony using four different tests reveals a variety of seroconversion patterns. BMC Vet Res 2011; 7:72. [PMID: 22098816 PMCID: PMC3377920 DOI: 10.1186/1746-6148-7-72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/18/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To study the specific antibody response to infection with Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), the agent of Contagious Bovine Pleuropneumonia (CBPP), we examined three panels of sera collected during three experimental infection trials in African cattle. The methods used included an in-house complement fixation test (CFT), a commercially available CFT, a competitive antibody ELISA (cELISA) and the immunoblotting test (IBT). In addition, lung tissue samples were examined by culture. RESULTS A total of 89% (51/59) of all experimentally infected animals tested positive on at least one of the serological tests throughout the trial. The specific antibody titres to the MmmSC infection became positive first by CFT (6 to 9 days post infection [dpi]), followed by IBT (9 to 13 dpi) and cELISA (13 to 16 dpi). Individual animals were found to display remarkably distinct seroconversion patterns, which allowed their classification into i) early high responders, ii) late high responders, and iii) low responders. In accordance with other studies, none of the present serological tests was capable of detecting all CBPP infected animals. CONCLUSION Comparison of the assays' performance in terms of sensitivity and specificity raises serious questions as to their reliability for identification of infected individuals in the field. In view of these limitations, a combination of CFT and cELISA can markedly improve CBPP diagnosis at single-animal level.
Collapse
Affiliation(s)
- Evelyn Schubert
- National Reference Laboratory for CBPP, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Jörg Jores
- International Livestock Research Institute (ILRI), Old Naivasha Road, P.O. Box 30709, 00100 Nairobi, Kenya
| | - Martin Heller
- National Reference Laboratory for CBPP, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
13
|
Browning GF, Marenda MS, Noormohammadi AH, Markham PF. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet Microbiol 2011; 153:44-50. [PMID: 21684094 DOI: 10.1016/j.vetmic.2011.05.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/08/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
Mycoplasmas are a diverse group of pathogens responsible for disease in a wide range of animal species. In recent years there have been considerable advances in knowledge of the proteins and structures involved in adherence in some mycoplasmas, but understanding of the biochemical functions and roles in virulence of another central feature of mycoplasmas, their lipoproteins, continues to develop. The aim of this review is to examine current knowledge of the roles of lipoproteins in the pathogenicity and the evolution of virulence in those mycoplasmas causing disease in domestic animals. Those lipoproteins that have been characterised have roles in adherence, in transport of nutrients into the mycoplasma cell, and in enzymatic interactions with the host. Furthermore they appear to play a prominent role in both inducing the host immune response to infection and in facilitating evasion of this response, particularly through the generation of dramatic levels of antigenic variation on the cell surface. Recent genomic comparisons of several pathogenic mycoplasmas have identified a further level of interaction between lipoproteins and pathogenicity. In several pathogens large scale horizontal gene transfer between distantly related mycoplasma species has resulted in the acquisition of a large number of genes, including those encoding lipoproteins thought to play a role in virulence, by one mycoplasma from another inhabiting the same host species. The interactions between these horizontally transferred genes, their new mycoplasma host and the animal that it infects may be an important contributing factor in the pathogenesis of some mycoplasmoses.
Collapse
Affiliation(s)
- G F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
14
|
Mycoplasma mycoides, from "mycoides Small Colony" to "capri". A microevolutionary perspective. BMC Genomics 2011; 12:114. [PMID: 21324191 PMCID: PMC3053259 DOI: 10.1186/1471-2164-12-114] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mycoplasma mycoides cluster consists of five species or subspecies that are ruminant pathogens. One subspecies, Mycoplasma mycoides subspecies mycoides Small Colony (MmmSC), is the causative agent of contagious bovine pleuropneumonia. Its very close relative, Mycoplasma mycoides subsp. capri (Mmc), is a more ubiquitous pathogen in small ruminants causing mastitis, arthritis, keratitis, pneumonia and septicaemia and is also found as saprophyte in the ear canal. To understand the genetics underlying these phenotypic differences, we compared the MmmSC PG1 type strain genome, which was already available, with the genome of an Mmc field strain (95010) that was sequenced in this study. We also compared the 95010 genome with the recently published genome of another Mmc strain (GM12) to evaluate Mmc strain diversity. RESULTS The MmmSC PG1 genome is 1,212 kbp and that of Mmc 95010 is ca. 58 kbp shorter. Most of the sequences present in PG1 but not 95010 are highly repeated Insertion Sequences (three types of IS) and large duplicated DNA fragments. The 95010 genome contains five types of IS, present in fewer copies than in PG1, and two copies of an integrative conjugative element. These mobile genetic elements have played a key role in genome plasticity, leading to inversions of large DNA fragments. Comparison of the two genomes suggested a marked decay of the PG1 genome that seems to be correlated with a greater number of IS. The repertoire of gene families encoding surface proteins is smaller in PG1. Several genes involved in polysaccharide metabolism and protein degradation are also absent from, or degraded in, PG1. CONCLUSIONS The genome of MmmSC PG1 is larger than that of Mmc 95010, its very close relative, but has less coding capacity. This is the result of large genetic rearrangements due to mobile elements that have also led to marked gene decay. This is consistent with a non-adaptative genomic complexity theory, allowing duplications or pseudogenes to be maintained in the absence of adaptive selection that would lead to purifying selection and genome streamlining over longer evolutionary times. These findings also suggest that MmmSC only recently adapted to its bovine host.
Collapse
|
15
|
Röske K, Foecking MF, Yooseph S, Glass JI, Calcutt MJ, Wise KS. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes. BMC Genomics 2010; 11:430. [PMID: 20626840 PMCID: PMC2996958 DOI: 10.1186/1471-2164-11-430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.
Collapse
Affiliation(s)
- Kerstin Röske
- Saxony Academy of Sciences Leipzig, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Protein-specific analysis of humoral immune responses in a clinical trial for vaccines against contagious bovine pleuropneumonia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:853-61. [PMID: 20357055 DOI: 10.1128/cvi.00019-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specific humoral immune responses in a clinical trial on cattle for vaccines against contagious bovine pleuropneumonia (CBPP) were investigated. The trial included a subunit vaccine consisting of five recombinant putative variable surface proteins of the infectious agent Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides SC) compared to the currently approved attenuated vaccine strain T1/44 and untreated controls. Humoral immune responses to 65 individual recombinant surface proteins of M. mycoides SC were monitored by a recently developed bead-based array assay. Responses to the subunit vaccine components were found to be weak. Animals vaccinated with this vaccine were not protected and had CBPP lesions similar to those of the untreated controls. In correlating protein-specific humoral responses to T1/44-induced immunity, five proteins associated with a protective immune response were identified by statistical evaluation, namely, MSC_1046 (LppQ), MSC_0271, MSC_0136, MSC_0079, and MSC_0431. These five proteins may be important candidates in the development of a novel subunit vaccine against CBPP.
Collapse
|
17
|
Naseem S, Meens J, Jores J, Heller M, Dübel S, Hust M, Gerlach GF. Phage display-based identification and potential diagnostic application of novel antigens from Mycoplasma mycoides subsp. mycoides small colony type. Vet Microbiol 2009; 142:285-92. [PMID: 19900769 DOI: 10.1016/j.vetmic.2009.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
Abstract
Contagious Bovine Pleuropneumonia caused by Mycoplasma mycoides subsp. mycoides small colony type is a respiratory disease of considerable economic importance in sub-Saharan Africa; control of the disease in Africa is hampered by diagnostic tests which are suited for herd-level but not for individual animal diagnostics. In the work presented we identified 22 potential immunogenic antigens of the Kenyan outbreak strain B237 by using phage display technology. We determined the relative strength of immunogenicity, the discriminatory capacity between bovine positive and negative sera, and the cross-reactivity with rabbit hyperimmune sera directed against 15 different mycoplasmal species. The three best-performing antigens, a conserved hypothetical protein (MSC_0636), a glycosyl transferase (MSC_0108), and an acyl carrier protein phosphodiesterase (MSC_0029) were considered candidate diagnostic proteins. They were expressed as GST-fusion proteins in Escherichia coli, purified, and used in an ELISA as solid phase antigens. The diagnostic potential of the recombinant antigens was tested using the sera of ten experimentally infected animals and six control animals. This prototype test resulted in 100% diagnostic sensitivity and specificity. In comparison, the complement fixation test and the competitive ELISA performed with a diagnostic sensitivity of 70% and 60%, respectively.
Collapse
Affiliation(s)
- Shamoon Naseem
- Stiftung Tierärztliche Hochschule Hannover, Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Miltiadou DR, Mather A, Vilei EM, Du Plessis DH. Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display. BMC Microbiol 2009; 9:215. [PMID: 19818124 PMCID: PMC2767359 DOI: 10.1186/1471-2180-9-215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022] Open
Abstract
Background Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine. Results A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease. Conclusion Since phage display physically couples phenotype with genotype, it was used to compile a list of sequences that code for MmmSC proteins bearing epitopes which were recognised by antibodies in the serum of infected animals. Together with the appropriate bioinformatic analyses, this approach provided several potentially useful vaccine or diagnostic leads. The phage display step empirically identified sequences by their interaction with antibodies which accordingly reduced the number of ORFs that had to be expressed for testing. This is a particular advantage when working with MmmSC since the mycoplasmal codon for tryptophan needs to be mutated to prevent it from being translated as a stop in E. coli.
Collapse
Affiliation(s)
- Dubravka R Miltiadou
- Immunology Section, Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort, Republic of South Africa.
| | | | | | | |
Collapse
|
19
|
Multiplex screening of surface proteins from Mycoplasma mycoides subsp. mycoides small colony for an antigen cocktail enzyme-linked immunosorbent assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1665-74. [PMID: 19726613 DOI: 10.1128/cvi.00223-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recombinant antigen cocktail enzyme-linked immunosorbent assay (ELISA) for diagnosis of contagious bovine pleuropneumonia (CBPP) was developed after careful selection of antigens among one-third of the surface proteome proteins of the infectious agent Mycoplasma mycoides subsp. mycoides small colony (M. mycoides SC). First, a miniaturized and parallelized assay system employing antigen suspension bead array technology was used to screen 97 bovine sera for humoral immune responses toward 61 recombinant surface proteins from M. mycoides SC. Statistical analysis of the data resulted in selection of eight proteins that showed strong serologic responses in CBPP-affected sera and minimal reactivity in negative control sera, with P values of <10(-6). Only minor cross-reactivity to hyperimmune sera against other mycoplasmas was observed. When applied in an ELISA, the cocktail of eight recombinant antigens allowed a fivefold signal separation between 24 CBPP-affected and 23 CBPP-free sera from different geographical origins. No false-positive results and only two false-negative results were obtained. In conclusion, the selected recombinant mycoplasma antigens qualified as highly specific markers for CBPP and could be employed in both a suspension bead array platform and a cocktail ELISA setting. This set of proteins and technologies therefore offers a powerful combination to drive and further improve serological assays toward reliable, simple, and cost-effective diagnosis of CBPP.
Collapse
|
20
|
Hamsten C, Neiman M, Schwenk JM, Hamsten M, March JB, Persson A. Recombinant surface proteomics as a tool to analyze humoral immune responses in bovines infected by Mycoplasma mycoides subsp. mycoides small colony type. Mol Cell Proteomics 2009; 8:2544-54. [PMID: 19696080 DOI: 10.1074/mcp.m900009-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A systematic approach to characterize the surface proteome of Mycoplasma mycoides subspecies mycoides small colony type (M. mycoides SC), the causative agent of contagious bovine pleuropneumonia (CBPP) in cattle, is presented. Humoral immune responses in 242 CBPP-affected cattle and controls were monitored against one-third of the surface proteins of M. mycoides SC in a high throughput magnetic bead-based assay. Initially, 64 surface proteins were selected from the genome sequence of M. mycoides SC and expressed as recombinant proteins in Escherichia coli. Binding of antibodies to each individual protein could then be analyzed simultaneously in minute sample volumes with the Luminex suspension array technology. The assay was optimized on Namibian CBPP-positive sera and Swedish negative controls to allow detection and 20-fold mean signal separation between CBPP-positive and -negative sera. Signals were proven to be protein-specific by inhibition experiments, and results agreed with Western blot experiments. The potential of the assay to monitor IgG, IgM, and IgA responses over time was shown in a proof-of-concept study with 116 sera from eight animals in a CBPP vaccine study. In conclusion, a toolbox with recombinant proteins and a flexible suspension array assay that allows multiplex analysis of humoral immune responses to M. mycoides SC has been created.
Collapse
Affiliation(s)
- Carl Hamsten
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res 2009; 7:5082-93. [PMID: 19367716 DOI: 10.1021/pr800162c] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a Hidden Markov Model method for the prediction of lipoprotein signal peptides of Gram-positive bacteria, trained on a set of 67 experimentally verified lipoproteins. The method outperforms LipoP and the methods based on regular expression patterns, in various data sets containing experimentally characterized lipoproteins, secretory proteins, proteins with an N-terminal TM segment and cytoplasmic proteins. The method is also very sensitive and specific in the detection of secretory signal peptides and in terms of overall accuracy outperforms even SignalP, which is the top-scoring method for the prediction of signal peptides. PRED-LIPO is freely available at http://bioinformatics.biol.uoa.gr/PRED-LIPO/, and we anticipate that it will be a valuable tool for the experimentalists studying secreted proteins and lipoproteins from Gram-positive bacteria.
Collapse
Affiliation(s)
- Pantelis G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15701, Greece.
| | | | | | | |
Collapse
|
22
|
Phase and antigenic variation mediated by genome modifications. Antonie van Leeuwenhoek 2008; 94:493-515. [DOI: 10.1007/s10482-008-9267-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
|
23
|
Hamsten C, Westberg J, Bölske G, Ayling R, Uhlén M, Persson A. Expression and immunogenicity of six putative variable surface proteins in Mycoplasma mycoides subsp. mycoides SC. MICROBIOLOGY-SGM 2008; 154:539-549. [PMID: 18227258 DOI: 10.1099/mic.0.2007/010694-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Variable surface protein Vmm and five Vmm-type proteins from Mycoplasma mycoides subsp. mycoides SC were analysed to determine whether these proteins are expressed in vivo in animals affected by contagious bovine pleuropneumonia (CBPP) and in vitro. Recombinant versions of these proteins were constructed and expressed in Escherichia coli after mutation of the TGA Trp codons to TGG. These proteins were then analysed by dot and Western blotting with sera from CBPP-affected cattle. Furthermore, affinity-purified polyclonal antibodies to the recombinant proteins were used in Western and colony blotting to look for expression of the putative Vmm-type proteins in cultured M. mycoides SC. This study demonstrates that immunoglobulins in CBPP sera recognize all putative Vmm-type proteins tested, indicating that these proteins or their homologues are expressed by mycoplasmas during natural infections. Vmm and one of the putative Vmm-type proteins showed variable expression in vitro.
Collapse
Affiliation(s)
- Carl Hamsten
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Joakim Westberg
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Göran Bölske
- Department of Bacteriology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Roger Ayling
- The Mycoplasma Group, Veterinary Laboratories Agency (VLA), Addlestone, Surrey KT15 3NB, UK
| | - Mathias Uhlén
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Anja Persson
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Chopra-Dewasthaly R, Citti C, Glew MD, Zimmermann M, Rosengarten R, Jechlinger W. Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol 2008; 67:1196-210. [PMID: 18248580 PMCID: PMC2268961 DOI: 10.1111/j.1365-2958.2007.06103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host–pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the ‘phase-locked’ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ‘difficult-to-manipulate’ mycoplasmas.
Collapse
Affiliation(s)
- Rohini Chopra-Dewasthaly
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
25
|
Brown DR, Whitcomb RF, Bradbury JM. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 2008; 57:2703-2719. [PMID: 17978244 DOI: 10.1099/ijs.0.64722-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Minimal standards for novel species of the class Mollicutes (trivial term, mollicutes), last published in 1995, require revision. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Mollicutes proposes herein revised standards that reflect recent advances in molecular systematics and the species concept for prokaryotes. The mandatory requirements are: (i) deposition of the type strain into two recognized culture collections, preferably located in different countries; (ii) deposition of the 16S rRNA gene sequence into a public database, and a phylogenetic analysis of the relationships among the 16S rRNA gene sequences of the novel species and its neighbours; (iii) deposition of antiserum against the type strain into a recognized collection; (iv) demonstration, by using the combination of 16S rRNA gene sequence analyses, serological analyses and supplementary phenotypic data, that the type strain differs significantly from all previously named species; and (v) assignment to an order, a family and a genus in the class, with an appropriate specific epithet. The 16S rRNA gene sequence provides the primary basis for assignment to hierarchical rank, and may also constitute evidence of species novelty, but serological and supplementary phenotypic data must be presented to substantiate this. Serological methods have been documented to be congruent with DNA-DNA hybridization data and with 16S rRNA gene placements. The novel species must be tested serologically to the greatest extent that the investigators deem feasible against all neighbouring species whose 16S rRNA gene sequences show >0.94 similarity. The investigator is responsible for justifying which characters are most meaningful for assignment to the part of the mollicute phylogenetic tree in which a novel species is located, and for providing the means by which novel species can be identified by other investigators. The publication of the description should appear in a journal having wide circulation. If the journal is not the International Journal of Systematic and Evolutionary Microbiology, copies of the publication must be submitted to that journal so that the name may be considered for inclusion in a Validation List as required by the International Code of Bacteriological Nomenclature (the Bacteriological Code). Updated informal descriptions of the class Mollicutes and some of its constituent higher taxa are available as supplementary material in IJSEM Online.
Collapse
Affiliation(s)
- Daniel R Brown
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0880, USA
| | - Robert F Whitcomb
- Collaborator, Vegetable Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Janet M Bradbury
- Department of Veterinary Pathology, University of Liverpool, Leahurst, Neston, CH64 7TE, UK
| |
Collapse
|
26
|
Pilo P, Frey J, Vilei EM. Molecular mechanisms of pathogenicity of Mycoplasma mycoides subsp. mycoides SC. Vet J 2007; 174:513-21. [PMID: 17157043 PMCID: PMC2628566 DOI: 10.1016/j.tvjl.2006.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 10/06/2006] [Accepted: 10/13/2006] [Indexed: 12/31/2022]
Abstract
Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.
Collapse
Affiliation(s)
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Langgass-strasse 122, 3012 Bern, Switzerland
| | | |
Collapse
|
27
|
Vilei EM, Correia I, Ferronha MH, Bischof DF, Frey J. Beta-D-glucoside utilization by Mycoplasma mycoides subsp. mycoides SC: possible involvement in the control of cytotoxicity towards bovine lung cells. BMC Microbiol 2007; 7:31. [PMID: 17439646 PMCID: PMC1855930 DOI: 10.1186/1471-2180-7-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 04/17/2007] [Indexed: 12/20/2022] Open
Abstract
Background Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-β-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. Results Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., β-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-β-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of β-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. Conclusion Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of β-D-glucosides, thus contributing in some extent to mycoplasmaemia.
Collapse
Affiliation(s)
- Edy M Vilei
- Institute of Veterinary Bacteriology, University of Bern, Länggass-Strasse 122, Postfach, CH-3001 Bern, Switzerland
| | - Ivone Correia
- Laboratório Nacional de Investigação Veterinária, Departamento de Biologia Celular, Estrada de Benfica 701, P-1549-011 Lisbon, Portugal
| | - M Helena Ferronha
- Laboratório Nacional de Investigação Veterinária, Departamento de Biologia Celular, Estrada de Benfica 701, P-1549-011 Lisbon, Portugal
| | - Daniela F Bischof
- Institute of Veterinary Bacteriology, University of Bern, Länggass-Strasse 122, Postfach, CH-3001 Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Länggass-Strasse 122, Postfach, CH-3001 Bern, Switzerland
| |
Collapse
|
28
|
Bischof DF, Vilei EM, Frey J. Genomic differences between type strain PG1 and field strains of Mycoplasma mycoides subsp. mycoides small-colony type. Genomics 2006; 88:633-41. [PMID: 16919417 PMCID: PMC1798306 DOI: 10.1016/j.ygeno.2006.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 11/25/2022]
Abstract
The recently accomplished complete genomic sequence analysis of the type strain PG1 of Mycoplasma mycoides subsp. mycoides small-colony type revealed four large repeated segments of 24, 13, 12, and 8 kb that are flanked by insertion sequence (IS) elements. Genetic analysis of type strain PG1 and African, European, and Australian field and vaccine strains revealed that the 24-kb genetic locus is repeated only in PG1 and not in other M. mycoides subsp. mycoides SC strains. In contrast, the 13-kb genetic locus was found duplicated in some strains originating from Africa and Australia but not in strains that were isolated from the European outbreaks. The 12- and 8-kb genetic loci were found in two and three copies, respectively, in all 28 strains analyzed. The flanking IS elements are assumed to lead to these tandem duplications, thus contributing to genomic plasticity. This aspect must be considered when designing novel diagnostic approaches and recombinant vaccines.
Collapse
|
29
|
Wise KS, Foecking MF, Röske K, Lee YJ, Lee YM, Madan A, Calcutt MJ. Distinctive repertoire of contingency genes conferring mutation- based phase variation and combinatorial expression of surface lipoproteins in Mycoplasma capricolum subsp. capricolum of the Mycoplasma mycoides phylogenetic cluster. J Bacteriol 2006; 188:4926-41. [PMID: 16788201 PMCID: PMC1483001 DOI: 10.1128/jb.00252-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The generation of surface variation among many divergent species of Mollicutes (mycoplasmas) occurs through stochastic expression patterns of diverse lipoprotein genes. The size and wide distribution of such variable gene sets in minimal (approximately 0.6- to 1.4-Mb) mycoplasmal genomes suggest their key role in the adaptation and survival of these wall-less monoderms. Diversity through variable genes is less clearly established among phylogenetically similar mycoplasmas, such as the Mycoplasma mycoides cluster of ruminant pathogens, which vary widely in host range and pathobiology. Using (i) genome sequences from two members of this clade, Mycoplasma capricolum subsp. capricolum and M. mycoides subsp. mycoides small colony biotype (SC), (ii) antibodies to specific peptide determinants of predicted M. capricolum subsp. capricolum gene products, and (iii) analysis of the membrane-associated proteome of M. capricolum subsp. capricolum, a novel set of six genes (vmcA to vmcF) expressing distinct Vmc (variable M. capricolum subsp. capricolum) lipoproteins is demonstrated. These occur at two separate loci in the M. capricolum subsp. capricolum genome, which shares striking overall similarity and gene synteny with the M. mycoides subsp. mycoides SC genome. Collectively, Vmc expression is noncoordinate and combinatorial, subject to a single-unit insertion/deletion in a 5' flanking dinucleotide repeat that governs expression of each vmc gene. All vmc genes share modular regions affecting expression and membrane translocation. In contrast, vmcA to vmcD genes at one locus express surface proteins with highly structured size-variable repeating domains, whereas vmcE to vmcF genes express products with short repeats devoid of predicted structure. These genes confer a distinctive, dynamic surface architecture that may represent adaptive differences within this important group of pathogens as well as exploitable diagnostic targets.
Collapse
Affiliation(s)
- Kim S Wise
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, M616 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
March JB, Jepson CD, Clark JR, Totsika M, Calcutt MJ. Phage library screening for the rapid identification and in vivo testing of candidate genes for a DNA vaccine against Mycoplasma mycoides subsp. mycoides small colony biotype. Infect Immun 2006; 74:167-74. [PMID: 16368970 PMCID: PMC1346666 DOI: 10.1128/iai.74.1.167-174.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage lambda ZAP Express vector which contains both prokaryotic (P(lac)) and eukaryotic (P(CMV)) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which P(CMV)-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into lambda ZAP Express, and two strongly immunodominant clones, lambda-A8 and lambda-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone lambda-A8 expressed an isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone lambda-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones lambda-A8 and lambda-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone lambda-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone lambda-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.
Collapse
Affiliation(s)
- John B March
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, Scotland.
| | | | | | | | | |
Collapse
|
31
|
Bencina D, Bradbury JM, Stipkovits L, Varga Z, Razpet A, Bidovec A, Dovc P. Isolation of Mycoplasma capricolum-like strains from chickens. Vet Microbiol 2005; 112:23-31. [PMID: 16293373 DOI: 10.1016/j.vetmic.2005.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 09/21/2005] [Accepted: 10/03/2005] [Indexed: 11/24/2022]
Abstract
Members of the genus Mycoplasma infect a wide range of hosts, but individual Mycoplasma species tend to exhibit a considerable degree of host specificity. We characterized Mycoplasma strain 700, isolated from a kidney of a layer hen in Spain and Mycoplasma strains ULB-A and ULB-B, isolated from the air sac and from the bile of stunted broiler chickens in Slovenia. The serologic examination showed that these three strains are antigenically unrelated to all of the recognized Mycoplasma species of avian origin, but closely related to the ruminant mycoplasma Mycoplasma capricolum subspecies capricolum (M. capricolum). The comparison of their 16S rRNA gene sequences with the sequence of M. capricolum (California kid) revealed 99.66% sequence identity for the strain 700 and 99.59% identity for strains ULB-A and ULB-B. Moreover, the predicted DnaK sequences of the M. capricolum-like strains, isolated from chickens, were identical to DnaK sequences of M. capricolum. Comparison of their dnaK gene sequences with M. capricolum showed 99.64% sequence identity for strain 700 and 99.27% identity for strains ULB-A and ULB-B. In the flock from which M. capricolum-like strains ULB-A and ULB-B were isolated, the majority of chickens (83% of the chickens examined) raised antibodies reacting with M. capricolum antigens. Notably, the infection of chickens with M. capricolum-like strains represents an unusual exception to the range of Mycoplasma species host specificity.
Collapse
Affiliation(s)
- Dusan Bencina
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domzale, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Gorton TS, Barnett MM, Gull T, French RA, Lu Z, Kutish GF, Adams LG, Geary SJ. Development of real-time diagnostic assays specific for Mycoplasma mycoides subspecies mycoides Small Colony. Vet Microbiol 2005; 111:51-8. [PMID: 16257143 DOI: 10.1016/j.vetmic.2005.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 09/18/2005] [Accepted: 09/30/2005] [Indexed: 11/21/2022]
Abstract
Rapid and specific detection of Mycoplasma mycoides subsp. mycoides Small Colony (M. mycoides SC) is important for the effective control of contagious bovine pleuropneumonia. Although the United States has been free of this disease for over 100 years, it is necessary to develop modern diagnostic assays that are sensitive and specific for biological agents that would affect the US agricultural industry following accidental or intentional introduction into the US agricultural population. With this aim in mind, we have identified M. mycoides SC-specific genetic loci and developed TaqMan-based PCR assays for the detection of M. mycoides SC. The TaqMan assay allows for real-time detection of specific, amplified PCR products using portable equipment, enabling testing to be performed in the field. These assays are specific for M. mycoides SC, failing to amplify DNA from other organisms belonging to the M. mycoides cluster or two phylogenetically unrelated bovine mycoplasma species. Standard curves were drawn based on the linear relationships measured between the threshold fluorescence (C(T)) values and a measured quantity of genomic DNA. M. mycoides SC was successfully detected in bronchoalveolar lavage samples obtained from experimentally infected cattle. These TaqMan-based real-time PCR assays will allow for the rapid and specific detection of M. mycoides SC.
Collapse
Affiliation(s)
- Timothy S Gorton
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06269-3089, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson B, Uhlén M. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res 2004; 14:221-7. [PMID: 14762060 PMCID: PMC327097 DOI: 10.1101/gr.1673304] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 11/24/2003] [Indexed: 11/25/2022]
Abstract
Mycoplasma mycoides subsp. mycoidesSC (MmymySC)is the etiological agent of contagious bovine pleuropneumonia (CBPP), a highly contagious respiratory disease in cattle. The genome of Mmymy SC type strain PG1(T) has been sequenced to map all the genes and to facilitate further studies regarding the cell function of the organism and CBPP. The genome is characterized by a single circular chromosome of 1211703 bp with the lowest G+C content (24 mole%)and the highest density of insertion sequences (13% of the genome size)of all sequenced bacterial genomes. The genome contains 985 putative genes, of which 72 are part of insertion sequences and encode transposases. Anomalies in the GC-skew pattern and the presence of large repetitive sequences indicate a high genomic plasticity. A variety of potential virulence factors was identified, including genes encoding putative variable surface proteins and enzymes and transport proteins responsible for the production of hydrogen peroxide and the capsule, which is believed to have toxic effects on the animal.
Collapse
Affiliation(s)
- Joakim Westberg
- Department of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|