1
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
2
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
3
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
4
|
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, Naismith JH. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun 2019; 10:3673. [PMID: 31413254 PMCID: PMC6694100 DOI: 10.1038/s41467-019-11508-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Etienne Baco
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | | | - Malcolm G P Page
- Department of Life Sciences & Chemistry, Campus Ring 1, Bremen, 28759, Germany
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK.
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK.
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK.
| |
Collapse
|
5
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
6
|
Smallwood CR, Jordan L, Trinh V, Schuerch DW, Gala A, Hanson M, Hanson M, Shipelskiy Y, Majumdar A, Newton SMC, Klebba PE. Concerted loop motion triggers induced fit of FepA to ferric enterobactin. ACTA ACUST UNITED AC 2015; 144:71-80. [PMID: 24981231 PMCID: PMC4076525 DOI: 10.1085/jgp.201311159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The loops of the bacterial outer membrane iron transporter FepA move at different rates to adsorb and grasp the substrate ferric enterobactin before transporting it into the periplasm. Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles.
Collapse
Affiliation(s)
- Chuck R Smallwood
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Lorne Jordan
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Vy Trinh
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Daniel W Schuerch
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amparo Gala
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mathew Hanson
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | - Yan Shipelskiy
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Aritri Majumdar
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Salete M C Newton
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Phillip E Klebba
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
7
|
Importance of porins for biocide efficacy against Mycobacterium smegmatis. Appl Environ Microbiol 2011; 77:3068-73. [PMID: 21398489 DOI: 10.1128/aem.02492-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N'-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides.
Collapse
|
8
|
Abstract
The outer membrane of Gram-negative bacteria serves as a protective barrier against the external environment but is rendered selectively permeable to nutrients and waste by proteins called porins. Other outer membrane proteins (OMPs) provide the membrane with a variety of other functions including active transport, catalysis, pathogenesis and signal transduction. A relatively small number of crystal or NMR structures of these proteins are known, and it is therefore essential that the maximum possible information be extracted. In this respect, computational techniques enable extrapolation from time- and space-averaged static structures to dynamic, physiological events. Electrostatics approaches have been used to investigate the structures of porins. The stochastic simulation of ion trajectories through these channels has been possible with Brownian dynamics, which treats the membrane and solvent approximately, enabling the prediction of conduction properties. Molecular dynamics has also been applied, enabling fully atomistic descriptions of 'virtual outer membranes'. This has provided atomic resolution descriptions of solute permeation through porins. It has also yielded insights into the dynamics of gating in active transporters and ion channels, as well as providing clues to catalytic mechanisms in outer membrane enzymes. Additionally, simulations are beginning to reveal the common features of interactions between membrane proteins and lipids, with biological implications for OMP folding, stability and mechanism. Future prospects include the simulation of longer, larger and more complex outer membrane systems, with more accurate descriptions of inter-atomic forces.
Collapse
Affiliation(s)
- Peter J Bond
- Department of Biochemistry, The University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
Smallwood CR, Marco AG, Xiao Q, Trinh V, Newton SMC, Klebba PE. Fluoresceination of FepA during colicin B killing: effects of temperature, toxin and TonB. Mol Microbiol 2009; 72:1171-80. [PMID: 19432807 PMCID: PMC3082853 DOI: 10.1111/j.1365-2958.2009.06715.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the reactivity of 35 genetically engineered Cys sulphydryl groups at different locations in Escherichia coli FepA. Modification of surface loop residues by fluorescein maleimide (FM) was strongly temperature-dependent in vivo, whereas reactivity at other sites was much less affected. Control reactions with bovine serum albumin showed that the temperature dependence of loop residue reactivity was unusually high, indicating that conformational changes in multiple loops (L2, L3, L4, L5, L7, L8, L10) transform the receptor to a more accessible form at 37 degrees C. At 0 degrees C colicin B binding impaired or blocked labelling at 8 of 10 surface loop sites, presumably by steric hindrance. Overall, colicin B adsorption decreased the reactivity of more than half of the 35 sites, in both the N- and C- domains of FepA. However, colicin B penetration into the cell at 37 degrees C did not augment the chemical modification of any residues in FepA. The FM modification patterns were similarly unaffected by the tonB locus. FepA was expressed at lower levels in a tonB host strain, but when we accounted for this decrease its FM labelling was comparable whether TonB was present or absent. Thus we did not detect TonB-dependent structural changes in FepA, either alone or when it interacted with colicin B at 37 degrees C. The only changes in chemical modification were reductions from steric hindrance when the bacteriocin bound to the receptor protein. The absence of increases in the reactivity of N-domain residues argues against the idea that the colicin B polypeptide traverses the FepA channel.
Collapse
Affiliation(s)
| | | | - Qiaobin Xiao
- The Department of Chemistry & Biochemistry University of Oklahoma, Norman OK 73019
| | - Vy Trinh
- The Department of Chemistry & Biochemistry University of Oklahoma, Norman OK 73019
| | - Salete M. C. Newton
- The Department of Chemistry & Biochemistry University of Oklahoma, Norman OK 73019
| | - Phillip E. Klebba
- The Department of Chemistry & Biochemistry University of Oklahoma, Norman OK 73019
| |
Collapse
|
10
|
Structure-function relationships in the bifunctional ferrisiderophore FpvA receptor from Pseudomonas aeruginosa. Biometals 2009; 22:671-8. [PMID: 19153809 DOI: 10.1007/s10534-008-9203-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning beta-barrel occluded by a plug domain. The beta-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.
Collapse
|
11
|
DeRocco AJ, Yost-Daljev MK, Kenney CD, Cornelissen CN. Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system. Biometals 2008; 22:439-51. [PMID: 19048191 DOI: 10.1007/s10534-008-9179-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/07/2008] [Indexed: 11/30/2022]
Abstract
The transferrin iron acquisition system of Neisseria gonorrhoeae consists of two dissimilar transferrin binding proteins (Tbp) A and B. TbpA is a TonB dependent transporter while TbpB is a lipoprotein that makes iron acquisition from transferrin (Tf) more efficient. In an attempt to further define the individual roles of these receptors in the process of Tf-iron acquisition, the kinetics of the receptor proteins in regards to ligand association and dissociation were evaluated. Tf association with TbpB was rapid as compared to TbpA. Tf dissociation from the wild-type receptor occurred in a biphasic manner; an initial rapid release was followed by a slower dissociation over time. Both TbpA and TbpB demonstrated a two-phase release pattern; however, TbpA required both TonB and TbpB for efficient Tf dissociation from the cell surface. The roles of TbpA and TbpB in Tf dissociation were further examined, utilizing previously created HA fusion proteins. Using a Tf-utilization deficient TbpA-HA mutant, we concluded that the slower rate of ligand dissociation demonstrated by the wild-type transporter was a function of successful iron internalization. Insertion into the C-terminus of TbpB decreased the rate of Tf dissociation, while insertion into the N-terminus had no effect on this process. From these studies, we propose that TbpA and TbpB function synergistically during the process of Tf iron acquisition and that TbpB makes the process of Tf-iron acquisition more efficient at least in part by affecting association and dissociation of Tf from the cell surface.
Collapse
Affiliation(s)
- Amanda J DeRocco
- Department of Microbiology, Virginia Commonwealth University Medical Center, PO Box 980678, Richmond, VA 23298-0678, USA
| | | | | | | |
Collapse
|
12
|
James KJ, Hancock MA, Moreau V, Molina F, Coulton JW. TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli. Protein Sci 2008; 17:1679-88. [PMID: 18653801 DOI: 10.1110/ps.036244.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
FhuA, outer membrane receptor of Escherichia coli, transports hydroxamate-type siderophores into the periplasm. Cytoplasmic membrane-anchored TonB transduces energy to FhuA to facilitate siderophore transport. Because the N-terminal cork domain of FhuA occludes the C-terminal beta-barrel lumen, conformational changes must occur to enable siderophore passage. To localize conformational changes at an early stage of the siderophore transport cycle, four anti-FhuA monoclonal antibodies (mAbs) were purified to homogeneity, and the epitopes that they recognize were determined by phage display. We mapped continuous and discontinuous epitopes to outer surface-exposed loops 3, 4, and 5 and to beta-barrel strand 14. To probe for conformational changes of FhuA, surface plasmon resonance measured mAb binding to FhuA in its apo- and siderophore-bound states. Changes in binding kinetics were observed for mAbs whose epitopes were mapped to outer surface-exposed loops. Further, we measured mAb binding in the absence and presence of TonB. After forming immobilized FhuA-TonB complexes, changes in kinetics of mAb binding to FhuA were even more pronounced compared with kinetics of binding in the absence of TonB. Measurement of extrinsic fluorescence of the dye MDCC conjugated to residue 336 in outer surface-exposed loop 4 revealed 33% fluorescence quenching upon ferricrocin binding and up to 56% quenching upon TonB binding. Binding of mAbs to apo- and ferricrocin-bound FhuA complemented by fluorescence spectroscopy studies showed that their cognate epitopes on loops 3, 4, and 5 undergo conformational changes upon siderophore binding. Further, our data demonstrate that TonB binding promotes conformational changes in outer surface-exposed loops of FhuA.
Collapse
Affiliation(s)
- Karron J James
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
13
|
Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane. J Bacteriol 2008; 190:4001-16. [PMID: 18390658 DOI: 10.1128/jb.00135-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.
Collapse
|
14
|
Rabsch W, Ma L, Wiley G, Najar FZ, Kaserer W, Schuerch DW, Klebba JE, Roe BA, Laverde Gomez JA, Schallmey M, Newton SMC, Klebba PE. FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. J Bacteriol 2007; 189:5658-74. [PMID: 17526714 PMCID: PMC1951831 DOI: 10.1128/jb.00437-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022] Open
Abstract
H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica serotypes Enteritidis and Typhimurium and Escherichia coli by initial adsorption to the outer membrane protein FepA. Ferric enterobactin inhibited H8 binding to E. coli FepA (50% inhibition concentration, 98 nM), and other ferric catecholate receptors (Fiu, Cir, and IroN) did not participate in phage adsorption. H8 infection was TonB dependent, but exbB mutations in Salmonella or E. coli did not prevent infection; only exbB tolQ or exbB tolR double mutants were resistant to H8. Experiments with deletion and substitution mutants showed that the receptor-phage interaction first involves residues distributed over the protein's outer surface and then narrows to the same charged (R316) or aromatic (Y260) residues that participate in the binding and transport of ferric enterobactin and colicins B and D. These data rationalize the multifunctionality of FepA: toxic ligands like bacteriocins and phage penetrate the outer membrane by parasitizing residues in FepA that are adapted to the transport of the natural ligand, ferric enterobactin. DNA sequence determinations revealed the complete H8 genome of 104.4 kb. A total of 120 of its 143 predicted open reading frames (ORFS) were homologous to ORFS in T5, at a level of 84% identity and 89% similarity. As in T5, the H8 structural genes clustered on the chromosome according to their function in the phage life cycle. The T5 genome contains a large section of DNA that can be deleted and that is absent in H8: compared to T5, H8 contains a 9,000-bp deletion in the early region of its chromosome, and nine potentially unique gene products. Sequence analyses of the tail proteins of phages in the same family showed that relative to pb5 (Oad) of T5 and Hrs of BF23, the FepA-binding protein (Rbp) of H8 contains unique acidic and aromatic residues. These side chains may promote binding to basic and aromatic residues in FepA that normally function in the adsorption of ferric enterobactin. Furthermore, a predicted H8 tail protein showed extensive identity and similarity to pb2 of T5, suggesting that it also functions in pore formation through the cell envelope. The variable region of this protein contains a potential TonB box, intimating that it participates in the TonB-dependent stage of the phage infection process.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antiviral Agents/pharmacology
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Enterobactin/pharmacology
- Escherichia coli/virology
- Gene Order
- Genome, Viral/genetics
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Microscopy, Electron, Transmission
- Models, Molecular
- Molecular Sequence Data
- Open Reading Frames
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Salmonella Phages/genetics
- Salmonella Phages/physiology
- Salmonella enteritidis/virology
- Salmonella typhimurium/virology
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Amino Acid
- Siphoviridae/genetics
- Viral Tail Proteins/genetics
- Virion/ultrastructure
- Virus Attachment
Collapse
Affiliation(s)
- Wolfgang Rabsch
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma L, Kaserer W, Annamalai R, Scott DC, Jin B, Jiang X, Xiao Q, Maymani H, Massis LM, Ferreira LCS, Newton SMC, Klebba PE. Evidence of ball-and-chain transport of ferric enterobactin through FepA. J Biol Chem 2006; 282:397-406. [PMID: 17056600 PMCID: PMC2398697 DOI: 10.1074/jbc.m605333200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli iron transporter, FepA, has a globular N terminus that resides within a transmembrane beta-barrel formed by its C terminus. We engineered 25 cysteine substitution mutations at different locations in FepA and modified their sulfhydryl side chains with fluorescein maleimide in live cells. The reactivity of the Cys residues changed, sometimes dramatically, during the transport of ferric enterobactin, the natural ligand of FepA. Patterns of Cys susceptibility reflected energy- and TonB-dependent motion in the receptor protein. During transport, a residue on the normally buried surface of the N-domain was labeled by fluorescein maleimide in the periplasm, providing evidence that the transport process involves expulsion of the globular domain from the beta-barrel. Porin deficiency much reduced the fluoresceination of this site, confirming the periplasmic labeling route. These data support the previously proposed, but never demonstrated, ball-and-chain theory of membrane transport. Functional complementation between a separately expressed N terminus and C-terminal beta-barrel domain confirmed the feasibility of this mechanism.
Collapse
Affiliation(s)
- Li Ma
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sauter A, Braun V. Defined inactive FecA derivatives mutated in functional domains of the outer membrane transport and signaling protein of Escherichia coli K-12. J Bacteriol 2004; 186:5303-10. [PMID: 15292131 PMCID: PMC490880 DOI: 10.1128/jb.186.16.5303-5310.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FecA outer membrane protein of Escherichia coli functions as a transporter of ferric citrate and as a signal receiver and signal transmitter for transcription initiation of the fec transport genes. Three FecA regions for which functional roles have been predicted from the crystal structures were mutagenized: (i) loops 7 and 8, which move upon binding of ferric citrate and close the entrance to the ferric citrate binding site; (ii) the dinuclear ferric citrate binding site; and (iii) the interface between the globular domain and the beta-barrel. Deletion of loops 7 and 8 abolished FecA transport and induction activities. Deletion of loops 3 and 11 also inactivated FecA, whereas deletion of loops 9 and 10 largely retained FecA activities. The replacement of arginine residue R365 or R380 and glutamine Q570, which are predicted to serve as binding sites for the negatively charged dinuclear ferric citrate, with alanine resulted in inactive FecA, whereas the binding site mutant R438A retained approximately 50% of the FecA induction and transport activities. Residues R150, E541, and E587, conserved among energy-coupled outer membrane transporters, are predicted to form salt bridges between the globular domain and the beta-barrel and to contribute to the fixation of the globular domain inside the beta-barrel. Mutations E541A and E541R affected FecA induction and transport activity slightly, whereas mutations E587A and E587R more strongly reduced FecA activity. The double mutations R150A E541R and R150A E587R nearly abolished FecA activity. Apparently, the salt bridges are less important than the individual functions these residues seem to have for FecA activity. Comparison of the properties of the FecA, FhuA, FepA, and BtuB transporters indicates that although they have very similar crystal structures, the details of their functional mechanisms differ.
Collapse
Affiliation(s)
- Annette Sauter
- Mikrobiologie/Membranphysiologie,Universität Tübingen, Tuebingen, Germany
| | | |
Collapse
|
17
|
Annamalai R, Jin B, Cao Z, Newton SMC, Klebba PE. Recognition of ferric catecholates by FepA. J Bacteriol 2004; 186:3578-89. [PMID: 15150246 PMCID: PMC415739 DOI: 10.1128/jb.186.11.3578-3589.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli FepA transports certain catecholate ferric siderophores, but not others, nor any noncatecholate compounds. Direct binding and competition experiments demonstrated that this selectivity originates during the adsorption stage. The synthetic tricatecholate Fe-TRENCAM bound to FepA with 50- to 100-fold-lower affinity than Fe-enterobactin (FeEnt), despite an identical metal center, and Fe-corynebactin only bound at much higher concentrations. Neither Fe-agrobactin nor ferrichrome bound at all, even at concentrations 10(6)-fold above the Kd. Thus, FepA only adsorbs catecholate iron complexes, and it selects FeEnt among even its close homologs. We used alanine scanning mutagenesis to study the contributions of surface aromatic residues to FeEnt recognition. Although not apparent from crystallography, aromatic residues in L3, L5, L7, L8, and L10 affected FepA's interaction with FeEnt. Among 10 substitutions that eliminated aromatic residues, Kd increased as much as 20-fold (Y481A and Y638A) and Km increased as much as 400-fold (Y478), showing the importance of aromaticity around the pore entrance. Although many mutations equally reduced binding and transport, others caused greater deficiencies in the latter. Y638A and Y478A increased Km 10- and 200-fold more, respectively, than Kd. N-domain loop deletions created the same phenotype: Delta60-67 (in NL1) and Delta98-105 (in NL2) increased Kd 10- to 20-fold but raised Km 500- to 700-fold. W101A (in NL2) had little effect on Kd but increased Km 1,000-fold. These data suggested that the primary role of the N terminus is in ligand uptake. Fluorescence and radioisotopic experiments showed biphasic release of FeEnt from FepA. In spectroscopic determinations, k(off1) was 0.03/s and k(off2) was 0.003/s. However, FepAY272AF329A did not manifest the rapid dissociation phase, corroborating the role of aromatic residues in the initial binding of FeEnt. Thus, the beta-barrel loops contain the principal ligand recognition determinants, and the N-domain loops perform a role in ligand transport.
Collapse
Affiliation(s)
- Rajasekaran Annamalai
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Transport systems of Gram-negative bacteria coordinate the passage of metabolites through the outer membrane, periplasm, and the cytoplasmic membrane without compromising the protective properties of the cell envelope. Active transporters orchestrate the import of metals against concentration gradients. These thermodynamically unfavorable processes are coupled to both an electrochemical proton gradient and the hydrolysis of ATP. Crystallographic structures of transport proteins now define in molecular detail most components of an active metal import pathway from Escherichia coli.
Collapse
Affiliation(s)
- Andrew D Ferguson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | |
Collapse
|
19
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
20
|
Faraldo-Gómez JD, Sansom MSP. Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 2003; 4:105-16. [PMID: 12563288 DOI: 10.1038/nrm1015] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The outer membrane of Gram-negative bacteria constitutes a permeability barrier that protects the cell from exterior hazards, but also complicates the uptake of nutrients. In the case of iron, the challenge is even greater, because of the scarcity of this indispensable element in the cell's surroundings. To solve this dilemma, bacteria have evolved sophisticated mechanisms whereby the concerted actions of receptor, transporter and energy-transducing proteins ensure that there is a sufficient supply of iron-containing compounds, such as siderophores.
Collapse
Affiliation(s)
- José D Faraldo-Gómez
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
21
|
Cao Z, Warfel P, Newton SMC, Klebba PE. Spectroscopic observations of ferric enterobactin transport. J Biol Chem 2003; 278:1022-8. [PMID: 12409288 DOI: 10.1074/jbc.m210360200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the uptake of ferric enterobactin (FeEnt), the native Escherichia coli ferric siderophore, through its cognate outer membrane receptor protein, FepA, using a site-directed fluorescence methodology. The experiments first defined locations in FepA that were accessible to covalent modification with fluorescein maleimide (FM) in vivo; among 10 sites that we tested by substituting single Cys residues, FM labeled W101C, S271C, F329C, and S397C, and all these exist within surface-exposed loops of the outer membrane protein. FeEnt normally adsorbed to the fluoresceinated S271C and S397C mutant FepA proteins in vivo, which we observed as quenching of fluorescence intensity, but the ferric siderophore did not bind to the FM-modified derivatives of W101C or F329C. These in vivo fluorescence determinations showed, for the first time, consistency with radioisotopic measurements of the affinity of the FeEnt-FepA interaction; K(d) was 0.2 nm by both methods. Analysis of the FepA mutants with AlexaFluor(680), a fluorescein derivative with red-shifted absorption and emission spectra that do not overlap the absorbance spectrum of FeEnt, refuted the possibility that the fluorescence quenching resulted from resonance energy transfer. These and other data instead indicated that the quenching originated from changes in the environment of the fluor as a result of loop conformational changes during ligand binding and transport. We used the fluorescence system to monitor FeEnt uptake by live bacteria and determined its dependence on ligand concentration, temperature, pH, and carbon sources and its susceptibility to inhibition by the metabolic poisons. Unlike cyanocobalamin transport through the outer membrane, FeEnt uptake was sensitive to inhibitors of electron transport and phosphorylation, in addition to its sensitivity to proton motive force depletion.
Collapse
Affiliation(s)
- Zhenghua Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
22
|
Abstract
To kill Escherichia coli, toxic proteins, called colicins, pass through the permeability barrier created by the outer membrane (OM) of the bacterial cell envelope. We consider a variety of different colicins, including A, B, D, E1, E3, Ia, M and N, that penetrate through the porins OmpF, FepA, BtuB, Cir and FhuA, to subsequently interact with a few targets in the periplasm, including TolA, TolB, TolC and TonB. We review the mechanisms, demonstrated and postulated, by which such toxins enter bacterial cells, from the initial binding stage on the cell surface to the internalization reaction through the OM bilayer. Our discussions endeavor to answer two main questions: what is the origin of colicin-binding affinity and specificity, and after adsorption to OM porins, do colicin polypeptides translocate through porin channels, or enter by another, currently unknown pathway?
Collapse
Affiliation(s)
- Zhenghua Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | |
Collapse
|