1
|
Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Pérez Bucio RE, Mom R, Toussaint A, Petit MA, Enault F. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform 2021; 3:lqab067. [PMID: 34377978 PMCID: PMC8341000 DOI: 10.1093/nargab/lqab067] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Viruses are abundant, diverse and ancestral biological entities. Their diversity is high, both in terms of the number of different protein families encountered and in the sequence heterogeneity of each protein family. The recent increase in sequenced viral genomes constitutes a great opportunity to gain new insights into this diversity and consequently urges the development of annotation resources to help functional and comparative analysis. Here, we introduce PHROG (Prokaryotic Virus Remote Homologous Groups), a library of viral protein families generated using a new clustering approach based on remote homology detection by HMM profile-profile comparisons. Considering 17 473 reference (pro)viruses of prokaryotes, 868 340 of the total 938 864 proteins were grouped into 38 880 clusters that proved to be a 2-fold deeper clustering than using a classical strategy based on BLAST-like similarity searches, and yet to remain homogeneous. Manual inspection of similarities to various reference sequence databases led to the annotation of 5108 clusters (containing 50.6 % of the total protein dataset) with 705 different annotation terms, included in 9 functional categories, specifically designed for viruses. Hopefully, PHROG will be a useful tool to better annotate future prokaryotic viral sequences thus helping the scientific community to better understand the evolution and ecology of these entities.
Collapse
Affiliation(s)
- Paul Terzian
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Eric Olo Ndela
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Clovis Galiez
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Robin Mom
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Ariane Toussaint
- Cellular and Molecular Microbiology, IBMM-DBM, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
4
|
Claisse O, Chaïb A, Jaomanjaka F, Philippe C, Barchi Y, Lucas PM, Le Marrec C. Distribution of Prophages in the Oenococcus oeni Species. Microorganisms 2021; 9:856. [PMID: 33923461 PMCID: PMC8074189 DOI: 10.3390/microorganisms9040856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Le Marrec
- Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; (O.C.); (A.C.); (F.J.); (C.P.); (Y.B.); (P.M.L.)
| |
Collapse
|
5
|
Cutts EE, Barry Egan J, Dodd IB, Shearwin KE. A quantitative binding model for the Apl protein, the dual purpose recombination-directionality factor and lysis-lysogeny regulator of bacteriophage 186. Nucleic Acids Res 2020; 48:8914-8926. [PMID: 32789491 PMCID: PMC7498355 DOI: 10.1093/nar/gkaa655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.
Collapse
Affiliation(s)
- Erin E Cutts
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - J Barry Egan
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
6
|
Covarrubias PC, Moya-Beltrán A, Atavales J, Moya-Flores F, Tapia PS, Acuña LG, Spinelli S, Quatrini R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex. Res Microbiol 2018; 169:628-637. [PMID: 30138723 DOI: 10.1016/j.resmic.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Collapse
Affiliation(s)
- Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Atavales
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pablo S Tapia
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
7
|
Bowyer J, Zhao J, Subsoontorn P, Wong W, Rosser S, Bates D. Mechanistic Modeling of a Rewritable Recombinase Addressable Data Module. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:1161-1170. [PMID: 27244749 DOI: 10.1109/tbcas.2016.2526668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many of the most important applications predicted to arise from Synthetic Biology will require engineered cellular memory with the capability to store data in a rewritable and reversible manner upon induction by transient stimuli. DNA recombination provides an ideal platform for cellular data storage and has allowed the development of a rewritable recombinase addressable data (RAD) module, capable of efficient data storage within a chromosome. Here, we develop the first detailed mechanistic model of DNA recombination, and validate it against a new set of in vitro data on recombination efficiencies across a range of different concentrations of integrase and gp3. Investigation of in vivo recombination dynamics using our model reveals the importance of fully accounting for all mechanistic features of DNA recombination in order to accurately predict the effect of different switching strategies on RAD module performance, and highlights its usefulness as a design tool for building future synthetic circuitry.
Collapse
|
8
|
Abstract
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
Collapse
|
9
|
Liu X, Li Y, Guo Y, Zeng Z, Li B, Wood TK, Cai X, Wang X. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12. Sci Rep 2015; 5:16074. [PMID: 26530864 PMCID: PMC4632033 DOI: 10.1038/srep16074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802-4400
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|
10
|
Blasche S, Wuchty S, Rajagopala SV, Uetz P. The protein interaction network of bacteriophage lambda with its host, Escherichia coli. J Virol 2013; 87:12745-55. [PMID: 24049175 PMCID: PMC3838138 DOI: 10.1128/jvi.02495-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens.
Collapse
Affiliation(s)
- Sonja Blasche
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Wuchty
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Abstract
NBU1 is a mobilizable transposon found in Bacteroides spp. Mobilizable transposons require gene products from coresident conjugative transposons for excision and transfer to recipient cells. The integration of NBU1 requires IntN1, which has been identified as a tyrosine recombinase, as well as Bacteroides host factor BHFa. Excision of NBU1 is a more complicated process, involving five element-encoded proteins (IntN1, Orf2, Orf2x, Orf3, and PrmN1) as well as a Bacteroides host factor and a cis-acting DNA sequence. Little has been known about what role the proteins play in excision, although IntN1 and Orf2x have been shown to be the only proteins absolutely required for detectable excision. To determine where IntN1 and Orf2x bind during the excision of NBU1, both proteins were partially purified and tested in DNase I footprinting experiments with the excisive attachment sites attL and attR. The results demonstrate that IntN1 binds to four core-type sites that flank the region of cleavage and strand exchange, as well as six arm-type sites. A unique feature of the system is the location of DR2a and DR2b arm-type sites immediately downstream of the attL core. The DR1a, DR1b, DR3a, and DR3b arm-type sites were shown to be required for in vitro integration of NBU1. In addition, we have identified one Orf2x binding site (O1) on attL as well as a dA+dT-rich upstream element that is required for Orf2x interactions with O1.
Collapse
|
13
|
Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. Appl Environ Microbiol 2012; 78:6963-74. [PMID: 22843519 DOI: 10.1128/aem.00901-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.
Collapse
|
14
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol 2010; 192:3934-43. [PMID: 20511494 DOI: 10.1128/jb.00351-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2' arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1' site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.
Collapse
|
16
|
Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol 2010; 3:344-56. [PMID: 21255333 PMCID: PMC3158429 DOI: 10.1111/j.1751-7915.2010.00164.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022] Open
Abstract
The global regulator H-NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H-NS to control biofilm formation using protein engineering; H-NS variant K57N was obtained that reduces biofilm formation 10-fold compared with wild-type H-NS (wild-type H-NS increases biofilm formation whereas H-NS K57N reduces it). Whole-transcriptome analysis revealed that H-NS K57N represses biofilm formation through its interaction with the nucleoid-associated proteins Cnu and StpA and in the absence of these proteins, H-NS K57N was unable to reduce biofilm formation. Significantly, H-NS K57N enhanced the excision of defective prophage Rac while wild-type H-NS represses excision, and H-NS controlled only Rac excision among the nine resident E. coli K-12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H-NS regulatory system may be evolved through a single-amino-acid change in its N-terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis.
Collapse
Affiliation(s)
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843‐3122, USA
| |
Collapse
|
17
|
Control of directionality in bacteriophage mv4 site-specific recombination: functional analysis of the Xis factor. J Bacteriol 2009; 192:624-35. [PMID: 19948798 DOI: 10.1128/jb.00986-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, (mv4)Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that (mv4)Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that (mv4)Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of (mv4)Xis.
Collapse
|
18
|
Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME JOURNAL 2009; 3:1164-79. [PMID: 19458652 DOI: 10.1038/ismej.2009.59] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, we discovered that the global regulator, Hha, is related to cell death in biofilms and regulates cryptic prophage genes. Here, we show that Hha induces excision of prophages, CP4-57 and DLP12, by inducing excision genes and by reducing SsrA synthesis. SsrA is a tmRNA that is important for rescuing stalled ribosomes, contains an attachment site for CP4-57 and is shown here to be required for CP4-57 excision. These prophages impact biofilm development, as the deletion of 35 genes individually of prophages, CP4-57 and DLP12, increase biofilm formation up to 17-fold, and five genes decrease biofilm formation up to sixfold. In addition, CP4-57 excises during early biofilm development but not in planktonic cells, whereas DLP12 excision was detected at all the developmental stages for both biofilm and planktonic cells. CP4-57 excision leads to a chromosome region devoid of prophage and to the formation of a phage circle (which is lost). These results were corroborated by a whole-transcriptome analysis that showed that complete loss of CP4-57 activated the expression of the flg, flh and fli motility operons and repressed expression of key enzymes in the tricarboxylic acid cycle and of enzymes for lactate utilization. Prophage excision also results in the expression of cell lysis genes that reduce cell viability (for example, alpA, intA and intD). Hence, defective prophages are involved in host physiology through Hha and in biofilm formation by generating a diversified population with specialized functions in terms of motility and nutrient metabolism.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
19
|
Abstract
The temperate bacteriophages lambda and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. lambda and P22 Xis proteins are both small proteins (lambda Xis, 72 amino acids; P22 Xis, 116 amino acids) and have basic isoelectric points (for P22 Xis, 9.42; for lambda Xis, 11.16). However, the P22 Xis and lambda Xis primary sequences lack significant similarity at the amino acid level, and the linear organizations of the P22 phage attachment site DNA-binding sites have differences that could be important in quaternary intasome structure. We purified P22 Xis and studied the protein in vitro by means of electrophoretic mobility shift assays and footprinting, cross-linking, gel filtration stoichiometry, and DNA bending assays. We identified one protected site that is bent approximately 137 degrees when bound by P22 Xis. The protein binds cooperatively and at high protein concentrations protects secondary sites that may be important for function. Finally, we aligned the attP arms containing the major Xis binding sites from bacteriophages lambda, P22, L5, HP1, and P2 and the conjugative transposon Tn916. The similarity in alignments among the sites suggests that Xis-containing bacteriophage arms may form similar structures.
Collapse
|
20
|
Ghosh P, Wasil LR, Hatfull GF. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 2007; 4:e186. [PMID: 16719562 PMCID: PMC1470463 DOI: 10.1371/journal.pbio.0040186] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022] Open
Abstract
Mycobacteriophage Bxb1 integrates its DNA at the
attB site of the
Mycobacterium smegmatis genome using the viral
attP site and a phage-encoded integrase generating the recombinant junctions
attL and
attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene
47. Bxb1 gp47 is an unusual RDF in that it is relatively large (˜28 kDa), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase–DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either
attB or
attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either
attL or
attR that gain full potential for excisive recombination.
The authors identify a protein that employs a new mechanism to regulate the directionality of integration of a mycobacteriophage integrase into its host genome.
Collapse
Affiliation(s)
- Pallavi Ghosh
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura R Wasil
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F Hatfull
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Abbani MA, Papagiannis CV, Sam MD, Cascio D, Johnson RC, Clubb RT. Structure of the cooperative Xis-DNA complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly. Proc Natl Acad Sci U S A 2007; 104:2109-14. [PMID: 17287355 PMCID: PMC1893000 DOI: 10.1073/pnas.0607820104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA architectural protein Xis regulates the construction of higher-order nucleoprotein intasomes that integrate and excise the genome of phage lambda from the Escherichia coli chromosome. Xis modulates the directionality of site-specific recombination by stimulating phage excision 10(6)-fold, while simultaneously inhibiting phage reintegration. Control is exerted by cooperatively assembling onto a approximately 35-bp DNA regulatory element, which it distorts to preferentially stabilize an excisive intasome. Here, we report the 2.6-A crystal structure of the complex between three cooperatively bound Xis proteins and a 33-bp DNA containing the regulatory element. Xis binds DNA in a head-to-tail orientation to generate a micronucleoprotein filament. Although each protomer is anchored to the duplex by a similar set of nonbase specific contacts, malleable protein-DNA interactions enable binding to sites that differ in nucleotide sequence. Proteins at the ends of the duplex sequence specifically recognize similar binding sites and participate in cooperative binding via protein-protein interactions with a bridging Xis protomer that is bound in a less specific manner. Formation of this polymer introduces approximately 72 degrees of curvature into the DNA with slight positive writhe, which functions to connect disparate segments of DNA bridged by integrase within the excisive intasome.
Collapse
Affiliation(s)
- Mohamad A. Abbani
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
| | - My D. Sam
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Duilio Cascio
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Reid C. Johnson
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
- To whom correspondence may be addressed. E-mail:
or
| | - Robert T. Clubb
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
22
|
Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Mol Cell 2007; 24:569-80. [PMID: 17114059 PMCID: PMC1866956 DOI: 10.1016/j.molcel.2006.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/13/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Dale F. Mierke
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, Massachusetts 02115
| | - Sang Yeol Lee
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Arthur Landy
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| | - Marta Radman-Livaja
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| |
Collapse
|
23
|
Papagiannis CV, Sam MD, Abbani MA, Yoo D, Cascio D, Clubb RT, Johnson RC. Fis targets assembly of the Xis nucleoprotein filament to promote excisive recombination by phage lambda. J Mol Biol 2007; 367:328-43. [PMID: 17275024 PMCID: PMC1852488 DOI: 10.1016/j.jmb.2006.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.
Collapse
Affiliation(s)
- Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - My D. Sam
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Mohamad A. Abbani
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Daniel Yoo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - Duilio Cascio
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
- Corresponding author: Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737. Tel# 310-825-7800; Fax# 310-206-5272; email
| |
Collapse
|
24
|
Dmitriev AV, McDowell EJ, Kappeler KV, Chaussee MA, Rieck LD, Chaussee MS. The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J Bacteriol 2006; 188:7230-41. [PMID: 17015662 PMCID: PMC1636216 DOI: 10.1128/jb.00877-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of many virulence-associated genes in Streptococcus pyogenes is controlled in a growth phase-dependent manner. Unlike the model organisms Escherichia coli and Bacillus subtilis, such regulation is apparently not dependent upon alternative sigma factors but appears to rely on complex interactions among several transcriptional regulators, including Rgg. The purpose of this study was to identify changes in gene expression associated with inactivation of the rgg gene in S. pyogenes strain NZ131 (serotype M49). To this end, the transcriptomes of wild-type and rgg mutant strains were analyzed during both the exponential and postexponential phases of growth using Affymetrix NimbleExpress gene chips. Genomewide differences in transcript levels were identified in both phases of growth. Inactivation of rgg disrupted coordinate expression of genes associated with the metabolism of nonglucose carbon sources, such as fructose, mannose, and sucrose. The changes were associated with an inability of the mutant strain to grow using these compounds as the primary carbon source. Bacteriophage transcript levels were also altered in the mutant strain and were associated with decreased induction of at least one prophage. Finally, transcripts encoding virulence factors involved in cytolysin-mediated translocation of NAD-glycohydrolase, including the immunity factor IFS and the cytolysin (streptolysin O [SLO]), were more abundant in the mutant strain, which correlated with the amount of NADase and SLO activities in culture supernatant fluids. The results provide further evidence that Rgg contributes to growth phase-dependent gene regulation in strain NZ131.
Collapse
Affiliation(s)
- Alexander V Dmitriev
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 East Clark Street, Vermillion, SD 57069-2390, USA
| | | | | | | | | | | |
Collapse
|
25
|
Piazzolla D, Calì S, Spoldi E, Forti F, Sala C, Magnoni F, Dehò G, Ghisotti D. Expression of phage P4 integrase is regulated negatively by both Int and Vis. J Gen Virol 2006; 87:2423-2431. [PMID: 16847139 DOI: 10.1099/vir.0.81875-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phage P4 int gene encodes the integrase responsible for phage integration into and excision from the Escherichia coli chromosome. Here, the data showing that P4 int expression is regulated in a complex manner at different levels are presented. First of all, the Pint promoter is regulated negatively by both Int and Vis, the P4 excisionase. The N-terminal portion of Int appears to be sufficient for such a negative autoregulation, suggesting that the Int N terminus is implicated in DNA binding. Second, full-length transcripts covering the entire int gene could be detected only upon P4 infection, whereas in P4 lysogens only short 5′-end covering transcripts were detectable. On the other hand, transcripts covering the 5′-end of int were also very abundant upon infection. It thus appears that premature transcription termination and/or mRNA degradation play a role in Int-negative regulation both on the basal prophage transcription and upon infection. Finally, comparison between Pint–lacZ transcriptional and translational fusions suggests that Vis regulates Int expression post-transcriptionally. The findings that Vis is also an RNA-binding protein and that Int may be translated from two different start codons have implications on possible regulation models of Int expression.
Collapse
Affiliation(s)
- D Piazzolla
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - S Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - E Spoldi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - F Forti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - C Sala
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - F Magnoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - G Dehò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - D Ghisotti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
26
|
Antonenka U, Nölting C, Heesemann J, Rakin A. Independent acquisition of site-specific recombination factors by asn tRNA gene-targeting genomic islands. Int J Med Microbiol 2006; 296:341-52. [PMID: 16753337 DOI: 10.1016/j.ijmm.2006.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/21/2022] Open
Abstract
Two genomic islands, namely the high-pathogenicity island (HPI) and Ecoc54N target the same asn tRNA genes to integrate into the bacterial chromosome. The HPI encodes the siderophore yersiniabactin in the highly pathogenic Yersinia group (Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica 1B) whilst the Ecoc54N island possibly encodes a polyketide synthase with an unknown function in the uropathogenic Escherichia coli CFT073 strain. HPI encodes the recombinase that promotes site-specific recombination (both integrative and excisive) with its corresponding attachment targets. A recombinase orthologue is also present in Ecoc54N. In addition, the HPI(Yps) of the Y. pestis/Y. pseudotuberculosis evolutionary lineage encodes the excisionase (recombination directionality factor, Xis(HPI)) that facilitates excision of the island. However, no sequence resembling the excisionase gene could be found in Ecoc54N. The rate of the HPI(Yps) excision estimated by real-time PCR was 10(-6) in Y. pseudotuberculosis. The presence of the excisionase increased the efficiency of the excisive recombination only eight fold. However, the introduction of the xis(HPI) in E. coli CFT073 did not influence the excision of Ecoc54N. The Xis(HPI) is encoded by the variable AT-rich part of the HPI(Yps) and substantially differs from its cognate recombinase in A+T content and codon usage. Also the Xis(HPI)-protected region, defined in the HPI attachment site, has suffered several nucleotide substitutions in Ecoc54N that could influence interaction with the excisionase. We propose that the pathogenicity islands (PAIs) targeting asn tRNA genes (PAIs(asn tRNA)) might have acquired recombinase and excisionase (HPI) genes independently and sequentially.
Collapse
Affiliation(s)
- Uladzimir Antonenka
- Max von Pettenkofer-Institute of Hygiene and Medical Microbiology, Pettenkofer Str. 9a, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
27
|
Elantak L, Ansaldi M, Guerlesquin F, Méjean V, Morelli X. Structural and Genetic Analyses Reveal a Key Role in Prophage Excision for the TorI Response Regulator Inhibitor. J Biol Chem 2005; 280:36802-8. [PMID: 16079126 DOI: 10.1074/jbc.m507409200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TorI (Tor inhibition protein) has been identified in Escherichia coli as a protein inhibitor acting through protein-protein interaction with the TorR response regulator. This interaction, which does not interfere with TorR DNA binding activity, probably prevents the recruitment of RNA polymerase to the torC promoter. In this study we have solved the solution structure of TorI, which adopts a prokaryotic winged-helix arrangement. Despite no primary sequence similarity, the three-dimensional structure of TorI is highly homologous to the (lambda)Xis, Mu bacteriophage repressor (MuR-DBD), and transposase (MuA-DBD) structures. We propose that the TorI protein is the structural missing link between the (lambda)Xis and MuR proteins. Moreover, in vivo assays demonstrated that TorI plays an essential role in prophage excision. Heteronuclear NMR experiments and site-directed mutagenesis studies have pinpointed out key residues involved in the DNA binding activity of TorI. Our findings suggest that TorI-related proteins identified in various pathogenic bacterial genomes define a new family of atypical excisionases.
Collapse
Affiliation(s)
- Latifa Elantak
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
28
|
Bibb LA, Hancox MI, Hatfull GF. Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol 2005; 55:1896-910. [PMID: 15752208 DOI: 10.1111/j.1365-2958.2005.04517.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.
Collapse
Affiliation(s)
- Lori A Bibb
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
29
|
Doublet B, Boyd D, Mulvey MR, Cloeckaert A. TheSalmonellagenomic island 1 is an integrative mobilizable element. Mol Microbiol 2005; 55:1911-24. [PMID: 15752209 DOI: 10.1111/j.1365-2958.2005.04520.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salmonella genomic island 1 (SGI1) is a genomic island containing an antibiotic resistance gene cluster identified in several Salmonella enterica serovars. The SGI1 antibiotic resistance gene cluster, which is a complex class 1 integron, confers the common multidrug resistance phenotype of epidemic S. enterica Typhimurium DT104. The SGI1 occurrence in S. enterica serovars Typhimurium, Agona, Paratyphi B, Albany, Meleagridis and Newport indicates the horizontal transfer potential of SGI1. Here, we report that SGI1 could be conjugally transferred from S. enterica donor strains to non-SGI1 S. enterica and Escherichia coli recipient strains where it integrated into the recipient chromosome in a site-specific manner. First, an extrachromosomal circular form of SGI1 was identified by PCR which forms through a specific recombination of the left and right ends of the integrated SGI1. Chromosomal excision of SGI1 was found to require SGI1-encoded integrase which presents similarities to the lambdoid integrase family. Second, the conjugal transfer of SGI1 required the presence of a helper plasmid. The conjugative IncC plasmid R55 could thus mobilize in trans SGI1 which was transferred from the donor to the recipient strains. By this way, the conjugal transfer of SGI1 occurred at a frequency of 10(-5)-10(-6) transconjugants per donor. No transconjugants could be obtained for the SGI1 donor lacking the int integrase gene. Third, chromosomal integration of SGI1 occurred via a site-specific recombination between a 18 bp sequence found in the circular form of SGI1 and a similar 18 bp sequence at the 3' end of thdF gene in the S. enterica and E. coli chromosome. SGI1 appeared to be transmissible only in the presence of additional conjugative functions provided in trans. SGI1 can thus be classified within the group of integrative mobilizable elements (IMEs).
Collapse
Affiliation(s)
- Benoît Doublet
- Unité BioAgresseurs, Santé, Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | |
Collapse
|
30
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Lee L, Sadowski PD. Strand Selection by the Tyrosine Recombinases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:1-42. [PMID: 16164971 DOI: 10.1016/s0079-6603(05)80001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linda Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
32
|
Calì S, Spoldi E, Piazzolla D, Dodd IB, Forti F, Dehò G, Ghisotti D. Bacteriophage P4 Vis protein is needed for prophage excision. Virology 2004; 322:82-92. [PMID: 15063119 DOI: 10.1016/j.virol.2004.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/12/2004] [Accepted: 01/16/2004] [Indexed: 11/21/2022]
Abstract
Upon infection of its host Escherichia coli, satellite bacteriophage P4 can integrate its genome into the bacterial chromosome by Int-mediated site-specific recombination between the attP and the attB sites. The opposite event, excision, may either occur spontaneously or be induced by a superinfecting P2 helper phage. In this work, we demonstrate that the product of the P4 vis gene, a regulator of the P4 late promoters P(LL) and P(sid), is needed for prophage excision. This conclusion is supported by the following evidence: (i) P4 mutants carrying either a frameshift mutation or a deletion of the vis gene were unable to excise both spontaneously or upon P2 phage superinfection; (ii) expression of the Vis protein from a plasmid induced P4 prophage excision; (iii) excision depended on a functional integrase (Int) protein, thus suggesting that Vis is involved in the formation of the excision complex, rather than in the excision recombination event per se; (iv) Vis protein bound P4 DNA in the attP region at two distinct boxes (Box I and Box II), located between the int gene and the attP core region, and caused bending of the bound DNA. Furthermore, we mapped by primer extension the 5' end of the int transcript and found that ectopic expression of Vis reduced its signal intensity, suggesting that Vis is also involved in negative regulation of the int promoter.
Collapse
Affiliation(s)
- Simona Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Swalla BM, Cho EH, Gumport RI, Gardner JF. The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 2003; 50:89-99. [PMID: 14507366 DOI: 10.1046/j.1365-2958.2003.03687.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Higher-order nucleoprotein complexes often stabilize catalytic proteins in appropriate conformations for optimal activity and contribute to regulation during reactions requiring association of proteins and DNA. Formation of such complexes, known as intasomes, is required for site-specific recombination catalysed by bacteriophage Lambda Integrase protein (Int). Int-catalysed recombination is regulated by a second bacteriophage-encoded protein, Excisionase (Xis), which both stimulates excision and inhibits integration. To exert its effect, Xis binds co-operatively with Int, thereby inducing and stabilizing a DNA bend that alters the intasome structures formed during recombination. A rare int mutant, int 2268 ts, was reported (Enquist, L.W. and Weisberg, R.A. (1984) Mol Gen Genet 195: 62-69) to be more defective for excision than integration. Here, we have determined that this mutant Int protein contains an E47K substitution, and that the resultant excision-specific defect is due, at least in part, to destabilized interactions between Int and Xis. Analysis of several engineered substitutions at Int position 47 showed that a negatively charged residue is required for co-operative DNA binding between Int and Xis, and suggest that the Int-E47 residue may contact Xis directly. Substitutions at Int position 47 also affect co-operative binding among Int proteins at arm-type DNA sites, and thereby reduce the efficiency of both integration and excision. Collectively, these results suggest that a single surface of the Int amino-terminal domain mediates two alternate types of co-operative binding interactions.
Collapse
|
34
|
Warren D, Sam MD, Manley K, Sarkar D, Lee SY, Abbani M, Wojciak JM, Clubb RT, Landy A. Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation. Proc Natl Acad Sci U S A 2003; 100:8176-81. [PMID: 12832614 PMCID: PMC166202 DOI: 10.1073/pnas.1033041100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lambda integrase (Int) is a heterobivalent DNA-binding protein that together with the accessory DNA-bending proteins IHF, Fis, and Xis, forms the higher-order protein-DNA complexes that execute integrative and excisive recombination at specific loci on the chromosomes of phage lambda and its Escherichia coli host. The large carboxyl-terminal domain of Int is responsible for binding to core-type DNA sites and catalysis of DNA cleavage and ligation reactions. The small amino-terminal domain (residues 1-70), which specifies binding to arm-type DNA sites distant from the regions of strand exchange, consists of a three-stranded beta-sheet, proposed to recognize the cognate DNA site, and an alpha-helix. We report here that a site on this alpha-helix is critical for both homomeric interactions between Int protomers and heteromeric interactions with Xis. The mutant E47A, which was identified by alanine-scanning mutagenesis, abolishes interactions between Int and Xis bound at adjacent binding sites and reduces interactions between Int protomers bound at adjacent arm-type sites. Concomitantly, this residue is essential for excisive recombination and contributes to the efficiency of the integrative reaction. NMR titration data with a peptide corresponding to Xis residues 57-69 strongly suggest that the carboxyl-terminal tail of Xis and the alpha-helix of the aminoterminal domain of Int comprise the primary interaction surface for these two proteins. The use of a common site on lambda Int for both homotypic and heterotypic interactions fits well with the complex regulatory patterns associated with this site-specific recombination reaction.
Collapse
Affiliation(s)
- David Warren
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - My D. Sam
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Kate Manley
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Dibyendu Sarkar
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Sang Yeol Lee
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Mohamad Abbani
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Jonathan M. Wojciak
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Robert T. Clubb
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| | - Arthur Landy
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
35
|
Gottfried P, Silberstein N, Yagil E, Kolot M. Activity of coliphage HK022 excisionase (Xis) in the absence of DNA binding. FEBS Lett 2003; 545:133-8. [PMID: 12804763 DOI: 10.1016/s0014-5793(03)00512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutated excisionase (Xis) protein of coliphage HK022 whose single Cys residue was replaced by Ser does not bind to its two tandem binding sites (X1, X2) on the P arm of attR. Despite its DNA-binding inability the protein showed 30% excision activity of the wild type Xis both in vitro and in vivo. This partial activity is attributed to the interaction of Xis with integrase that is retained in the mutant protein. This protein-protein interaction occurs in the absence of DNA binding.
Collapse
Affiliation(s)
- Pnina Gottfried
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
36
|
Sam MD, Papagiannis CV, Connolly KM, Corselli L, Iwahara J, Lee J, Phillips M, Wojciak JM, Johnson RC, Clubb RT. Regulation of directionality in bacteriophage lambda site-specific recombination: structure of the Xis protein. J Mol Biol 2002; 324:791-805. [PMID: 12460578 DOI: 10.1016/s0022-2836(02)01150-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Upon induction of a bacteriophage lambda lysogen, a site-specific recombination reaction excises the phage genome from the chromosome of its bacterial host. A critical regulator of this process is the phage-encoded excisionase (Xis) protein, which functions both as a DNA architectural factor and by cooperatively recruiting integrase to an adjacent binding site specifically required for excision. Here we present the three-dimensional structure of Xis and the results of a structure-based mutagenesis study to define the molecular basis of its function. Xis adopts an unusual "winged"-helix motif that is modeled to interact with the major- and minor-grooves of its binding site through a single alpha-helix and loop structure ("wing"), respectively. The C-terminal tail of Xis, which is required for cooperative binding with integrase, is unstructured in the absence of DNA. We propose that asymmetric bending of DNA by Xis positions its unstructured C-terminal tail for direct contacts with the N-terminal DNA-binding domain of integrase and that an ensuing disordered to ordered transition of the tail may act to stabilize the formation of the tripartite integrase-Xis-DNA complex required for phage excision.
Collapse
Affiliation(s)
- My D Sam
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sarkar D, Azaro MA, Aihara H, Papagiannis CV, Tirumalai R, Nunes-Düby SE, Johnson RC, Ellenberger T, Landy A. Differential affinity and cooperativity functions of the amino-terminal 70 residues of lambda integrase. J Mol Biol 2002; 324:775-89. [PMID: 12460577 DOI: 10.1016/s0022-2836(02)01199-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.
Collapse
Affiliation(s)
- Dibyendu Sarkar
- Division of Biology and Medicine, Brown University, Box G-J 360, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|