1
|
Energy coupling of membrane transport and efficiency of sucrose dissimilation in yeast. Metab Eng 2020; 65:243-254. [PMID: 33279674 DOI: 10.1016/j.ymben.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products.
Collapse
|
2
|
Bogdanov M, Dowhan W, Vitrac H. Lipids and topological rules governing membrane protein assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1475-88. [PMID: 24341994 PMCID: PMC4057987 DOI: 10.1016/j.bbamcr.2013.12.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
Abstract
Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid-protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| | - Heidi Vitrac
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Islam ST, Lam JS. Topological mapping methods for α-helical bacterial membrane proteins--an update and a guide. Microbiologyopen 2013; 2:350-64. [PMID: 23408725 PMCID: PMC3633358 DOI: 10.1002/mbo3.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
Integral membrane proteins with α-helical transmembrane segments (TMS) are known to play important and diverse roles in prokaryotic cell physiology. The net hydrophobicity of TMS directly corresponds to the observed difficulties in expressing and purifying these proteins, let alone producing sufficient yields for structural studies using two-/three-dimensional (2D/3D) crystallographic or nuclear magnetic resonance methods. To gain insight into the function of these integral membrane proteins, topological mapping has become an important tool to identify exposed and membrane-embedded protein domains. This approach has led to the discovery of protein tracts of functional importance and to the proposition of novel mechanistic hypotheses. In this review, we synthesize the various methods available for topological mapping of α-helical integral membrane proteins to provide investigators with a comprehensive reference for choosing techniques suited to their particular topological queries and available resources.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
4
|
Vangelatos I, Vlachakis D, Sophianopoulou V, Diallinas G. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters. Mol Membr Biol 2009; 26:356-70. [PMID: 19670073 DOI: 10.1080/09687680903170546] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families.
Collapse
Affiliation(s)
- Ioannis Vangelatos
- Institute of Biology, National Center for Scientific Research Demokritos, Aghia Paraskevi 153 10, Athens, Greece
| | | | | | | |
Collapse
|
5
|
Abstract
The topology of polytopic membrane proteins is determined by topogenic sequences in the protein, protein-translocon interactions, and interactions during folding within the protein and between the protein and the lipid environment. Orientation of transmembrane domains is dependent on membrane phospholipid composition during initial assembly as well as on changes in lipid composition postassembly. The membrane translocation potential of negative amino acids working in opposition to the positive-inside rule is largely dampened by the normal presence of phosphatidylethanolamine, thus explaining the dominance of positive residues as retention signals. Phosphatidylethanolamine provides the appropriate charge density that permits the membrane surface to maintain a charge balance between membrane translocation and retention signals and also allows the presence of negative residues in the cytoplasmic face of proteins for other purposes.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
6
|
Bogdanov M, Xie J, Heacock P, Dowhan W. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. ACTA ACUST UNITED AC 2008; 182:925-35. [PMID: 18779371 PMCID: PMC2528571 DOI: 10.1083/jcb.200803097] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular details of how lipids influence final topological organization of membrane proteins are not well understood. Here, we present evidence that final topology is influenced by lipid-protein interactions most likely outside of the translocon. The N-terminal half of Escherichia coli lactose permease (LacY) is inverted with respect to the C-terminal half and the membrane bilayer when assembled in mutants lacking phosphatidylethanolamine and containing only negatively charged phospholipids. We demonstrate that inversion is dependent on interactions between the net charge of the cytoplasmic surface of the N-terminal bundle and the negative charge density of the membrane bilayer surface. A transmembrane domain, acting as a molecular hinge between the two halves of the protein, must also exit from the membrane for inversion to occur. Phosphatidylethanolamine dampens the translocation potential of negative residues in favor of the cytoplasmic retention potential of positive residues, thus explaining the dominance of positive over negative amino acids as co- or post-translational topological determinants.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School and Graduate School of Biomedical Sciences, Houston, TX 77225, USA
| | | | | | | |
Collapse
|
7
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
8
|
Zhang Z, Gameiro A, Grewer C. Highly conserved asparagine 82 controls the interaction of Na+ with the sodium-coupled neutral amino acid transporter SNAT2. J Biol Chem 2008; 283:12284-92. [PMID: 18319257 DOI: 10.1074/jbc.m706774200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neutral amino acid transporter 2 (SNAT2), which belongs to the SLC38 family of solute transporters, couples the transport of amino acid to the cotransport of one Na(+) ion into the cell. Several polar amino acids are highly conserved within the SLC38 family. Here, we mutated three of these conserved amino acids, Asn(82) in the predicted transmembrane domain 1 (TMD1), Tyr(337) in TMD7, and Arg(374) in TMD8; and we studied the functional consequences of these modifications. The mutation of N82A virtually eliminated the alanine-induced transport current, as well as amino acid uptake by SNAT2. In contrast, the mutations Y337A and R374Q did not abolish amino acid transport. The K(m) of SNAT2 for its interaction with Na(+), K(Na(+)), was dramatically reduced by the N82A mutation, whereas the more conservative mutation N82S resulted in a K(Na(+)) that was in between SNAT2(N82A) and SNAT2(WT). These results were interpreted as a reduction of Na(+) affinity caused by the Asn(82) mutations, suggesting that these mutations interfere with the interaction of SNAT2 with the sodium ion. As a consequence of this dramatic reduction in Na(+) affinity, the apparent K(m) of SNAT2(N82A) for alanine was increased 27-fold compared with that of SNAT2(WT). Our results demonstrate a direct or indirect involvement of Asn(82) in Na(+) coordination by SNAT2. Therefore, we predict that TMD1 is crucial for the function of SLC38 transporters and that of related families.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
9
|
King SC, Hu LA, Pugh A. Induction of substrate specificity shifts by placement of alanine insertions within the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP. Biochem J 2003; 376:645-53. [PMID: 12956623 PMCID: PMC1223804 DOI: 10.1042/bj20030595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 08/14/2003] [Accepted: 09/04/2003] [Indexed: 11/17/2022]
Abstract
The Escherichia coli GABA (gamma-aminobutyric acid) permease GabP is a prototypical APC (amine/polyamine/choline) super-family transporter that has a CAR (consensus amphipathic region) containing multiple specificity determinants, ostensibly organized on two helical surfaces, one hydrophobic [SHS (sensitive hydrophobic surface)] and the other hydrophilic [SPS (sensitive polar surface)]. To gauge the functional effects of placing alanine insertions at close intervals across the entire GabP CAR, 64 insertion variants were constructed. Insertions, particularly those in the SHS and the SPS, were highly detrimental to steady-state [(3)H]GABA accumulation. TSR (transport specificity ratio) analysis, employing [(3)H]nipecotic acid and [(14)C]GABA, showed that certain alanine insertions were associated with a specificity shift (i.e. a change in k (cat)/ K (m)). An insertion (INS Ala-269) located N-terminal to the SHS increased specificity for [(3)H]nipecotic acid relative to [(14)C]GABA, whereas an insertion (INS Ala-321) located C-terminal to the SPS had the opposite effect. Overall, the results are consistent with a working hypothesis that the GabP CAR contains extensive functional surfaces that may be manipulated by insertion mutagenesis to alter the specificity ( k (cat)/ K (m)) phenotype. The thermodynamic basis of TSR analysis provides generality, suggesting that amino acid insertions could affect specificity in many other transporters, particularly those such as the E. coli phenylalanine permease PheP [Pi, Chow and Pittard (2002) J. Bacteriol. 184, 5842-5847] that have a functionally significant CAR-like domain.
Collapse
Affiliation(s)
- Steven C King
- Department of Integrated Biosciences, Oregon Health & Science University, Portland, OR 97239-3097, USA.
| | | | | |
Collapse
|
10
|
King SC, Brown-Istvan L. Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP. Biochem J 2003; 376:633-44. [PMID: 12956624 PMCID: PMC1223805 DOI: 10.1042/bj20030594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 08/14/2003] [Accepted: 09/04/2003] [Indexed: 01/23/2023]
Abstract
The Escherichia coli GABA (gamma-aminobutyric acid) permease, GabP, and other members of the APC (amine/polyamine/choline) transporter superfamily share a CAR (consensus amphipathic region) that probably contributes to solute translocation. If true, then the CAR should contain structural features that act as determinants of substrate specificity ( k (cat)/ K (m)). In order to address this question, we have developed a novel, expression-independent TSR (transport specificity ratio) analysis, and applied it to a series of 69 cysteine-scanning (single-cysteine) variants. The results indicate that GabP has multiple specificity determinants (i.e. residues at which an amino acid substitution substantially perturbs the TSR). Specificity determinants were found: (i) on a hydrophobic surface of the CAR (from Leu-267 to Ala-285), (ii) on a hydrophilic surface of the CAR (from Ser-299 to Arg-318), and (iii) in a cytoplasmic loop (His-233) between transmembrane segments 6 and 7. Overall, these observations show that (i) structural features within the CAR have a role in substrate discrimination (as might be anticipated for a transport conduit) and, interestingly, (ii) the substrate discrimination task is shared among specificity determinants that appear too widely dispersed across the GabP molecule to be in simultaneous contact with the substrates. We conclude that GabP exhibits behaviour consistent with a broadly applicable specificity delocalization principle, which is demonstrated to follow naturally from the classical notion that translocation occurs synchronously with conformational transitions that change the chemical potential of the bound ligand [Tanford (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2882-2884].
Collapse
Affiliation(s)
- Steven C King
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3097, USA.
| | | |
Collapse
|
11
|
Dogovski C, Pi J, Pittard AJ. Putative interhelical interactions within the PheP protein revealed by second-site suppressor analysis. J Bacteriol 2003; 185:6225-32. [PMID: 14563856 PMCID: PMC219386 DOI: 10.1128/jb.185.21.6225-6232.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly conserved glycine residues within span I and span II of the phenylalanine and tyrosine transporter PheP were shown to be important for the function of the wild-type protein. Replacement by amino acids with increasing side chain volume led to progressive loss of transport activity. Second-site suppression studies performed with a number of the primary mutants revealed a tight packing arrangement between spans I and II that is important for function and an additional interaction between spans I and III. We also postulate that a third motif, GXXIG, present in span I and highly conserved within different members of the amino acid-polyamine-organocation family, may function as a dimerization motif. Surprisingly, other highly conserved residues, such as Y60 and L41, could be replaced by various residues with no apparent loss of activity.
Collapse
Affiliation(s)
- C Dogovski
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
12
|
Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 2003; 278:50128-35. [PMID: 14525982 DOI: 10.1074/jbc.m309840200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once inserted, transmembrane segments of polytopic membrane proteins are generally considered stably oriented due to the large free energy barrier to topological reorientation of adjacent extramembrane domains. However, the topology and function of the polytopic membrane protein lactose permease of Escherichia coli are dependent on the membrane phospholipid composition, revealing topological dynamics of transmembrane domains after stable membrane insertion (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107-2116). In this study, we show that the high affinity phenylalanine permease PheP shares many similarities with lactose permease. PheP assembled in a mutant of E. coli lacking phosphatidylethanolamine (PE) exhibited significantly reduced active transport function and a complete inversion in topological orientation of the N terminus and adjoining transmembrane hairpin loop compared with PheP in a PE-containing strain. Introduction of PE following the assembly of PheP triggered a reorientation of the N terminus and adjacent hairpin to their native orientation associated with regain of wild-type transport function. The reversible orientation of these secondary transport proteins in response to a change in phospholipid composition might be a result of inherent conformational flexibility necessary for transport function or during protein assembly.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|