1
|
Bolay P, Schlüter S, Grimm S, Riediger M, Hess WR, Klähn S. The transcriptional regulator RbcR controls ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes in the cyanobacterium Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2022; 235:432-445. [PMID: 35377491 DOI: 10.1111/nph.18139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Oxygenic photosynthesis evolved in cyanobacteria, primary producers of striking ecological importance. Like plants, cyanobacteria use the Calvin-Benson-Bassham cycle for CO2 fixation, fuelled by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In a competitive reaction this enzyme also fixes O2 which makes it rather ineffective. To mitigate this problem, cyanobacteria evolved a CO2 concentrating mechanism (CCM) to pool CO2 in the vicinity of RuBisCO. However, the regulation of these carbon (C) assimilatory systems is understood only partially. Using the model Synechocystis sp. PCC 6803 we characterized an essential LysR-type transcriptional regulator encoded by gene sll0998. Transcript profiling of a knockdown mutant revealed diminished expression of several genes involved in C acquisition, including rbcLXS, sbtA and ccmKL encoding RuBisCO and parts of the CCM, respectively. We demonstrate that the Sll0998 protein binds the rbcL promoter and acts as a RuBisCO regulator (RbcR). We propose ATTA(G/A)-N5 -(C/T)TAAT as the binding motif consensus. Our data validate RbcR as a regulator of inorganic C assimilation and define the regulon controlled by it. Biological CO2 fixation can sustain efforts to reduce its atmospheric concentrations and is fundamental for the light-driven production of chemicals directly from CO2 . Information about the involved regulatory and physiological processes is crucial to engineer cyanobacterial cell factories.
Collapse
Affiliation(s)
- Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Susan Schlüter
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Samuel Grimm
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
2
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
3
|
Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides. mSystems 2017; 2:mSystems00015-17. [PMID: 28744485 PMCID: PMC5513736 DOI: 10.1128/msystems.00015-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
Knowledge about the role of genes under a particular growth condition is required for a holistic understanding of a bacterial cell and has implications for health, agriculture, and biotechnology. We developed the Tn-seq analysis software (TSAS) package to provide a flexible and statistically rigorous workflow for the high-throughput analysis of insertion mutant libraries, advanced the knowledge of gene essentiality in R. sphaeroides, and illustrated how Tn-seq data can be used to more accurately identify genes that play important roles in metabolism and other processes that are essential for cellular survival. Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosynthetic growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species. IMPORTANCE Knowledge about the role of genes under a particular growth condition is required for a holistic understanding of a bacterial cell and has implications for health, agriculture, and biotechnology. We developed the Tn-seq analysis software (TSAS) package to provide a flexible and statistically rigorous workflow for the high-throughput analysis of insertion mutant libraries, advanced the knowledge of gene essentiality in R. sphaeroides, and illustrated how Tn-seq data can be used to more accurately identify genes that play important roles in metabolism and other processes that are essential for cellular survival. Author Video: An author video summary of this article is available.
Collapse
|
4
|
Schindel HS, Bauer CE. The RegA regulon exhibits variability in response to altered growth conditions and differs markedly between Rhodobacter species. Microb Genom 2016; 2:e000081. [PMID: 28348828 PMCID: PMC5359404 DOI: 10.1099/mgen.0.000081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The RegB/RegA two-component system from Rhodobacter capsulatus regulates global changes in gene expression in response to alterations in oxygen levels. Studies have shown that RegB/RegA controls many energy-generating and energy-utilizing systems such as photosynthesis, nitrogen fixation, carbon fixation, hydrogen utilization, respiration, electron transport and denitrification. In this report, we utilized RNA-seq and ChIP-seq to analyse the breadth of genes indirectly and directly regulated by RegA. A comparison of mRNA transcript levels in wild type cells relative to a RegA deletion strain shows that there are 257 differentially expressed genes under photosynthetic defined minimal growth medium conditions and 591 differentially expressed genes when grown photosynthetically in a complex rich medium. ChIP-seq analysis also identified 61 unique RegA binding sites with a well-conserved recognition sequence, 33 of which exhibit changes in neighbouring gene expression. These transcriptome results define new members of the RegA regulon including genes involved in iron transport and motility. These results also reveal that the set of genes that are regulated by RegA are growth medium specific. Similar analyses under dark aerobic conditions where RegA is thought not to be phosphorylated by RegB reveal 40 genes that are differentially expressed in minimal medium and 20 in rich medium. Finally, a comparison of the R. capsulatus RegA regulon with the orthologous PrrA regulon in Rhodobacter sphaeroides shows that the number of photosystem genes regulated by RegA and PrrA are similar but that the identity of genes regulated by RegA and PrrA beyond those involved in photosynthesis are quite distinct.
Collapse
Affiliation(s)
- Heidi S. Schindel
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| | - Carl E. Bauer
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| |
Collapse
|
5
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|
6
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
7
|
The effect of CbbR-binding affinity to the upstream of cbbF and cfxB on the metabolic effector in Rhodobacter sphaeroides. Curr Microbiol 2015; 70:816-20. [PMID: 25708583 DOI: 10.1007/s00284-015-0789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
Rhodobacter sphaeroides is a non-sulfur photosynthetic bacterium that possesses two cbb operons, cbb I and cbb II , encoding enzymes involved in the Calvin-Bensom-Bassham reductive pentose phosphate pathway of carbon dioxide fixation. In the present study, a number of molecules have been identified that have the ability to alter the in vivo DNA-binding properties of CbbR protein in R. sphaeroides. The CbbR-binding sites on the cbb operon in R. sphaeroides were characterized by chromatin immunoprecipitation (ChIP) assay. The ChIP assay indicated that the CbbR protein binds specifically to the upstream regions cbbF in cbb I operon and cfxB in cbb II operon. The change in the binding of CbbR to the upstream of cbbF and cfxB in the presence of RuBP, fructose 1,6-bisphosphate, NADPH, KH2PO4 was observed under anaerobic, aerobic, aerobic light-dark, and aerobic dark conditions, respectively. From these results, the role of different co-inducer molecules in influencing the interactions of CbbR with the binding site within cbb operon has been ascertained. The biosynthetic intermediates and other potential metabolic effectors have been observed to play an important role in the regulatory mechanism.
Collapse
|
8
|
Selao TT, Branca R, Chae PS, Lehtiö J, Gellman SH, Rasmussen SGF, Nordlund S, Norén A. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum. J Proteome Res 2011; 10:2703-14. [PMID: 21443180 DOI: 10.1021/pr100838x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the use of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane subproteome in response to nitrogen availability.
Collapse
Affiliation(s)
- Tiago Toscano Selao
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
RegB/RegA, A Global Redox-Responding Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:131-48. [DOI: 10.1007/978-0-387-78885-2_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
Part of the oxygen responsiveness of Rhodobacter sphaeroides 2.4.1 tetrapyrrole production involves changes in transcription of the hemA gene, which codes for one of two isoenzymes catalyzing 5-aminolevulinic acid synthesis. Regulation of hemA transcription from its two promoters is mediated by the DNA binding proteins FnrL and PrrA. The two PrrA binding sites, binding sites I and II, which are located upstream of the more-5' hemA promoter (P1), are equally important to transcription under aerobic conditions, while binding site II is more important under anaerobic conditions. By using phosphoprotein affinity chromatography and immunoblot analyses, we showed that the phosphorylated PrrA levels in the cell increase with decreasing oxygen tensions. Then, using both in vivo and in vitro methods, we demonstrated that the relative affinities of phosphorylated and unphosphorylated PrrA for the two binding sites differ and that phosphorylated PrrA has greater affinity for site II. We also showed that PrrA regulation is directed toward the P1 promoter. We propose that the PrrA component of anaerobic induction of P1 transcription is attributable to higher affinity of phosphorylated PrrA than of unphosphorylated PrrA for binding site II. Anaerobic activation of the more-3' hemA promoter (P2) is thought to involve FnrL binding to an FNR consensuslike sequence located upstream of the P2 promoter, but the contribution of FnrL to P1 induction may be indirect since the P1 transcription start is within the putative FnrL binding site. We present evidence suggesting that the indirect action of FnrL works through PrrA and discuss possible mechanisms.
Collapse
|
12
|
Han Y, Meyer MHF, Keusgen M, Klug G. A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Mol Microbiol 2007; 64:1090-104. [PMID: 17501930 DOI: 10.1111/j.1365-2958.2007.05724.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AppA protein of Rhodobacter sphaeroides is unique in its ability to sense and transmit redox signals as well as light signals. By functioning as antagonist to the PpsR transcriptional repressor, it regulates the expression of photosynthesis genes in response to these environmental stimuli. Here we show binding of the cofactor haem to a domain in the C-terminal part of AppA and redox activity of bound haem. This is supported by the findings that: (i) the C-terminal domain of AppA (AppADeltaN) binds to haemin agarose, (ii) AppADeltaN isolated from Escherichia coli shows absorbance at 411 nm and absorbances at 424 nm and 556 nm after reduction with dithionite and (iii) AppADeltaN can be reconstituted with haem in vitro. Expression of AppA variants in R. sphaeroides reveals that the haem binding domain is important for normal expression levels of photosynthesis genes and for normal light regulation in the presence of oxygen. The haem cofactor affects the interaction of the C-terminal part of AppA to PpsR but also its interaction to the N-terminal light sensing AppA-BLUF domain. Based on this we present a model for the transmission of light and redox signals by AppA.
Collapse
Affiliation(s)
- Yuchen Han
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
13
|
Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 2006; 188:7005-15. [PMID: 16980503 PMCID: PMC1595532 DOI: 10.1128/jb.00568-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with key chemolithoautotrophic functions (such as sulfur compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately 10% of the genome) as differentially expressed using RMA (robust multiarray average) statistical analysis and a twofold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated, respectively, with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription-quantitative PCR analysis was used to validate these trends.
Collapse
Affiliation(s)
- Harry R Beller
- Lawrence Livermore National Laboratory, P. O. Box 808, L-542, Livermore, CA 94551-0808, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Ranson-Olson B, Jones DF, Donohue TJ, Zeilstra-Ryalls JH. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J Bacteriol 2006; 188:3208-18. [PMID: 16621813 PMCID: PMC1447469 DOI: 10.1128/jb.188.9.3208-3218.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemA gene codes for one of two synthases in Rhodobacter sphaeroides 2.4.1 which catalyze the formation of 5-aminolevulinic acid. We have examined the role of PrrA, a DNA binding protein that is associated with the metabolic switch between aerobic growth and anoxygenic photosynthetic growth, in hemA expression and found that hemA transcription is directly activated by PrrA. Using electrophoretic mobility shift assays and DNase I protection assays, we have mapped two binding sites for PrrA within the hemA upstream sequences, each of which contains an identical 9-bp motif. Using lacZ transcription reporter plasmids in wild-type strain 2.4.1 and PrrA- mutant strain PRRA2, we showed that PrrA was required for maximal expression. We also found that the relative impacts of altering DNA sequences within the two binding sites are different depending on whether cells are growing aerobically or anaerobically. This reveals a greater level of complexity associated with PrrA-mediated regulation of transcription than has been heretofore described. Our findings are of particular importance with respect to those genes regulated by PrrA having more than one upstream binding site. In the case of the hemA gene, we discuss possibilities as to how these new insights can be accommodated within the context of what has already been established for hemA transcription regulation in R. sphaeroides.
Collapse
Affiliation(s)
- Britton Ranson-Olson
- Department of Biological Sciences, 374 Dodge Hall, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | |
Collapse
|
15
|
Dangel AW, Gibson JL, Janssen AP, Tabita FR. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 2005; 57:1397-414. [PMID: 16102008 DOI: 10.1111/j.1365-2958.2005.04783.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CbbR is a LysR-type transcriptional regulator (LTTR) that is required to activate transcription of the cbb operons, responsible for CO2 fixation, in Rhodobacter sphaeroides. LTTR proteins often require a co-inducer to regulate transcription. Previous studies suggested that ribulose 1,5-bisphosphate (RuBP) is a positive effector for CbbR function in this organism. In the current study, RuBP was found to increase the electrophoretic mobility of the CbbR/cbb(I) promoter complex. To define and analyse the co-inducer recognition region of CbbR, constitutively active mutant CbbR proteins were isolated. Under growth conditions that normally maintain transcriptionally inactive cbb operons, the mutant CbbR proteins activated transcription. Fourteen of the constitutively active mutants resulted from a single amino acid substitution. One mutant was derived from amino acid substitutions at two separate residues that appeared to act synergistically. Different mutant proteins showed both sensitivity and insensitivity to RuBP and residues that conferred constitutive transcriptional activity could be highlighted on a three-dimensional model, with several residues unique to CbbR shown to be at locations critical to LTTR function. Many of the constitutive residues clustered in or near two specific loops in the LTTR tertiary structure, corresponding to a proposed site of co-inducer binding.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
16
|
Dubbs P, Dubbs JM, Tabita FR. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 2004; 186:8026-35. [PMID: 15547275 PMCID: PMC529060 DOI: 10.1128/jb.186.23.8026-8035.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter capsulatus, genes encoding enzymes of the Calvin-Benson-Bassham reductive pentose phosphate pathway are located in the cbb(I) and cbb(II) operons. Each operon contains a divergently transcribed LysR-type transcriptional activator (CbbR(I) and CbbR(II)) that regulates the expression of its cognate cbb promoter in response to an as yet unidentified effector molecule(s). Both CbbR(I) and CbbR(II) were purified, and the ability of a variety of potential effector molecules to induce changes in their DNA binding properties at their target promoters was assessed. The responses of CbbR(I) and CbbR(II) to potential effectors were not identical. In gel mobility shift assays, the affinity of both CbbR(I) and CbbR(II) for their target promoters was enhanced in the presence of ribulose-1,5-bisphosphate (RuBP), phosphoenolpyruvate, 3-phosphoglycerate, 2-phosphoglycolate. ATP, 2-phosphoglycerate, and KH(2)PO(4) were found to enhance only CbbR(I) binding, while fructose-1,6-bisphosphate enhanced the binding of only CbbR(II). The DNase I footprint of CbbR(I) was reduced in the presence of RuBP, while reductions in the CbbR(II) DNase I footprint were induced by fructose-1,6-bisphosphate, 3-phosphoglycerate, and KH(2)PO(4). The current in vitro results plus recent in vivo studies suggest that CbbR-mediated regulation of cbb transcription is controlled by multiple metabolic signals in R. capsulatus. This control reflects not only intracellular levels of Calvin-Benson-Bassham cycle metabolic intermediates but also the fixed (organic) carbon status and energy charge of the cell.
Collapse
Affiliation(s)
- Padungsri Dubbs
- Department of Microbiology, Mahidol University, Payathai, Thailand
| | | | | |
Collapse
|
17
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
18
|
Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004; 68:263-79. [PMID: 15187184 PMCID: PMC419920 DOI: 10.1128/mmbr.68.2.263-279.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Grenoble, France
| | | | | | | |
Collapse
|
19
|
Brautaset T, Jakobsen M ØM, Flickinger MC, Valla S, Ellingsen TE. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 2004; 186:1229-38. [PMID: 14973041 PMCID: PMC344432 DOI: 10.1128/jb.186.5.1229-1238.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50 degrees C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim. SINTEF Applied Chemistry, SINTEF, N-7043 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
20
|
Roh JH, Smith WE, Kaplan S. Effects of Oxygen and Light Intensity on Transcriptome Expression in Rhodobacter sphaeroides 2.4.1. J Biol Chem 2004; 279:9146-55. [PMID: 14662761 DOI: 10.1074/jbc.m311608200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.
Collapse
Affiliation(s)
- Jung Hyeob Roh
- Department of Microbiology and Molecular Genetics, University of Texas, Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Robert Tabita F. Research on Carbon Dioxide Fixation in Photosynthetic Microorganisms (1971-present). PHOTOSYNTHESIS RESEARCH 2004; 80:315-32. [PMID: 16328829 DOI: 10.1023/b:pres.0000030455.46192.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents my personal account of research on CO(2) fixation from when I began these studies as a postdoctoral student in the early 1970s. It traces interests in microbial ribulose bisphosphate carboxylase/oxygenase (Rubisco) and considers early breakthroughs on the isolation, characterization, and significance of this enzyme from nonsulfur purple photosynthetic bacteria and other phototrophic organisms. This article also develops a historical perspective as to how recent efforts may lead to an understanding of molecular mechanisms by which the synthesis of this enzyme and other proteins of the pathway are regulated at the molecular level. In addition, how these studies impinge on the interactive control of CO(2) fixation, along with nitrogen fixation and hydrogen metabolism, is also considered. Finally, CO(2)-fixation studies in green sulfur photosynthetic bacteria and the discovery of the rather surprising Rubisco-like protein are described.
Collapse
Affiliation(s)
- F Robert Tabita
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210-1292, USA,
| |
Collapse
|
22
|
Dubbs JM, Tabita FR. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 2003; 278:16443-50. [PMID: 12601011 DOI: 10.1074/jbc.m211267200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study (Dubbs, J. M., Bird, T. H., Bauer, C. E., and Tabita, F. R. (2000) J. Biol. Chem. 275, 19224-19230), it was demonstrated that the regulators CbbR and RegA (PrrA) interacted with both promoter proximal and promoter distal regions of the form I (cbb(I)) promoter operon specifying genes of the Calvin-Benson-Bassham cycle of Rhodobacter sphaeroides. To determine how these regulators interact with the form II (cbb(II)) promoter, three cbbF(II)::lacZ translational fusion plasmids were constructed containing various lengths of sequence 5' to the cbb(II) operon of R. sphaeroides CAC. Expression of beta-galactosidase was monitored under a variety of growth conditions in both the parental strain and knock-out strains that contain mutations that affect synthesis of CbbR and RegA. The binding sites for both CbbR and RegA were determined by DNase I footprinting. A region of the cbb(II) promoter from +38 to -227 bp contained a CbbR binding site and conferred low level regulated cbb(II) expression. The region from -227 to -1025 bp contained six RegA binding sites and conferred enhanced cbb(II) expression under all growth conditions. Unlike the cbb(I) operon, the region between -227 and -545 bp that contains one RegA binding site, was responsible for the majority of the observed enhancement. Both RegA and CbbR were required for maximal cbb(II) expression. Two potentially novel and specific cbb(II) promoter-binding proteins that did not interact with the cbb(I) promoter region were detected in crude extracts of R. sphaeroides. These results, combined with the observation that chemoautotrophic expression of the cbb(I) operon is RegA independent, indicated that the mechanisms controlling cbb(I) and cbb(II) operon expression during chemoautotrophic growth are quite different.
Collapse
Affiliation(s)
- James M Dubbs
- Department of Microbiology, Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|