1
|
Fujihara H, Hirose J, Suenaga H. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Front Microbiol 2023; 14:1168246. [PMID: 37350784 PMCID: PMC10282184 DOI: 10.3389/fmicb.2023.1168246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
A variety of bacteria in the environment can utilize xenobiotic compounds as a source of carbon and energy. The bacterial strains degrading xenobiotics are suitable models to investigate the adaptation and evolutionary processes of bacteria because they appear to have emerged relatively soon after the release of these compounds into the natural environment. Analyses of bacterial genome sequences indicate that horizontal gene transfer (HGT) is the most important contributor to the bacterial evolution of genetic architecture. Further, host bacteria that can use energy effectively by controlling the expression of organized gene clusters involved in xenobiotic degradation will have a survival advantage in harsh xenobiotic-rich environments. In this review, we summarize the current understanding of evolutionary mechanisms operative in bacteria, with a focus on biphenyl/PCB-degrading bacteria. We then discuss metagenomic approaches that are useful for such investigation.
Collapse
Affiliation(s)
- Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
2
|
Zubrova A, Michalikova K, Semerad J, Strejcek M, Cajthaml T, Suman J, Uhlik O. Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation. Front Microbiol 2021; 12:657311. [PMID: 33995321 PMCID: PMC8119895 DOI: 10.3389/fmicb.2021.657311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
The involvement of bacterial aromatic ring-hydroxylating dioxygenases (ARHDs) in the degradation of aromatic pollutants, such as polychlorinated biphenyls (PCBs), has been well studied. However, there is considerable speculation as to the origin of this ability. One hypothesis is centered on a connection between the ability to degrade aromatic pollutants and the necessity of soil bacteria to cope with and/or utilize secondary plant metabolites (SPMs). To investigate this connection, we researched the involvement of biphenyl 2,3-dioxygenase (BPDO), an ARHD essential for the degradation of PCBs, in the metabolism of SPMs in the soil bacterium Pseudomonas alcaliphila JAB1, a versatile degrader of PCBs. We demonstrated the ability of the strain JAB1 to transform a variety of SPMs, namely the flavonoids apigenin, flavone, flavanone, naringenin, fisetin, quercetin, morin, and catechin, caffeic acid, trans-cinnamic acid, and the monoterpenes (S)-limonene and (R)-carvone. Of those, the transformation of flavone, flavanone, and (S)-limonene was conditioned by the activity of JAB1-borne BPDO and thus was researched in more detail, and we found evidence for the limonene monooxygenase activity of the BPDO. Furthermore, the bphA gene in the strain JAB1 was demonstrated to be induced by a wide range of SPMs, with monoterpenes being the strongest inducers of the SPMs tested. Thus, our findings contribute to the growing body of evidence that ARHDs not only play a role in the catabolism of aromatic pollutants, but also of natural plant-derived aromatics, and this study supports the hypothesis that ARHDs participate in ecological processes mediated by SPMs.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
3
|
New two-component regulatory system required for the constitutive expression of bph operon in Cupriavidus basilensis WS. Appl Microbiol Biotechnol 2019; 103:3099-3109. [DOI: 10.1007/s00253-019-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
4
|
Perruchon C, Vasileiadis S, Rousidou C, Papadopoulou ES, Tanou G, Samiotaki M, Garagounis C, Molassiotis A, Papadopoulou KK, Karpouzas DG. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol. Sci Rep 2017; 7:6449. [PMID: 28743883 PMCID: PMC5527002 DOI: 10.1038/s41598-017-06727-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Ortho-phenylphenol (OPP) is a fungicide contained in agro-industrial effluents produced by fruit-packaging plants. Within the frame of developing bio-strategies to detoxify these effluents, an OPP-degrading Sphingomonas haloaromaticamans strain was isolated. Proteins/genes with a putative catabolic role and bacterium adaptation mechanisms during OPP degradation were identified via genomic and proteomic analysis. Transcription analysis of all putative catabolic genes established their role in the metabolism of OPP. The formation of key transformation products was verified by chromatographic analysis. Genomic analysis identified two orthologous operons encoding the ortho-cleavage of benzoic acid (BA) (ben/cat). The second ben/cat operon was located in a 92-kb scaffold along with (i) an operon (opp) comprising genes for the transformation of OPP to BA and 2-hydroxypenta-2,4-dienoate (and genes for its transformation) and (ii) an incomplete biphenyl catabolic operon (bph). Proteomics identified 13 up-regulated catabolic proteins when S. haloaromaticamans was growing on OPP and/or BA. Transcription analysis verified the key role of the catabolic operons located in the 92-kb scaffold, and flanked by transposases, on the transformation of OPP by S. haloaromaticamans. A flavin-dependent monoxygenase (OppA1), one of the most up-regulated proteins in the OPP-growing cells, was isolated via heterologous expression and its catabolic activity was verified in vitro.
Collapse
Affiliation(s)
- Chiara Perruchon
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- University of South Australia, Future Industries Institute, Mawson Lakes, Australia
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Georgia Tanou
- Aristotle University of Thessaloniki, School of Agriculture, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Constantinos Garagounis
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | | | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
5
|
Hu J, Wang Y, Su X, Yu C, Qin Z, Wang H, Hashmi MZ, Shi J, Shen C. Effects of RAMEB and/or mechanical mixing on the bioavailability and biodegradation of PCBs in soil/slurry. CHEMOSPHERE 2016; 155:479-487. [PMID: 27145422 DOI: 10.1016/j.chemosphere.2016.04.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Microbial remediation is preferred as a clean and cost-effective method for restoring environments polluted by organics. But the biodegradation rates of hydrophobic organic contaminants (HOCs) are usually extremely restricted by their low bioavailability, especially in soil. Here, a physical method (mechanical mixing) and a chemical method (randomly methylated-β-cyclodextrins, RAMEB) were adopted to improve the bioavailability and biodegradation of polychlorinated biphenyls (PCBs) of an aged soil. The bioavailability of tri-CBs was increased by adding RAMEB in soil/slurry or assisting mechanical mixing in slurry, but these methods had no effects on the bioavailability of tetra-CBs and high chlorinated PCBs (Cl > 4). The degradation rate of tri-CBs could be obviously enhanced by adding RAMEB in soil or assisting mechanical mixing in slurry. The highest removal amount of tri-CBs reached 43.8% in 100 d with a first-order decay kinetics constant of 0.0059 d(-1). But the removal of tetra-CBs and high chlorinated PCBs (Cl > 4) were not significant in all mesocosms, possibly due to the lack or weakness of the native degrading microflora. Based on the analysis of the richness and diversity of bacterial communities, the characteristics of the heatmap and the variation of bphC copy numbers in the soil/slurry mesocosms, it could be inferred that there was no obvious corresponding relationship between the variation of the bacterial communities and the physical/chemical measures.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yalin Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Qin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Z Hashmi
- Department of Meterology, Comsats Institute of Information Technology, Islamabad Campus, 44000, Pakistan
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil. Appl Environ Microbiol 2015; 82:897-909. [PMID: 26590287 DOI: 10.1128/aem.03306-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022] Open
Abstract
Metagenomics allows the study of genes related to xenobiotic degradation in a culture-independent manner, but many of these studies are limited by the lack of genomic context for metagenomic sequences. This study combined a phenotypic screen known as substrate-induced gene expression (SIGEX) with whole-metagenome shotgun sequencing. SIGEX is a high-throughput promoter-trap method that relies on transcriptional activation of a green fluorescent protein (GFP) reporter gene in response to an inducing compound and subsequent fluorescence-activated cell sorting to isolate individual inducible clones from a metagenomic DNA library. We describe a SIGEX procedure with improved library construction from fragmented metagenomic DNA and improved flow cytometry sorting procedures. We used SIGEX to interrogate an aromatic hydrocarbon (AH)-contaminated soil metagenome. The recovered clones contained sequences with various degrees of similarity to genes (or partial genes) involved in aromatic metabolism, for example, nahG (salicylate oxygenase) family genes and their respective upstream nahR regulators. To obtain a broader context for the recovered fragments, clones were mapped to contigs derived from de novo assembly of shotgun-sequenced metagenomic DNA which, in most cases, contained complete operons involved in aromatic metabolism, providing greater insight into the origin of the metagenomic fragments. A comparable set of contigs was generated using a significantly less computationally intensive procedure in which assembly of shotgun-sequenced metagenomic DNA was directed by the SIGEX-recovered sequences. This methodology may have broad applicability in identifying biologically relevant subsets of metagenomes (including both novel and known sequences) that can be targeted computationally by in silico assembly and prediction tools.
Collapse
|
7
|
Pham TTM, Pino Rodriguez NJ, Hijri M, Sylvestre M. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A. PLoS One 2015; 10:e0126033. [PMID: 25970559 PMCID: PMC4430277 DOI: 10.1371/journal.pone.0126033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.
Collapse
Affiliation(s)
- Thi Thanh My Pham
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Michel Sylvestre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Hu J, Qian M, Zhang Q, Cui J, Yu C, Su X, Shen C, Hashmi MZ, Shi J. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS One 2015; 10:e0122740. [PMID: 25875180 PMCID: PMC4395236 DOI: 10.1371/journal.pone.0122740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. However, these pollutants are hard to be totally mineralized by environmental microorganisms. One reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs biodegradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few microorganisms have been reported to have the ability to completely mineralize biphenyl and PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) transformed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its plasmid. It could degrade 80.7% of 100 mg L -1 biphenyl within 24 h and its biphenyl degradation ability could be enhanced by adding readily available carbon sources such as tryptone and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indicates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a good candidate for restoring biphenyl/PCBs-polluted environments.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Mingrong Qian
- Institute of Quality and Standard on Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jinglan Cui
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Z. Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Cao L, Gao Y, Wu G, Li M, Xu J, He J, Li S, Hong Q. Cloning of three 2,3-dihydroxybiphenyl-1,2-dioxygenase genes from Achromobacter sp. BP3 and the analysis of their roles in the biodegradation of biphenyl. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:246-252. [PMID: 23948567 DOI: 10.1016/j.jhazmat.2013.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Three 2,3-dihydroxybiphenyl 1,2-dioxygenase genes (designated as bphC1, bphC2 and bphC3) were cloned from a biphenyl-degrading strain Achromobacter sp. BP3. The amino acid sequence of BphC1 and BphC3 had high similarity (>99%) with the reported BphCs, while BphC2 showed relatively low identity (29.51-50.17%) with the reported BphCs, which indicated that bphC2 might be a novel gene. The bphC1, bphC2 and bphC3 genes were expressed in Escherichia coli BL21 and the products were homogenously purified. BphC1, BphC2 and BphC3 displayed maximum activity at 30°C, 30°C and 40°C, respectively. Their optimal catalysis pH was 8.0, 9.0 and 9.0, respectively. BphC1 and BphC2 had higher substrate affinity and catalytic efficiency on 2,3-dihydroxybiphenyl, while BphC3 exhibited these features on aromatic monocyclic substrates. The bphC1 gene was only induced by biphenyl and bphC3 was induced by both biphenyl and toluene, while bphC2 was constitutively expressed in strain BP3. These results suggested that BphC1 and BphC3 played a role in the upstream and downstream metabolic pathways of biphenyl, respectively. However, BphC2 might play a supplementary role and contribute more to the upstream than to the downstream pathway.
Collapse
Affiliation(s)
- Li Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bian L, Shuai JJ, Xiong F, Peng RH, Yao QH, Xiong AS. Expression, purification, and characterization of a 2,3-dihydroxybiphenyl-1,2-dioxygenase from Bacillus sp. JF8 in Escherichia coli. Biochem Biophys Res Commun 2012; 419:339-43. [DOI: 10.1016/j.bbrc.2012.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
|
11
|
George KW, Kagle J, Junker L, Risen A, Hay AG. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology (Reading) 2011; 157:89-98. [DOI: 10.1099/mic.0.042531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida F1 cannot grow on styrene despite being able to degrade it through the toluene degradation (tod) pathway. Previous work had suggested that this was because TodF, the meta-fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from Pseudomonas sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.
Collapse
Affiliation(s)
- Kevin W. George
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Jeanne Kagle
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Lauren Junker
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Amy Risen
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Parnell JJ, Denef VJ, Park J, Tsoi T, Tiedje JM. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 2009; 21:147-56. [PMID: 19672561 DOI: 10.1007/s10532-009-9289-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/29/2009] [Indexed: 11/26/2022]
Affiliation(s)
- J Jacob Parnell
- Center for Microbial Ecology and Crop and Soil Science, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | |
Collapse
|
13
|
The GAF-like-domain-containing transcriptional regulator DfdR is a sensor protein for dibenzofuran and several hydrophobic aromatic compounds. J Bacteriol 2008; 191:123-34. [PMID: 18952799 DOI: 10.1128/jb.01112-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dibenzofuran (DF) is one of the dioxin carbon skeletal compounds used as a model to study the microbial degradation of dioxins. This study analyzed the transcriptional regulation of the DF dioxygenase genes dfdA1 to dfdA4 in the DF-utilizing actinomycetes Rhodococcus sp. strain YK2 and Terrabacter sp. strain YK3. An open reading frame designated dfdR was detected downstream of the dfdC genes. The C-terminal part of the DfdR amino acid sequence has high levels of similarity to several LuxR-type DNA binding helix-turn-helix domains, and a GAF domain sequence in the central part was detected by a domain search analysis. A derivative of YK2 with dfdR disrupted was not able to utilize DF and did not exhibit DF-dependent dfdA1 transcriptional induction ability, and these dysfunctions were compensated for by introduction of dfdR. Promoter analysis of dfdA1 in Rhodococcus strains indicated that activation of the dfdA1 promoter (P(dfdA1)) was dependent on dfdR and DF and not on a metabolite of the DF pathway. The cell extract of a Rhodococcus strain that heterologously expressed DfdR showed electrophoretic mobility shift (EMS) activity for the P(dfdA1) DNA fragment in a DF-dependent manner. In addition, P(dfdA1) activation and EMS activity were observed with hydrophobic aromatic compounds comprising two or more aromatic rings, suggesting that DfdR has broad effector molecule specificity for several hydrophobic aromatic compounds.
Collapse
|
14
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
15
|
Fujihara H, Yoshida H, Matsunaga T, Goto M, Furukawa K. Cross-regulation of biphenyl- and salicylate-catabolic genes by two regulatory systems in Pseudomonas pseudoalcaligenes KF707. J Bacteriol 2006; 188:4690-7. [PMID: 16788178 PMCID: PMC1482985 DOI: 10.1128/jb.00329-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 grows on biphenyl and salicylate as sole sources of carbon. The biphenyl-catabolic (bph) genes are organized as bphR1A1A2(orf3)A3A4BCX0X1X2X3D, encoding the enzymes for conversion of biphenyl to acetyl coenzyme A. In this study, the salicylate-catabolic (sal) gene cluster encoding the enzymes for conversion of salicylate to acetyl coenzyme A were identified 6.6-kb downstream of the bph gene cluster along with a second regulatory gene, bphR2. Both the bph and sal genes were cross-regulated positively and/or negatively by the two regulatory proteins, BphR1 and BphR2, in the presence or absence of the effectors. The BphR2 binding sequence exhibits homology with the NahR binding sequences in various naphthalene-degrading bacteria. Based on previous studies and the present study we propose a new regulatory model for biphenyl and salicylate catabolism in strain KF707.
Collapse
Affiliation(s)
- Hidehiko Fujihara
- Laboratory of Applied Microbiology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
16
|
Smart JL, Bauer CE. Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol 2006; 188:1567-76. [PMID: 16452440 PMCID: PMC1367214 DOI: 10.1128/jb.188.4.1567-1576.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the expression of hem genes in Rhodobacter capsulatus is transcriptionally repressed in response to the exogenous addition of heme. A high-copy suppressor screen for regulators of hem gene expression resulted in the identification of an LysR-type transcriptional regulator, called HbrL, that regulates hem promoters in response to the availability of heme. HbrL is shown to activate the expression of hemA and hemZ in the absence of exogenous hemin and repress hemB expression in the presence of exogenous hemin. Heterologously expressed HbrL apoprotein binds heme b and is purified with bound heme b when expressed in the presence of 5-aminolevulinic acid. Electrophoretic gel shift analysis demonstrated that HbrL binds the promoter region of hemA, hemB, and hemZ as well as its own promoter and that the presence of heme increases the binding affinity of HbrL to hemB.
Collapse
Affiliation(s)
- James L Smart
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
17
|
Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 2005; 71:3866-71. [PMID: 16000799 PMCID: PMC1169012 DOI: 10.1128/aem.71.7.3866-3871.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute standard curves. The technique was applied to quantify mRNA of the trichloroethene (TCE) reductive dehalogenase-encoding tceA gene in an anaerobic TCE-to-ethene dechlorinating microbial enrichment. Compared to RT-qPCR protocols that utilize DNA absolute standard curves, application of the new technique increased measured quantities of tceA mRNA by threefold, demonstrating a substantial improvement in quantification. The technique was also effective for quantifying the loss of mRNA during specific steps of the sample processing protocol. Analysis revealed that the efficiency of the RNA isolation (56%) step was significantly less than that of the cell lysis (84%), DNA removal (93%), and RT (88%) steps. The technique was applied to compare the effects of cellular exposure to different chlorinated ethenes on tceA expression. Results show that exposure to TCE or cis-1,2-dichloroethene resulted in 25-fold-higher quantities of tceA mRNA than exposure to vinyl chloride or chlorinated ethene starvation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710.
| | | | | | | |
Collapse
|
18
|
Kimbara K. Recent Developments in the Study of Microbial Aerobic Degradation of Polychlorinated Biphenyls. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
20
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
21
|
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 2004; 70:4961-70. [PMID: 15294836 PMCID: PMC492332 DOI: 10.1128/aem.70.8.4961-4970.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed and successfully implemented the use of in situ-synthesized 45-mer oligonucleotide DNA microarrays (XeoChips) for genome-wide expression profiling of Burkholderia xenovorans LB400, which is among the best aerobic polychlorinated biphenyl degraders known so far. We conducted differential gene expression profiling during exponential growth on succinate, benzoate, and biphenyl as sole carbon sources and investigated the transcriptome of early-stationary-phase cells grown on biphenyl. Based on these experiments, we outlined metabolic pathways and summarized other cellular functions in the organism relevant for biphenyl and benzoate degradation. All genes previously identified as being directly involved in biphenyl degradation were up-regulated when cells were grown on biphenyl compared to expression in succinate-grown cells. For benzoate degradation, however, genes for an aerobic coenzyme A activation pathway were up-regulated in biphenyl-grown cells, while the pathway for benzoate degradation via hydroxylation was up-regulated in benzoate-grown cells. The early-stationary-phase biphenyl-grown cells showed similar expression of biphenyl pathway genes, but a surprising up-regulation of C(1) metabolic pathway genes was observed. The microarray results were validated by quantitative reverse transcription PCR with a subset of genes of interest. The XeoChips showed a chip-to-chip variation of 13.9%, compared to the 21.6% variation for spotted oligonucleotide microarrays, which is less variation than that typically reported for PCR product microarrays.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 2004; 186:5189-96. [PMID: 15292119 PMCID: PMC490896 DOI: 10.1128/jb.186.16.5189-5196.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|