1
|
Minamino T, Kinoshita M, Namba K. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Front Microbiol 2022; 13:864178. [PMID: 35602071 PMCID: PMC9114704 DOI: 10.3389/fmicb.2022.864178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Most motile bacteria utilize the flagellar type III secretion system (fT3SS) to construct the flagellum, which is a supramolecular motility machine consisting of basal body rings and an axial structure. Each axial protein is translocated via the fT3SS across the cytoplasmic membrane, diffuses down the central channel of the growing flagellar structure and assembles at the distal end. The fT3SS consists of a transmembrane export complex and a cytoplasmic ATPase ring complex with a stoichiometry of 12 FliH, 6 FliI and 1 FliJ. This complex is structurally similar to the cytoplasmic part of the FOF1 ATP synthase. The export complex requires the FliH12-FliI6-FliJ1 ring complex to serve as an active protein transporter. The FliI6 ring has six catalytic sites and hydrolyzes ATP at an interface between FliI subunits. FliJ binds to the center of the FliI6 ring and acts as the central stalk to activate the export complex. The FliH dimer binds to the N-terminal domain of each of the six FliI subunits and anchors the FliI6-FliJ1 ring to the base of the flagellum. In addition, FliI exists as a hetero-trimer with the FliH dimer in the cytoplasm. The rapid association-dissociation cycle of this hetero-trimer with the docking platform of the export complex promotes sequential transfer of export substrates from the cytoplasm to the export gate for high-speed protein transport. In this article, we review our current understanding of multiple roles played by the flagellar cytoplasmic ATPase complex during efficient flagellar assembly.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,RIKEN SPring-8 Center and Center for Biosystems Dynamics Research, Osaka, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Bryant OJ, Fraser GM. Regulation of bacterial Type III Secretion System export gate opening by substrates and the FliJ stalk of the flagellar ATPase. FEBS J 2021; 289:2628-2641. [PMID: 34812581 DOI: 10.1111/febs.16294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023]
Abstract
Type III Secretion Systems (T3SS) transport proteins from the bacterial cytosol for assembly into cell surface nanomachines or direct delivery into target eukaryotic cells. At the core of the flagellar T3SS, the FlhAB-FliPQR export gate regulates protein entry into the export channel whilst maintaining the integrity of the cell membrane. Here, we identify critical residues in the export gate FliR plug that stabilise the closed conformation, preserving the membrane permeability barrier, and we show that the gate opens and closes in response to export substrate availability. Our data indicate that FlhAB-FliPQR gate opening, which is triggered by substrate export signals, is energised by FlhA in a proton motive force-dependent manner. We present evidence that the export substrate and the FliJ stalk of the flagellar ATPase provide mechanistically distinct, non-redundant gate-activating signals that are critical for efficient export.
Collapse
|
3
|
Kinoshita M, Namba K, Minamino T. A positive charge region of Salmonella FliI is required for ATPase formation and efficient flagellar protein export. Commun Biol 2021; 4:464. [PMID: 33846530 PMCID: PMC8041783 DOI: 10.1038/s42003-021-01980-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/12/2021] [Indexed: 01/28/2023] Open
Abstract
The FliH2FliI complex is thought to pilot flagellar subunit proteins from the cytoplasm to the transmembrane export gate complex for flagellar assembly in Salmonella enterica. FliI also forms a homo-hexamer to hydrolyze ATP, thereby activating the export gate complex to become an active protein transporter. However, it remains unknown how this activation occurs. Here we report the role of a positively charged cluster formed by Arg-26, Arg-27, Arg-33, Arg-76 and Arg-93 of FliI in flagellar protein export. We show that Arg-33 and Arg-76 are involved in FliI ring formation and that the fliI(R26A/R27A/R33A/R76A/R93A) mutant requires the presence of FliH to fully exert its export function. We observed that gain-of-function mutations in FlhB increased the probability of substrate entry into the export gate complex, thereby restoring the export function of the ∆fliH fliI(R26A/R27A/R33A/R76A/R93A) mutant. We suggest that the positive charge cluster of FliI is responsible not only for well-regulated hexamer assembly but also for substrate entry into the gate complex. Kinoshita, Namba and Minamino show that a cluster of positively-charged arginines in the Salmonella FliI is necessary for formation of the FliI homo-hexamer ATPase. Through loss- and gain-of-function experiments, they demonstrate that hexamer assembly is also responsible for efficient export of flagellar proteins during flagellar assembly.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN SPring-8 Center and Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion. Nat Commun 2020; 11:1296. [PMID: 32157081 PMCID: PMC7064499 DOI: 10.1038/s41467-020-15071-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/15/2020] [Indexed: 11/24/2022] Open
Abstract
Protein secretion through type-three secretion systems (T3SS) is critical for motility and virulence of many bacteria. Proteins are transported through an export gate containing three proteins (FliPQR in flagella, SctRST in virulence systems). A fourth essential T3SS protein (FlhB/SctU) functions to “switch” secretion substrate specificity once the growing hook/needle reach their determined length. Here, we present the cryo-electron microscopy structure of an export gate containing the switch protein from a Vibrio flagellar system at 3.2 Å resolution. The structure reveals that FlhB/SctU extends the helical export gate with its four predicted transmembrane helices wrapped around FliPQR/SctRST. The unusual topology of the FlhB/SctU helices creates a loop wrapped around the bottom of the closed export gate. Structure-informed mutagenesis suggests that this loop is critical in gating secretion and we propose that a series of conformational changes in the T3SS trigger opening of the gate through interactions between FlhB/SctU and FliPQR/SctRST. Export of proteins by type three secretion systems occurs through an export gate that is localized in the periplasm. Here, the authors present the cryo-EM structure of the Vibrio mimicus export gate complex with FlhB, which plays a major role in switching of the specificity of secretion substrates and propose a mechanism for export gate opening.
Collapse
|
5
|
Inoue Y, Kinoshita M, Namba K, Minamino T. Mutational analysis of the C-terminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in Salmonella. Genes Cells 2019; 24:408-421. [PMID: 30963674 DOI: 10.1111/gtc.12684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
The flagellar protein export apparatus switches its substrate specificity when hook length has reached approximately 55 nm in Salmonella. The C-terminal cytoplasmic domain of FlhB (FlhBC ) is involved in this switching process. FlhBC consists of FlhBCN and FlhBCC polypeptides. FlhBCC has a flexible C-terminal tail (FlhBCCT ). FlhBCC is involved in substrate recognition, and conformational rearrangements of FlhBCN -FlhBCC boundary are postulated to be required for the export switching. However, it remains unknown how it occurs. To clarify this question, we carried out mutational analysis of highly conserved residues in FlhBC . The flhB(E230A) mutation reduced the FlhB function. The flhB(E11S) mutation restored the protein transport activity of the flhB(E230A) mutant to the wild-type level, suggesting that the interaction of FlhBCN with the extreme N-terminal region of FlhB is required for flagellar protein export. The flhB(R320A) mutation affected hydrophobic interaction networks in FlhBCC , thereby increasing insolubility of FlhBC . The R320A mutation also affected the export switching, thereby producing longer hooks with the filament attached. C-terminal truncations of FlhBCCT induced a conformational change of FlhBCN -FlhBCC boundary, resulting in a loose hook length control. We propose that FlhBCCT may control conformational arrangements of FlhBCN -FlhBCC boundary through the hydrophobic interaction networks of FlhBCC .
Collapse
Affiliation(s)
- Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN Center for Biosystems Dynamic Research & Spring-8 Center, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Kinoshita M, Aizawa SI, Inoue Y, Namba K, Minamino T. The role of intrinsically disordered C-terminal region of FliK in substrate specificity switching of the bacterial flagellar type III export apparatus. Mol Microbiol 2017; 105:572-588. [PMID: 28557186 DOI: 10.1111/mmi.13718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C-terminal domain of FliK (FliKC ) and the C-terminal cytoplasmic domain of FlhB (FlhBC ) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268-352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353-405). Residues 301-350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC , but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351-370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site-directed photo-cross-linking experiments showed that Val-302 and Ile-304 in the hydrophobic core of FliKT3S4 bind to FlhBC . We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC .
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Erhardt M, Wheatley P, Kim EA, Hirano T, Zhang Y, Sarkar MK, Hughes KT, Blair DF. Mechanism of type-III protein secretion: Regulation of FlhA conformation by a functionally critical charged-residue cluster. Mol Microbiol 2017; 104:234-249. [PMID: 28106310 DOI: 10.1111/mmi.13623] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
Abstract
The bacterial flagellum contains a specialized secretion apparatus in its base that pumps certain protein subunits through the growing structure to their sites of installation beyond the membrane. A related apparatus functions in the injectisomes of gram-negative pathogens to export virulence factors into host cells. This mode of protein export is termed type-III secretion (T3S). Details of the T3S mechanism are unclear. It is energized by the proton gradient; here, a mutational approach was used to identify proton-binding groups that might function in transport. Conserved proton-binding residues in all the membrane components were tested. The results identify residues R147, R154 and D158 of FlhA as most critical. These lie in a small, well-conserved cytoplasmic domain of FlhA, located between transmembrane segments 4 and 5. Two-hybrid experiments demonstrate self-interaction of the domain, and targeted cross-linking indicates that it forms a multimeric array. A mutation that mimics protonation of the key acidic residue (D158N) was shown to trigger a global conformational change that affects the other, larger cytoplasmic domain that interacts with the export cargo. The results are discussed in the framework of a transport model based on proton-actuated movements in the cytoplasmic domains of FlhA.
Collapse
Affiliation(s)
- Marc Erhardt
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.,Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraβe 7, Braunschweig, 38124, Germany
| | - Paige Wheatley
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eun A Kim
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Takanori Hirano
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.,Toshiba Medical Service Corporation, 1385 Shimoichigami, Otawara-shi, Tochigi, 324-8550, Japan
| | - Yang Zhang
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - David F Blair
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Abstract
Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.
Collapse
|
9
|
Furukawa Y, Inoue Y, Sakaguchi A, Mori Y, Fukumura T, Miyata T, Namba K, Minamino T. Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone. Mol Microbiol 2016; 102:405-416. [PMID: 27461872 DOI: 10.1111/mmi.13469] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
FliS chaperone binds to flagellin FliC in the cytoplasm and transfers FliC to a sorting platform of the flagellar type III export apparatus through the interaction between FliS and FlhA for rapid and efficient protein export during flagellar filament assembly. FliS also suppresses the secretion of an anti-σ factor, FlgM. Loss of FliS results in a short filament phenotype although the expression levels of FliC are increased considerably due to an increase in the secretion level of FlgM. Here to clarify the rate limiting step of FliC export in the absence of FliS, we isolated bypass mutants from a Salmonella ΔfliS mutant. All the bypass mutations were identified in FliC. These bypass mutations increased the export rate of FliC by ca. twofold, allowing the bypass mutant cells to produce longer filaments than the parental ΔfliS cells. Both far-UV CD measurements and limited proteolysis revealed that the bypass mutations significantly destabilize the folded structure of FliC monomer. These results suggest that an unfolding step of FliC limits the export rate of FliC in the ΔfliS mutant, thereby producing short filaments. We propose that FliS promotes FliC docking at the FlhA platform to facilitate subsequent unfolding of FliC.
Collapse
Affiliation(s)
- Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Aya Sakaguchi
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, 602-0893, Japan
| | - Yoko Mori
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, 602-0893, Japan
| | - Takuma Fukumura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Kinoshita M, Nakanishi Y, Furukawa Y, Namba K, Imada K, Minamino T. Rearrangements of α-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export. Mol Microbiol 2016; 101:656-70. [PMID: 27178222 DOI: 10.1111/mmi.13415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 11/29/2022]
Abstract
The bacterial flagellar type III export chaperones not only act as bodyguards to protect their cognate substrates from aggregation and proteolysis in the cytoplasm but also ensure the order of export through their interactions with an export gate protein FlhA. FlgN chaperone binds to FlgK and FlgL with nanomolar affinity and transfers them to FlhA for their efficient and rapid transport for the formation of the hook-filament junction zone. However, it remains unknown how FlgN releases FlgK and FlgL at the FlhA export gate platform in a timely manner. Here, we have solved the crystal structure of Salmonella FlgN at 2.3 Å resolution and carried out structure-based functional analyses. FlgN consists of three α helices, α1, α2 and α3. Helix α1 adopts two distinct, extended and bent conformations through the conformational change of N-loop between α1 and α2. The N-loop deletion not only increases the probability of FlgN dimer formation but also abolish the interaction between FlgN and FlgK. Highly conserved Asn-92, Asn-95 and Ile-103 residues in helix α3 are involved in the strong interaction with FlgK. We propose that the N-loop coordinates helical rearrangements of FlgN with the association and dissociation of its cognate substrates during their export.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yuki Nakanishi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, Riken, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M, Namba K. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. Microbiologyopen 2016; 5:424-35. [PMID: 26916245 PMCID: PMC4905995 DOI: 10.1002/mbo3.340] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022] Open
Abstract
For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross‐complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH‐fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH‐fliI flhB(P28T) ΔflhA mutant. Pull‐down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN–FlgK chaperone–substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN–FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Satomi Koya
- Departments of Food Science and Nutrition, Faculty of Human life and Science, Doshisha Women's College of Liberal Arts, Kyoto, 602-0893, Japan
| | - Noritaka Hara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriko Nishioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
12
|
Deditius JA, Felgner S, Spöring I, Kühne C, Frahm M, Rohde M, Weiß S, Erhardt M. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium. PLoS One 2015; 10:e0135351. [PMID: 26267246 PMCID: PMC4534456 DOI: 10.1371/journal.pone.0135351] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.
Collapse
Affiliation(s)
- Julia Andrea Deditius
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Imke Spöring
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Caroline Kühne
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Siegfried Weiß
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- * E-mail:
| |
Collapse
|
13
|
Structural Features Reminiscent of ATP-Driven Protein Translocases Are Essential for the Function of a Type III Secretion-Associated ATPase. J Bacteriol 2015; 197:3007-14. [PMID: 26170413 DOI: 10.1128/jb.00434-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Many bacterial pathogens and symbionts utilize type III secretion systems to interact with their hosts. These machines have evolved to deliver bacterial effector proteins into eukaryotic target cells to modulate a variety of cellular functions. One of the most conserved components of these systems is an ATPase, which plays an essential role in the recognition and unfolding of proteins destined for secretion by the type III pathway. Here we show that structural features reminiscent of other ATP-driven protein translocases are essential for the function of InvC, the ATPase associated with a Salmonella enterica serovar Typhimurium type III secretion system. Mutational and functional analyses showed that a two-helix-finger motif and a conserved loop located at the entrance of and within the predicted pore formed by the hexameric ATPase are essential for InvC function. These findings provide mechanistic insight into the function of this highly conserved component of type III secretion machines. IMPORTANCE Type III secretion machines are essential for the virulence or symbiotic relationships of many bacteria. These machines have evolved to deliver bacterial effector proteins into host cells to modulate cellular functions, thus facilitating bacterial colonization and replication. An essential component of these machines is a highly conserved ATPase, which is necessary for the recognition and secretion of proteins destined to be delivered by the type III secretion pathway. Using modeling and structure and function analyses, we have identified structural features of one of these ATPases from Salmonella enterica serovar Typhimurium that help to explain important aspects of its function.
Collapse
|
14
|
Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division. mBio 2015; 6:e00579-15. [PMID: 25968649 PMCID: PMC4436065 DOI: 10.1128/mbio.00579-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. Many bacteria are able to rapidly transport themselves through their surroundings using specialized organelles called flagella. In spiral-shaped organisms called spirochetes, flagella act like inboard motors and give the bacteria the ability to bore their way through dense materials (such as human tissue) in a corkscrew manner. In this article, we studied how two proteins, called FliH and FliI, are important for the production of full-length flagella in the Lyme disease spirochete Borrelia burgdorferi. Mutants with defective production of FliH and FliI have reduced flagellar length and motility; this deficiency in turn affects many aspects of B. burgdorferi’s biology, including the ability to undergo cell division and cause disease in mammals. Using a microscopic computed tomography (CT) scan approach called cryo-electron tomography, the structure that contains FliH and FliI was defined in the context of the flagellar motor, providing clues regarding how this amazing nanomachine is assembled and functions.
Collapse
|
15
|
Helicobacter pylori FlhA Binds the Sensor Kinase and Flagellar Gene Regulatory Protein FlgS with High Affinity. J Bacteriol 2015; 197:1886-92. [PMID: 25802298 DOI: 10.1128/jb.02610-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Flagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. In Helicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes, flaB and flgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). The KD (equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon = 2.9 × 10(4) M(-1)s(-1)) and slow-off (koff = 6.2 × 10(-4) s(-1)) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANT sequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANT binding did not stimulate FlgS autophosphorylation in vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation. IMPORTANCE The high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.
Collapse
|
16
|
Erhardt M, Mertens ME, Fabiani FD, Hughes KT. ATPase-independent type-III protein secretion in Salmonella enterica. PLoS Genet 2014; 10:e1004800. [PMID: 25393010 PMCID: PMC4230889 DOI: 10.1371/journal.pgen.1004800] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023] Open
Abstract
Type-III protein secretion systems are utilized by gram-negative pathogens to secrete building blocks of the bacterial flagellum, virulence effectors from the cytoplasm into host cells, and structural subunits of the needle complex. The flagellar type-III secretion apparatus utilizes both the energy of the proton motive force and ATP hydrolysis to energize substrate unfolding and translocation. We report formation of functional flagella in the absence of type-III ATPase activity by mutations that increased the proton motive force and flagellar substrate levels. We additionally show that increased proton motive force bypassed the requirement of the Salmonella pathogenicity island 1 virulence-associated type-III ATPase for secretion. Our data support a role for type-III ATPases in enhancing secretion efficiency under limited secretion substrate concentrations and reveal the dispensability of ATPase activity in the type-III protein export process.
Collapse
Affiliation(s)
- Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Max E. Mertens
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Florian D. Fabiani
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
17
|
Bai F, Morimoto YV, Yoshimura SDJ, Hara N, Kami-Ike N, Namba K, Minamino T. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep 2014; 4:6528. [PMID: 25284201 PMCID: PMC4185386 DOI: 10.1038/srep06528] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
For construction of the bacterial flagellum, FliI ATPase forms the FliH2-FliI complex in the cytoplasm and localizes to the flagellar basal body (FBB) through the interaction of FliH with a C ring protein, FliN. FliI also assembles into a homo-hexamer to promote initial entry of export substrates into the export gate. The interaction of FliH with an export gate protein, FlhA, is required for stable anchoring of the FliI6 ring to the gate. Here we report the stoichiometry and assembly dynamics of FliI-YFP by fluorescence microscopy with single molecule precision. More than six FliI-YFP molecules were associated with the FBB through interactions of FliH with FliN and FlhA. Single FliI-YFP molecule exchanges between the FBB-localized and free-diffusing ones were observed several times per minute. Neither the number of FliI-YFP associated with the FBB nor FliI-YFP turnover rate were affected by catalytic mutations in FliI, indicating that ATP hydrolysis by FliI does not drive the assembly-disassembly cycle of FliI during flagellar assembly. We propose that the FliH2FliI complex and FliI6 ring function as a dynamic substrate carrier and a static substrate loader, respectively.
Collapse
Affiliation(s)
- Fan Bai
- 1] Biodynamic Optical Imaging Center, Peking University, Beijing, 100871, China [2] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [3]
| | - Yusuke V Morimoto
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan [3]
| | - Shinsuke D J Yoshimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noritaka Hara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Fukumura T, Furukawa Y, Kawaguchi T, Saijo-Hamano Y, Namba K, Imada K, Minamino T. Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein-export apparatus. Acta Crystallogr F Struct Biol Commun 2014; 70:1215-8. [PMID: 25195894 PMCID: PMC4157421 DOI: 10.1107/s2053230x14014678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/21/2014] [Indexed: 11/11/2022] Open
Abstract
The bacterial flagellar proteins are transported via a specific export apparatus to the distal end of the growing structure for their self-assembly. FliP is an essential membrane component of the export apparatus. FliP has an N-terminal signal peptide and is predicted to have four transmembrane (TM) helices and a periplasmic domain (FliPP) between TM-2 and TM-3. In this study, FliPP from Thermotoga maritima (TmFliPP) and its selenomethionine derivative (SeMet-TmFliPP) were purified and crystallized. TmFliPP formed a homotetramer in solution. Crystals of TmFliPP and SeMet-TmFliPP were obtained by the hanging-drop vapour-diffusion technique with 2-methyl-2,4-pentanediol as a precipitant. These two crystals grew in the hexagonal space group P6222 or P6422, with unit-cell parameters a = b = 114.9, c = 193.8 Å. X-ray diffraction data were collected from crystals of TmFliPP and SeMet-TmFliPP to 2.4 and 2.8 Å resolution, respectively.
Collapse
Affiliation(s)
- Takuma Fukumura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Kawaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yumiko Saijo-Hamano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Sajó R, Liliom K, Muskotál A, Klein A, Závodszky P, Vonderviszt F, Dobó J. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2414-23. [PMID: 25068520 DOI: 10.1016/j.bbamcr.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate.
Collapse
Affiliation(s)
- Ráchel Sajó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Károly Liliom
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Adél Muskotál
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Agnes Klein
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Ferenc Vonderviszt
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
20
|
Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-ike N, Namba K, Minamino T. Assembly and stoichiometry of FliF and FlhA inSalmonellaflagellar basal body. Mol Microbiol 2014; 91:1214-26. [DOI: 10.1111/mmi.12529] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Yusuke V. Morimoto
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Quantitative Biology Center; RIKEN; 6-2-3 Furuedai Suita Osaka 565-0874 Japan
| | - Mariko Ito
- Department of Food Science and Nutrition; Faculty of Human life and Science; Doshisha Women's College of Liberal Arts; Kyoto 602-0893 Japan
| | - Koichi D. Hiraoka
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yong-Suk Che
- Department of Frontier Bioscience; Hosei University; 3-7-2 Kajino-cho Koganei Tokyo 184-8584 Japan
| | - Fan Bai
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Biodynamic Optical Imaging Center; Peking University; Beijing 100871 China
| | - Nobunori Kami-ike
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Quantitative Biology Center; RIKEN; 6-2-3 Furuedai Suita Osaka 565-0874 Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
21
|
Minamino T. Protein export through the bacterial flagellar type III export pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1642-8. [PMID: 24064315 DOI: 10.1016/j.bbamcr.2013.09.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/10/2013] [Indexed: 01/02/2023]
Abstract
For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Martinez-Argudo I, Veenendaal AKJ, Liu X, Roehrich AD, Ronessen MC, Franzoni G, van Rietschoten KN, Morimoto YV, Saijo-Hamano Y, Avison MB, Studholme DJ, Namba K, Minamino T, Blocker AJ. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility. PLoS One 2013; 8:e52179. [PMID: 23300965 PMCID: PMC3534715 DOI: 10.1371/journal.pone.0052179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/12/2012] [Indexed: 12/23/2022] Open
Abstract
Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB(P28T) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB(P28T) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the FOF1-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Andreas K. J. Veenendaal
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Xia Liu
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - A. Dorothea Roehrich
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Maria C. Ronessen
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Giulia Franzoni
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Yusuke V. Morimoto
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | | | - Matthew B. Avison
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ariel J. Blocker
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 2012; 195:466-73. [PMID: 23161028 DOI: 10.1128/jb.01711-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soluble protein, FliJ, along with a membrane protein, FlhA, plays a role in the energy coupling mechanism for bacterial flagellar protein export. The water-soluble FliH(X)-FliI(6) ATPase ring complex allows FliJ to efficiently interact with FlhA. However, the FlhA binding site of FliJ remains unknown. Here, we carried out genetic analysis of a region formed by well-conserved residues-Gln38, Leu42, Tyr45, Tyr49, Phe72, Leu76, Ala79, and His83-of FliJ. A structural model of the FliI(6)-FliJ ring complex suggests that they extend out of the FliI(6) ring. Glutathione S-transferase (GST)-FliJ inhibited the motility of and flagellar protein export by both wild-type cells and a fliH-fliI flhB(P28T) bypass mutant. Pulldown assays revealed that the reduced export activity of the export apparatus results from the binding of GST-FliJ to FlhA. The F72A and L76A mutations of FliJ significantly reduced the binding affinity of FliJ for FlhA, thereby suppressing the inhibitory effect of GST-FliJ on the protein export. The F72A and L76A mutations were tolerated in the presence of FliH and FliI but considerably reduced motility in their absence. These two mutations affected neither the interaction with FliI nor the FliI ATPase activity. These results suggest that FliJ(F72A) and FliJ(L76A) require the support of FliH and FliI to exert their export function. Therefore, we propose that the well-conserved surface of FliJ is involved in the interaction with FlhA.
Collapse
|
24
|
Tsang J, Smith TG, Pereira LE, Hoover TR. Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression. MICROBIOLOGY-SGM 2012; 159:58-67. [PMID: 23154969 DOI: 10.1099/mic.0.059063-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (ΔflhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not ΔflhA, were ~60 % of wild-type levels. The FlhA(454) variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB'-'xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the level of transcription but also regulated post-transcriptionally.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Todd G Smith
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Lara E Pereira
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Uchida Y, Minamino T, Namba K, Imada K. Crystallization and preliminary X-ray analysis of the FliH-FliI complex responsible for bacterial flagellar type III protein export. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1311-4. [PMID: 23143238 PMCID: PMC3515370 DOI: 10.1107/s1744309112030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/05/2012] [Indexed: 11/10/2022]
Abstract
The bacterial flagellar proteins are translocated into the central channel of the flagellum by a specific protein-export apparatus for self-assembly at the distal growing end. FliH and FliI are soluble components of the export apparatus and form an FliH2-FliI heterotrimer in the cytoplasm. FliI is an ATPase and the FliH2-FliI complex delivers export substrates from the cytoplasm to an export gate made up of six integral membrane proteins of the export apparatus. In this study, an FliHC fragment consisting of residues 99-235 was co-purified with FliI and the FliHC2-FliI complex was crystallized. Crystals were obtained using the hanging-drop vapour-diffusion technique with PEG 400 as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=133.7, b=147.3, c=164.2 Å, and diffracted to 3.0 Å resolution.
Collapse
Affiliation(s)
- Yumiko Uchida
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Precursory Research for Embryonic Science and Technology, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
26
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
27
|
Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export. J Bacteriol 2012; 194:5353-60. [PMID: 22843851 DOI: 10.1128/jb.01028-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The flagellar type III protein export apparatus plays an essential role in the formation of the bacterial flagellum. FliH forms a complex along with FliI ATPase and is postulated to provide a link between FliI ring formation and flagellar protein export. Two tryptophan residues of FliH, Trp7 and Trp10, are required for the effective docking of the FliH-FliI complex to the export gate made of six membrane proteins. However, it remains unknown which export gate component interacts with these two tryptophan residues. Here, we performed targeted photo-cross-linking of the extreme N-terminal region of FliH (FliH(EN)) with its binding partners. We replaced Trp7 and Trp10 of FliH with p-benzoyl-phenylalanine (pBPA), a photo-cross-linkable unnatural amino acid, to produce FliH(W7pBPA) and FliH(W10pBPA). They were both functional and were photo-cross-linked with one of the export gate proteins, FlhA, but not with the other gate proteins, indicating that these two tryptophan residues are in close proximity to FlhA. Mutant FlhA proteins that are functional in the presence of FliH and FliI but not in their absence showed a significantly reduced function also by N-terminal FliH mutations even in the presence of FliI. We suggest that the interaction of FliH(EN) with FlhA is required for anchoring the FliI hexamer ring to the export gate for efficient flagellar protein export.
Collapse
|
28
|
Minamino T, Kinoshita M, Hara N, Takeuchi S, Hida A, Koya S, Glenwright H, Imada K, Aldridge PD, Namba K. Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Mol Microbiol 2012; 83:775-88. [DOI: 10.1111/j.1365-2958.2011.07964.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Shimada M, Saijo-Hamano Y, Furukawa Y, Minamino T, Imada K, Namba K. Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. J Mol Biol 2011; 415:855-65. [PMID: 22178139 DOI: 10.1016/j.jmb.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
The flagellar axial component proteins are exported to the distal end of the growing flagellum for self-assembly by the flagellar type III export apparatus. FlhA is a key membrane protein of the export apparatus, and its C-terminal cytoplasmic domain (FlhA(C)) is a part of an assembly platform for the three soluble export components, FliH, FliI, and FliJ, as well as export substrates and chaperone-substrate complexes. FlhA(C) is composed of a flexible linker region and four compact domains (A(C)D1-A(C)D4). At 42 °C, a temperature-sensitive (TS) G368C mutation in FlhA(C) blocks the export process after the FliH-FliI-FliJ-substrate complex binds to the assembly platform, but it remains unknown how it does so. In this study, we analyzed a TS mutant variant, FlhA(C)(G368C), and its pseudorevertant variants FlhA(C)(G368C/L359F), FlhA(C)(G368C/G364R), FlhA(C)(G368C/R370S), and FlhA(C)(G368C/P550S) using far-ultraviolet circular dichroism. Whereas the denaturation of the wild-type FlhA(C) occurs in a single step, FlhA(C)(G368C) and its pseudorevertant variants showed thermal transitions, at least, in two steps. The first transition of FlhA(C)(G368C) can further be divided into reversible and following irreversible transitions, which correspond to the denaturation of A(C)D2 and A(C)D1, respectively. We show the relation between the reversible transition and the TS defect in the exporting function of FlhA(C)(G368C) and that the loss of function is caused by denaturation of A(C)D2. We suggest that A(C)D2 is directly involved in the translocation of export substrates.
Collapse
Affiliation(s)
- Masafumi Shimada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Minamino T, Kinoshita M, Imada K, Namba K. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol Microbiol 2011; 83:168-78. [DOI: 10.1111/j.1365-2958.2011.07924.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Minamino T, Morimoto YV, Hara N, Namba K. An energy transduction mechanism used in bacterial flagellar type III protein export. Nat Commun 2011; 2:475. [PMID: 21934659 PMCID: PMC3195256 DOI: 10.1038/ncomms1488] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 11/09/2022] Open
Abstract
Flagellar proteins of bacteria are exported by a specific export apparatus. FliI ATPase forms a complex with FliH and FliJ and escorts export substrates from the cytoplasm to the export gate complex, which is made up of six membrane proteins. The export gate complex utilizes proton motive force across the cytoplasmic membrane for protein translocation, but the mechanism remains unknown. Here we show that the export gate complex by itself is a proton-protein antiporter that uses the two components of proton motive force, Δψ and ΔpH, for different steps of the protein export process. However, in the presence of FliH, FliI and FliJ, a specific binding of FliJ with an export gate membrane protein, FlhA, is brought about by the FliH-FliI complex, which turns the export gate into a highly efficient, Δψ-driven protein export apparatus.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
32
|
Quantitative proteomic analysis reveals formation of an EscL-EscQ-EscN type III complex in enteropathogenic Escherichia coli. J Bacteriol 2011; 193:5514-9. [PMID: 21804003 DOI: 10.1128/jb.05235-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We characterized Orf5 and SepQ, two type III secretion (T3S) system proteins in enteropathogenic Escherichia coli, and showed that they are essential for T3S, associated with the bacterial membrane, and interact with EscN. Our findings suggest that Orf5 and SepQ are homologs of YscL and YscQ from Yersinia, respectively.
Collapse
|
33
|
Hara N, Namba K, Minamino T. Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA. PLoS One 2011; 6:e22417. [PMID: 21811603 PMCID: PMC3139655 DOI: 10.1371/journal.pone.0022417] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate.
Collapse
Affiliation(s)
- Noritaka Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
34
|
Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 2011; 18:277-82. [PMID: 21278755 DOI: 10.1038/nsmb.1977] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
The proteins that form the bacterial flagellum are translocated to its distal end through the central channel of the growing flagellum by the flagellar-specific protein export apparatus, a family of the type III protein secretion system. FliI and FliJ are soluble components of this apparatus. FliI is an ATPase that has extensive structural similarity to the α and β subunits of F(o)F(1)-ATP synthase. FliJ is essential for export, but its function remains obscure. Here we show that the structure of FliJ derived from Salmonella enterica serovar Typhimurium is remarkably similar to that of the two-stranded α-helical coiled-coil part of the γ subunit of F(o)F(1)-ATP synthase and that FliJ promotes the formation of FliI hexamer rings by binding to the center of the ring. These results suggest that the type III protein export system and F- and V-type ATPases share a similar mechanism and an evolutionary relationship.
Collapse
|
35
|
Caly DL, O'Toole PW, Moore SA. The 2.2-Å structure of the HP0958 protein from Helicobacter pylori reveals a kinked anti-parallel coiled-coil hairpin domain and a highly conserved ZN-ribbon domain. J Mol Biol 2010; 403:405-19. [PMID: 20826163 DOI: 10.1016/j.jmb.2010.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 11/25/2022]
Abstract
We have determined the 2.2-Å structure of the HP0958 protein from the human gastric pathogen Helicobacter pylori. HP0958 is essential for flagellum formation and motility. It functions as a chaperone for RpoN (σ(54)) and also controls the stability and translation of mRNA for the major flagellin subunit FlaA. The protein is composed of a highly elongated and kinked coiled-coil hairpin domain (residues 1-170), followed by a C(4) Zn-ribbon domain (residues 174-238). The Zn-ribbon domain is rich in aromatic and positively charged amino acid residues. Electrophoretic mobility shift assays identified residues in a positively charged region of the Zn-ribbon domain of HP0958 whose mutation alters the mobility of an HP0958-flaA mRNA complex. Mutation of surface residues in the coiled-coil domain did not result in an observable change in the mobility of the HP0958-flaA transcript complex. The data thus suggest the arrangement of HP0958 into distinct structural and functional domains.
Collapse
Affiliation(s)
- Delphine L Caly
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
36
|
Moore SA, Jia Y. Structure of the cytoplasmic domain of the flagellar secretion apparatus component FlhA from Helicobacter pylori. J Biol Chem 2010; 285:21060-9. [PMID: 20442410 PMCID: PMC2898369 DOI: 10.1074/jbc.m110.119412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Indexed: 11/06/2022] Open
Abstract
Using x-ray crystallography we have determined the structure of the cytoplasmic fragment (residues 384-732) of the flagellum secretion system protein FlhA from Helicobacter pylori at 2.4-A resolution (r = 0.224; R(free) = 0.263). FlhA proteins and their type III secretion homologues contain an N-terminal integral membrane domain (residues 1-350), a linker segment, and a globular C-terminal cytoplasmic region. The tertiary structure of the cytoplasmic fragment contains a thioredoxin-like domain, an RNA recognition motif-like domain inserted within the thioredoxin-fold, a helical domain, and a C-terminal beta/alpha domain. Inter-domain contacts are extensive and the H. pylori FlhA structure appears to be in a closed conformation where the C-terminal domain closes against the RNA recognition motif-fold domain. Highly conserved surface residues in FlhA proteins are concentrated on a narrow surface strip comprising the thioredoxin-like and helical domains, possibly close to the export channel opening. The conformation of the FlhA N-terminal linker segment suggests a likely orientation for the FlhA cytoplasmic fragment relative to the membrane-embedded export pore. Comparison with the recently published structures of the Salmonella FlhA cytoplasmic fragment and its type III secretion counterpart InvA highlight a conformational change where the C-terminal beta/alpha domain in H. pylori FlhA moves 15 A relative to Salmonella FlhA. The conformational change is complex but primarily involves hinge-like movements of the helical and C-terminal domains. Interpretation of previous mutational screens suggest that the C-terminal domain of FlhA(C) plays a regulatory role in substrate class switching in flagellum export.
Collapse
Affiliation(s)
- Stanley A Moore
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | | |
Collapse
|
37
|
Saijo-Hamano Y, Imada K, Minamino T, Kihara M, Shimada M, Kitao A, Namba K. Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol 2010; 76:260-8. [PMID: 20199603 DOI: 10.1111/j.1365-2958.2010.07097.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FlhA is the largest integral membrane component of the flagellar type III protein export apparatus of Salmonella and is composed of an N-terminal transmembrane domain (FlhA(TM)) and a C-terminal cytoplasmic domain (FlhA(C)). FlhA(C) is thought to form a platform of the export gate for the soluble components to bind to for efficient delivery of export substrates to the gate. Here, we report a structure of FlhA(C) at 2.8 A resolution. FlhA(C) consists of four subdomains (A(C)D1, A(C)D2, A(C)D3 and A(C)D4) and a linker connecting FlhA(C) to FlhA(TM). The sites of temperature-sensitive (ts) mutations that impair protein export are distributed to all four domains, with half of them at subdomain interfaces. Analyses of the ts mutations and four suppressor mutations to the G368C ts mutation suggested that FlhA(C) changes its conformation for its function. Molecular dynamics simulation demonstrated an open-close motion with a 5-10 ns oscillation in the distance between A(C)D2 and A(C)D4. These results along with further mutation analyses suggest that a dynamic domain motion of FlhA(C) is essential for protein export.
Collapse
Affiliation(s)
- Yumiko Saijo-Hamano
- Dynamic NanoMachine Project, International Cooperative Research Project, Japan Science and Technology Agency, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export. J Bacteriol 2010; 192:1929-36. [PMID: 20118266 DOI: 10.1128/jb.01328-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhA(C)) is required for protein export, but it is not clear how it works. Here, we analyzed a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, which has a mutation in the sequence encoding FlhA(C). The G368C mutation did not eliminate the interactions with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB, suggesting that the mutation blocks the export process after the FliH-FliI-FliJ-export substrate complex binds to the FlhA-FlhB platform. Limited proteolysis showed that FlhA(C) consists of at least three subdomains, a flexible linker, FlhA(CN), and FlhA(CC), and that FlhA(CN) becomes sensitive to proteolysis by the G368C mutation. Intragenic suppressor mutations were identified in these subdomains and restored flagellar protein export to a considerable degree. However, none of these suppressor mutations suppressed the protease sensitivity. We suggest that FlhA(C) not only forms part of the docking platform for the FliH-FliI-FliJ-export substrate complex but also is directly involved in the translocation of the export substrate into the central channel of the growing flagellar structure.
Collapse
|
39
|
Minamino T, Yoshimura SDJ, Morimoto YV, González-Pedrajo B, Kami-ike N, Namba K. Roles of the extreme N-terminal region of FliH for efficient localization of the FliHâFliI complex to the bacterial flagellar type III export apparatus. Mol Microbiol 2009; 74:1471-83. [DOI: 10.1111/j.1365-2958.2009.06946.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Abstract
Helicobacter pylori uses flagellum-mediated chemotaxis to promote infection. Bacterial flagella change rotational direction by changing the state of the flagellar motor via a subcomplex referred to as the switch. Intriguingly, the H. pylori genome encodes four switch complex proteins, FliM, FliN, FliY, and FliG, instead of the more typical three of Escherichia coli or Bacillus subtilis. Our goal was to examine whether and how all four switch proteins participate in flagellation. Previous work determined that FliG was required for flagellation, and we extend those findings to show that all four switch proteins are necessary for normal numbers of flagellated cells. Furthermore, while fliY and fliN are partially redundant with each other, both are needed for wild-type levels of flagellation. We also report the isolation of an H. pylori strain containing an R54C substitution in fliM, resulting in bacteria that swim constantly and do not change direction. Along with data demonstrating that CheY-phosphate interacts with FliM, these findings suggest that FliM functions in H. pylori much as it does in other organisms.
Collapse
|
41
|
Kazetani KI, Minamino T, Miyata T, Kato T, Namba K. ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. Biochem Biophys Res Commun 2009; 388:323-7. [PMID: 19665005 DOI: 10.1016/j.bbrc.2009.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 12/01/2022]
Abstract
FliI ATPase forms a homo-hexamer to fully exert its ATPase activity, facilitating bacterial flagellar protein export. However, it remains unknown how FliI hexamerization is linked to protein export. Here, we analyzed the capability of ring formation by FliI and its catalytic mutant variants. Compared to ATP a non-hydrolysable ATP analog increased the probability of FliI hexamerization. In contrast, FliI(E221Q), which retained the affinity for ATP but has lost ATPase activity, efficiently formed the hexamer even in the presence of ATP. The mutations, which reduced the binding affinity for ATP, significantly abolished the ring formation. These results indicate that ATP-binding induces FliI hexamerization and that the release of ADP and Pi destabilizes the ring structure. FliI(E221Q) facilitated flagellar protein export in the absence of the FliH regulator of the export apparatus although not at the wild-type FliI level while the other did not. We propose that FliI couples ATP binding and hydrolysis to its assembly-disassembly cycle to efficiently initiate the flagellar protein export cycle.
Collapse
Affiliation(s)
- Ken-Ichi Kazetani
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
42
|
Role of the N-terminal domain of FliI ATPase in bacterial flagellar protein export. FEBS Lett 2009; 583:743-8. [DOI: 10.1016/j.febslet.2009.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
|
43
|
Minamino T, Imada K, Namba K. Mechanisms of type III protein export for bacterial flagellar assembly. MOLECULAR BIOSYSTEMS 2008; 4:1105-15. [PMID: 18931786 DOI: 10.1039/b808065h] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flagellar type III protein export is highly organized and well controlled in a timely manner by dynamic, specific and cooperative interactions among components of the export apparatus, allowing the huge and complex macromolecular assembly to be built efficiently. The bacterial flagellum, which is required for motility, consists of a rotary motor, a universal joint and a helical propeller. Most of the flagellar components are translocated to the distal, growing end of the flagellum for assembly through the central channel of the flagellum itself by the flagellar type III protein export apparatus, which is postulated to be located on the cytoplasmic side of the flagellar basal body. The export specificity switching machinery, which consists of at least two proteins that function as a molecular ruler and an export switch, respectively, monitors the state of hook-basal body assembly in the cell exterior and switches export specificity, thereby coupling sequential flagellar gene expression with the flagellar assembly process. The export ATPase complex composed of an ATPase and its regulator acts as a pilot to deliver its export substrate to the export gate and helps initial entry of the substrate N-terminal chain into a narrow pore of the export gate. The energy of ATP hydrolysis appears to be used to disassemble and release the ATPase complex from the protein about to be exported, and the rest of the successive unfolding/translocation process of the long polypeptide chain is driven solely by proton motive force (PMF), perhaps through biased one-dimensional Brownian diffusion. Interestingly, the subunits of the ATPase complex have significant sequence similarities to subunits of F(0)F(1)-ATP synthase, a rotary motor that drives the chemical reaction of ATP synthesis using PMF, and the entire crystal structure of the export ATPase is extremely similar to the alpha/beta subunits of F(0)F(1)-ATP synthase, suggesting that the flagellar export apparatus and F(0)F(1)-ATP synthase share the mechanism for their two distinct functions.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
44
|
Deane JE, Graham SC, Mitchell EP, Flot D, Johnson S, Lea SM. Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol 2008; 69:267-76. [PMID: 18485071 PMCID: PMC2615192 DOI: 10.1111/j.1365-2958.2008.06293.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2008] [Indexed: 12/17/2022]
Abstract
The pathogenic bacterium Shigella flexneri uses a type III secretion system to inject virulence factors from the bacterial cytosol directly into host cells. The machinery that identifies secretion substrates and controls the export of extracellular components and effector proteins consists of several inner-membrane and cytoplasmic proteins. One of the inner membrane components, Spa40, belongs to a family of proteins proposed to regulate the switching of substrate specificity of the export apparatus. We show that Spa40 is cleaved within the strictly conserved amino acid sequence NPTH and substitution of the proposed autocatalytic residue abolishes cleavage. Here we also report the crystal structure of the cytoplasmic complex Spa40(C) and compare it with the recent structures of the homologues from Escherichia coli and Salmonella typhimurium. These structures reveal the tight association of the cleaved fragments and show that the conserved NPTH sequence lies on a loop which, when cleaved, swings away from the catalytic N257 residue, resulting in different surface features in this region. This structural rearrangement suggests a mechanism by which non-cleaving forms of these proteins interfere with correct substrate switching of the apparatus.
Collapse
Affiliation(s)
- Janet E Deane
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| | - Stephen C Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of OxfordOX3 7BN, UK
| | - Edward P Mitchell
- European Synchrotron Radiation Facility6 Rue Jules Horowitz, 38043 Grenoble, France
- EPSAM, Keele UniversityStafforshire, ST5 5BG, UK
| | - David Flot
- European Molecular Biology Laboratory6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Steven Johnson
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| |
Collapse
|
45
|
Riordan KE, Schneewind O. YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol Microbiol 2008; 68:1485-501. [PMID: 18452514 DOI: 10.1111/j.1365-2958.2008.06247.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
YscU, a component of the Yersinia type III secretion machine, promotes auto-cleavage at asparagine 263 (N263). Mutants with an alanine substitution at yscU codon 263 displayed secretion defects for some substrates (LcrV, YopB and YopD); however, transport of effector proteins into host cells (YopE, YopH, YopM) continued to occur. Two yscU mutations were isolated that, unlike N263A, completely abolished type III secretion; YscU(G127D) promoted auto-cleavage at N263, whereas YscU(G270N) did not. When fused to glutathione S-transferase (Gst), the YscU C-terminal cytoplasmic domain promoted auto-cleavage and Gst-YscU(C) also exerted a dominant-negative phenotype by blocking type III secretion. Gst-YscU(C/N263A) caused a similar blockade and Gst-YscU(C/G270N) reduced secretion. Gst-YscU(C) and Gst-YscU(C/N263A) bound YscL, the regulator of the ATPase YscN, whereas Gst-YscU(C/G270N) did not. When isolated from Yersinia, Gst-YscU(C) and Gst-YscU(C/N263A) associated with YscK-YscL-YscQ; however, Gst-YscU(C/G270N) interacted predominantly with the machine component YscO, but not with YscK-YscL-YscQ. A model is proposed whereby YscU auto-cleavage promotes interaction with YscL and recruitment of ATPase complexes that initiate type III secretion.
Collapse
Affiliation(s)
- Kelly E Riordan
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
46
|
Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 2008; 451:485-8. [PMID: 18216858 DOI: 10.1038/nature06449] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/29/2007] [Indexed: 01/16/2023]
Abstract
Translocation of many soluble proteins across cell membranes occurs in an ATPase-driven manner. For construction of the bacterial flagellum responsible for motility, most of the components are exported by the flagellar protein export apparatus. The FliI ATPase is required for this export, and its ATPase activity is regulated by FliH; however, it is unclear how the chemical energy derived from ATP hydrolysis is used for the export process. Here we report that flagellar proteins of Salmonella enterica serovar Typhimurium are exported even in the absence of FliI. A fliH fliI double null mutant was weakly motile. Certain mutations in FlhA or FlhB, which form the core of the export gate, substantially improved protein export and motility of the double null mutant. Furthermore, proton motive force was essential for the export process. These results suggest that the FliH-FliI complex facilitates only the initial entry of export substrates into the gate, with the energy of ATP hydrolysis being used to disassemble and release the FliH-FliI complex from the protein about to be exported. The rest of the successive unfolding/translocation process of the substrates is driven by proton motive force.
Collapse
|
47
|
Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch Biochem Biophys 2007; 468:121-7. [PMID: 17964526 DOI: 10.1016/j.abb.2007.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 12/27/2022]
Abstract
Type III secretion is a transport mechanism by which bacteria secrete proteins across their cell envelope. This protein export pathway is used by two different bacterial nanomachines: the flagellum and the injectisome. An indispensable component of these secretion systems is an ATPase similar to the F1-ATPase beta subunit. Here we characterize EscN, an enteropathogenic Escherichia coli type III ATPase. A recombinant version of EscN, which was fully functional in complementation tests, was purified to homogeneity. Our results demonstrate that EscN is a Mg2+-dependent ATPase (kcat 0.35 s(-1)). We also define optimal conditions for the hydrolysis reaction. EscN displays protein concentration-dependent activity, suggesting that the specific activity changes with the oligomeric state of the protein. The presence of active oligomers was revealed by size exclusion chromatography and native gel electrophoresis.
Collapse
|
48
|
Apel D, Surette MG. Bringing order to a complex molecular machine: the assembly of the bacterial flagella. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1851-8. [PMID: 17719558 DOI: 10.1016/j.bbamem.2007.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 01/03/2023]
Abstract
The bacterial flagellum is an example of elegance in molecular engineering. Flagella dependent motility is a widespread and evolutionarily ancient trait. Diverse bacterial species have evolved unique structural adaptations enabling them to migrate in their environmental niche. Variability exists in the number, location and configuration of flagella, and reflects unique adaptations of the microorganism. The most detailed analysis of flagellar morphogenesis and structure has focused on Escherichia coli and Salmonella enterica. The appendage assembles sequentially from the inner to the outer-most structures. Additionally the temporal order of gene expression correlates with the assembly order of encoded proteins into the final structure. The bacterial flagellar apparatus includes an essential basal body complex that comprises the export machinery required for assembly of the hook and flagellar filament. A review outlining the current understanding of the protein interactions that make up this remarkable structure will be presented, and the associated temporal genetic regulation will be briefly discussed.
Collapse
Affiliation(s)
- Dmitry Apel
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
49
|
Abstract
The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control" protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.
Collapse
Affiliation(s)
- Richard C Waters
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
50
|
Abstract
Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. The bacterial flagellum is a primary example of a complex apparatus whose origins and evolutionary history have proven difficult to reconstruct. The gene clusters encoding the components of the flagellum can include >50 genes, but these clusters vary greatly in their numbers and contents among bacterial phyla. To investigate how this diversity arose, we identified all homologs of all flagellar proteins encoded in the complete genome sequences of 41 flagellated species from 11 bacterial phyla. Based on the phylogenetic occurrence and histories of each of these proteins, we could distinguish an ancient core set of 24 structural genes that were present in the common ancestor to all Bacteria. Within a genome, many of these core genes show sequence similarity only to other flagellar core genes, indicating that they were derived from one another, and the relationships among these genes suggest the probable order in which the structural components of the bacterial flagellum arose. These results show that core components of the bacterial flagellum originated through the successive duplication and modification of a few, or perhaps even a single, precursor gene.
Collapse
Affiliation(s)
- Renyi Liu
- Departments of *Biochemistry and Molecular Biophysics and
| | - Howard Ochman
- Departments of *Biochemistry and Molecular Biophysics and
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|