1
|
Verdú C, Pérez-Arnaiz P, Peropadre A, Berenguer J, Mencía M. Deletion of the primase-polymerases encoding gene, located in a mobile element in Thermus thermophilus HB27, leads to loss of function mutation of addAB genes. Front Microbiol 2022; 13:1005862. [DOI: 10.3389/fmicb.2022.1005862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
DNA primase-polymerases (Ppol) have been shown to play active roles in DNA repair and damage tolerance, both in prokaryotes and eukaryotes. The ancestral thermophilic bacterium Thermus thermophilus strain HB27 encodes a Ppol protein among the genes present in mobile element ICETh2, absent in other T. thermophilus strains. Using different strategies we ablated the function of Ppol in HB27 cells, either by knocking out the gene through insertional mutagenesis, markerless deletion or through abolition of its catalytic activity. Whole genome sequencing of this diverse collection of Ppol mutants showed spontaneous loss of function mutation in the helicase-nuclease AddAB in every ppol mutant isolated. Given that AddAB is a major player in recombinational repair in many prokaryotes, with similar activity to the proteobacterial RecBCD complex, we have performed a detailed characterization of the ppol mutants in combination with addAB mutants. The results show that knockout addAB mutants are more sensitive to DNA damage agents than the wild type, and present a dramatic three orders of magnitude increase in natural transformation efficiencies with both plasmid and lineal DNA, whereas ppol mutants show defects in plasmid stability. Interestingly, DNA-integrity comet assays showed that the genome of all the ppol and/or addAB mutants was severely affected by widespread fragmentation, however, this did not translate in neat loss of viability of the strains. All these data support that Ppol appears to keep in balance the activity of AddAB as a part of the DNA housekeeping maintenance in T. thermophilus HB27, thus, playing a key role in its genome stability.
Collapse
|
2
|
Li H. Selection-free markerless genome manipulations in the polyploid bacterium Thermus thermophilus. 3 Biotech 2019; 9:148. [PMID: 30944795 DOI: 10.1007/s13205-019-1682-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
A genome manipulation approach based on double-crossover homologous recombination was developed in the polyploid model organism Thermus thermophilus HB27 without the use of any selectable marker. The method was established and optimized by targeting the megaplasmid-encoded β-glucosidase gene bgl. When linear and supercoiled forms of marker-free suicide vector were used for transformations, the frequencies of obtaining apparent Bgl- mutant were 10- 5 and 10- 3, respectively; while the frequency could reach 10- 2 when transformation with concatemer form of the same vector. All randomly selected Bgl- colonies from the transformations were found to be true bgl knockout mutants. Thus, markerless gene deletion mutants could be constructed in T. thermophilus by the direct selection-free method. The functionality of this approach was further demonstrated by deletion of one chromosomal locus (TTC_0340-0341) as well as by generation of a reporter strain for the phytoene synthase promoter (PcrtB), homozygous mutants of the both targets could also be detected with a frequency of approximately 10- 2. During the genome modification process, heterozygous cells carrying two different alleles at a same locus (e.g., bgl and pyrE) could also be generated. However, in the absence of selection pressure, these strains could rapidly convert to homozygous strains containing only one of the two alleles. This indicated that allele segregation could occur in the heterozygous T. thermophilus cells, which probably explained the ease of obtaining homozygous gene deletion mutants with high frequency (10- 2) in the polyploid genomic background, as after the mutant allele had been introduced to the target region, allele segregation would lead to homozygous mutant cells. This marker-free genome manipulation approach does not require phenotype-based screens, and is applicable in gene deletion and tagging applications.
Collapse
Affiliation(s)
- Haijuan Li
- College of Biological and Environmental Engineering, Xi'an University, No. 168 South Taibai Road, Xi'an, 710065 China
| |
Collapse
|
3
|
Groom J, Chung D, Kim SK, Guss A, Westpheling J. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences. J Ind Microbiol Biotechnol 2018; 45:753-763. [PMID: 29808293 PMCID: PMC6483729 DOI: 10.1007/s10295-018-2049-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 12/30/2022]
Abstract
A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.
Collapse
Affiliation(s)
- Joseph Groom
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Daehwan Chung
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, 80401, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Sun-Ki Kim
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Adam Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Janet Westpheling
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA.
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
4
|
Blesa A, Quintans NG, Baquedano I, Mata CP, Castón JR, Berenguer J. Role of Archaeal HerA Protein in the Biology of the Bacterium Thermus thermophilus. Genes (Basel) 2017; 8:genes8050130. [PMID: 28448436 PMCID: PMC5448004 DOI: 10.3390/genes8050130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022] Open
Abstract
Intense gene flux between prokaryotes result in high percentage of archaeal genes in the genome of the thermophilic bacteria Thermus spp. Among these archaeal genes a homolog to the Sulfolobus spp. HerA protein appears in all of the Thermus spp. strains so far sequenced (HepA). The role of HepA in Thermus thermophilus HB27 has been analyzed using deletion mutants, and its structure resolved at low resolution by electron microscopy. Recombinant HepA shows DNA-dependent ATPase activity and its structure revealed a double ring, conically-shaped hexamer with an upper diameter of 150 Å and a bottom module of 95 Å. A central pore was detected in the structure that ranges from 13 Å at one extreme, to 30 Å at the other. Mutants lacking HepA show defective natural competence and DNA donation capability in a conjugation-like process termed "transjugation", and also high sensitivity to UV and dramatic sensitivity to high temperatures. These data support that acquisition of an ancestral archaeal HerA has been fundamental for the adaptation of Thermus spp. to high temperatures.
Collapse
Affiliation(s)
- Alba Blesa
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 1, Madrid 28049, Spain.
| | - Nieves G Quintans
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 1, Madrid 28049, Spain.
| | - Ignacio Baquedano
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 1, Madrid 28049, Spain.
| | - Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049, Spain.
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
5
|
The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet 2017; 13:e1006669. [PMID: 28282376 PMCID: PMC5365140 DOI: 10.1371/journal.pgen.1006669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/24/2017] [Accepted: 03/04/2017] [Indexed: 11/19/2022] Open
Abstract
In addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation). While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, the pushing step of transjugation remains to be characterized. Here we have searched for hypothetical DNA translocases putatively involved in the pushing step of transjugation. Among candidates encoded by T. thermophilus HB27, the TdtA protein was found to be required for DNA pushing but not for DNA pulling during transjugation, without affecting other cellular processes. Purified TdtA shows ATPase activity and oligomerizes as hexamers with a central opening that can accommodate double-stranded DNA. The tdtA gene was found to belong to a mobile 14 kbp-long DNA element inserted within the 3′ end of a tRNA gene, flanked by 47 bp direct repeats. The insertion also encoded a homolog of bacteriophage site-specific recombinases and actively self-excised from the chromosome at high frequency to form an apparently non-replicative circular form. The insertion also encoded a type II restriction endonuclease and a NurA-like nuclease, whose activities were required for efficient transjugation. All these data support that TdtA belongs to a new type of Integrative and Conjugative Element which promotes the generalized and efficient transfer of genetic traits that could facilitate its co-selection among bacterial populations. Transjugation is a new type of horizontal gene transfer process in which a donor cell pushes out genomic DNA upon cell contact and a recipient cell pulls this DNA inside by natural transformation. Here we describe TdtA, a DNA translocase of the pushing system of T. thermophilus, which is encoded within ICEth1, a new class of Integrative and Conjugative Element whose presence leads to generalized cell-to-cell transfer of any gene marker, circumventing the Argonaute surveillance system that controls access of extracellular DNA acquired by transformation.
Collapse
|
6
|
Curing the Megaplasmid pTT27 from Thermus thermophilus HB27 and Maintaining Exogenous Plasmids in the Plasmid-Free Strain. Appl Environ Microbiol 2015; 82:1537-48. [PMID: 26712540 DOI: 10.1128/aem.03603-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Stepwise deletions in the only plasmid in Thermus thermophilus HB27, megaplasmid pTT27, showed that two distantly located loci were important for maintenance of the plasmid. One is a minimum replicon including one gene, repT, coding a replication initiator, and the other encodes subunits of class I ribonucleotide reductase (RNR) for deoxynucleoside triphosphate (dNTP) synthesis. Since the initiator protein, RepT, bound to direct repeats downstream from its own gene, it was speculated that a more-downstream A+T-rich region, which was critical for replication ability, could be unwound for replication initiation. On the other hand, the class I RNR is not necessarily essential for cell growth, as evidenced by the generation of the plasmid-free strain by the loss of pTT27. However, the plasmid-free strain culture has fewer viable cells than the wild-type culture, probably due to a dNTP pool imbalance in the cell. This is because of the introduction of the class I RNR genes or the supplementation of 5'-deoxyadenosylcobalamin, which stimulated class II RNR encoded in the chromosome, resolved the decrease in the number of viable cells in the plasmid-free strain. Likewise, these treatments dramatically enhanced the efficiency of transformation by exogenous plasmids and the stability of the plasmids in the strain. Therefore, the class I RNR would enable the stable maintenance of plasmids, including pTT27, as a result of genome replication normalized by reversing the dNTP pool imbalance. The generation of this plasmid-free strain with great natural competence and its analysis in regard to exogenous plasmid maintenance will expand the availability of HB27 for thermophilic cell factories.
Collapse
|
7
|
Ohtani N, Tomita M, Itaya M. Identification of a replication initiation protein of the pVV8 plasmid from Thermus thermophilus HB8. Extremophiles 2012; 17:15-28. [PMID: 23114983 DOI: 10.1007/s00792-012-0489-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
Abstract
Recently, the extremely thermophilic bacterium Thermus thermophilus HB8 has been demonstrated to harbor a circular plasmid designated by pVV8 in addition to two well-known plasmids, pTT8 and pTT27, and its entire sequence has been determined. The absence of any obvious replication initiation gene in the 81.2 kb plasmid prompted us to isolate its minimum replicon. By in vivo replication assays with fragments deleted in a stepwise manner, a minimum replicon containing a single ORF, TTHV001, was identified. A protein encoded by TTHV001 showed no amino acid sequence similarity to other function-known proteins. As the results of in vivo and in vitro experiments strongly suggested that the TTHV001 protein was involved in the replication initiation of pVV8, the protein and the gene were referred to as RepV and repV, respectively. The RepV protein binds to an inverted repeat sequence within its own repV gene and then triggers the unwinding of the DNA duplex in an A + T-rich region located just downstream from the inverted repeat. The in vivo replication assays with minimum replicon mutants in the RepV binding site or the unwinding region demonstrated that the unwinding in the region by the RepV binding was essential for pVV8 replication initiation.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| | | | | |
Collapse
|
8
|
Abstract
An extremely thermophilic bacterium, Thermus thermophilus HB8, is one of the model organisms for systems biology. Its genome consists of a chromosome (1.85 Mb), a megaplasmid (0.26 Mb) designated pTT27, and a plasmid (9.3 kb) designated pTT8, and the complete sequence is available. We show here that T. thermophilus is a polyploid organism, harboring multiple genomic copies in a cell. In the case of the HB8 strain, the copy number of the chromosome was estimated to be four or five, and the copy number of the pTT27 megaplasmid seemed to be equal to that of the chromosome. It has never been discussed whether T. thermophilus is haploid or polyploid. However, the finding that it is polyploid is not surprising, as Deinococcus radiodurans, an extremely radioresistant bacterium closely related to Thermus, is well known to be a polyploid organism. As is the case for D. radiodurans in the radiation environment, the polyploidy of T. thermophilus might allow for genomic DNA protection, maintenance, and repair at elevated growth temperatures. Polyploidy often complicates the recognition of an essential gene in T. thermophilus as a model organism for systems biology.
Collapse
|
9
|
Dulermo R, Fochesato S, Blanchard L, De Groot A. Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol Microbiol 2009; 74:194-208. [PMID: 19703105 DOI: 10.1111/j.1365-2958.2009.06861.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RecA is essential for extreme radiation tolerance in Deinococcus radiodurans. Interestingly, Sahara bacterium Deinococcus deserti has three recA genes (recA(C), recA(P1), recA(P3)) that code for two different RecA proteins (RecA(C), RecA(P)). Moreover, and in contrast to other sequenced Deinococcus species, D. deserti possesses homologues of translesion synthesis (TLS) DNA polymerases, including ImuY and DnaE2. Together with a lexA homologue, imuY and dnaE2 form a gene cluster similar to a widespread RecA/LexA-controlled mutagenesis cassette. After having developed genetic tools, we have constructed mutant strains to characterize these recA and TLS polymerase genes in D. deserti. Both RecA(C) and RecA(P) are functional and allow D. deserti to survive, and thus repair massive DNA damage, after exposure to high doses of radiation. D. deserti is mutable by UV, which requires ImuY, DnaE2 and RecA(C), but not RecA(P). RecA(C), but not RecA(P), facilitates induced expression of imuY and dnaE2 following UV exposure. We propose that the extra recA(P1) and recA(P3) genes may provide higher levels of RecA protein for efficient error-free repair of DNA damage, without further increasing error-prone lesion bypass by ImuY and DnaE2, whereas limited TLS may contribute to adaptation to harsh conditions by generating genetic variability.
Collapse
Affiliation(s)
- Rémi Dulermo
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Sylvain Fochesato
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Laurence Blanchard
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Arjan De Groot
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
10
|
Deive FJ, Carvalho E, Pastrana L, Rúa ML, Longo MA, Sanroman MA. Assessment of Relevant Factors Influencing Lipolytic Enzyme Production by Thermus thermophilus HB27 in Laboratory-Scale Bioreactors. Chem Eng Technol 2009. [DOI: 10.1002/ceat.200800613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Abstract
Selection of spontaneous, loss-of-function mutations at two chromosomal loci (pyrF and pyrE) enabled the first molecular-level analysis of replication fidelity in the extremely thermophilic bacterium Thermus thermophilus. Two different methods yielded similar mutation rates, and mutational spectra determined by sequencing of independent mutants revealed a variety of replication errors distributed throughout the target genes. The genomic mutation rate estimated from these targets, 0.00097 +/- 0.00052 per replication, was lower than corresponding estimates from mesophilic microorganisms, primarily because of a low rate of base substitution. However, both the rate and spectrum of spontaneous mutations in T. thermophilus resembled those of the thermoacidophilic archaeon Sulfolobus acidocaldarius, despite important molecular differences between these two thermophiles and their genomes.
Collapse
|
12
|
|
13
|
Mazón G, Campoy S, Fernández de Henestrosa AR, Barbé J. Insights into the LexA regulon of Thermotogales. Antonie Van Leeuwenhoek 2006; 90:123-37. [PMID: 16897562 DOI: 10.1007/s10482-006-9066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
The lexA genes of Thermotoga maritima and Petrotoga miotherma, both members of the Order Thermotogales, have been cloned and their transcriptional organization, as well as the functional characteristics of their encoded products, analyzed. In both bacterial species, the lexA gene was found to be co-transcribed together with another four (T. maritima) or three (P. miotherma) upstream open-reading frames. The P. miotherma LexA was able to bind promoters of both the cognate lexA encoding operon and the uvrA gene but not to that of the recA. Conversely, LexA protein and crude cell extracts from T. maritima were unable to bind promoters governing the expression of either its lexA or recA genes. In agreement with these observations, no functional copy of the P. miotherma LexA box, corresponding to the GANTN(6)GANNAC motif, seems to be present in the T. maritima genome. Giving support to the proposal that the evolutionary branching order of the Order Thermotogales is very close to that of Gram-positive bacteria, the P. miotherma LexA protein was still able to recognize the previously described LexA-binding sequence for Gram-positive bacteria.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
14
|
|