1
|
Yang X, Saha S, Yang W, Neuman KC, Pommier Y. Structural and biochemical basis for DNA and RNA catalysis by human Topoisomerase 3β. Nat Commun 2022; 13:4656. [PMID: 35945419 PMCID: PMC9363430 DOI: 10.1038/s41467-022-32221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
In metazoans, topoisomerase 3β (TOP3B) regulates R-loop dynamics and mRNA translation, which are critical for genome stability, neurodevelopment and normal aging. As a Type IA topoisomerase, TOP3B acts by general acid-base catalysis to break and rejoin single-stranded DNA. Passage of a second DNA strand through the transient break permits dissipation of hypernegative DNA supercoiling and catenation/knotting. Additionally, hsTOP3B was recently demonstrated as the human RNA topoisomerase, required for normal neurodevelopment and proposed to be a potential anti-viral target upon RNA virus infection. Here we elucidate the biochemical mechanisms of human TOP3B. We delineate the roles of divalent metal ions, and of a conserved Lysine residue (K10) in the differential catalysis of DNA and RNA. We also demonstrate that three regulatory factors fine-tune the catalytic performance of TOP3B: the TOP3B C-terminal tail, its protein partner TDRD3, and the sequence of its DNA/RNA substrates.
Collapse
Affiliation(s)
- Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Front Microbiol 2021; 12:661411. [PMID: 34113328 PMCID: PMC8185306 DOI: 10.3389/fmicb.2021.661411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.
Collapse
Affiliation(s)
- Florence Garnier
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Mohea Couturier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Débat
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Marc Nadal
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
3
|
Couturier M, Gadelle D, Forterre P, Nadal M, Garnier F. The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2019; 113:356-368. [PMID: 31713907 DOI: 10.1111/mmi.14424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
Maintaining an appropriate DNA topology with DNA-based processes (DNA replication, transcription and recombination) is crucial for all three domains of life. In bacteria, the homeostatic regulation for controlling DNA supercoiling relies on antagonistic activities of two DNA topoisomerases, TopoI and gyrase. In hyperthermophilic crenarchaea, the presence of such a regulatory system is suggested as two DNA topoisomerases, TopoVI and reverse gyrase, catalyze antagonistic activities. To test this hypothesis, we estimated and compared the number of the TopoVI with that of the two reverse gyrases, TopR1 and TopR2, in Sulfolobus solfataricus cells maintained either at 80 or at 88°C, or reciprocally shifted from one temperature to the other. From the three DNA topoisomerases, TopR1 is the only one exhibiting significant quantitative variations in response to the up- and down-shifts. In addition, the corresponding intrinsic activities of these three DNA topoisomerases were tested in vitro at both temperatures. Although temperature modulates the three DNA topoisomerases activities, TopR1 is the sole topoisomerase able to function at high temperature. Altogether, results presented in this study demonstrate, for the first time, that the DNA topological state of a crenarchaeon is regulated via a homeostatic control, which is mainly mediated by the fine-tuning of TopR1.
Collapse
Affiliation(s)
- Mohea Couturier
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Danièle Gadelle
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Marc Nadal
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France.,Institut Jacques Monod, UMR 8621 CNRS-Université Paris Diderot, Paris Cedex 13, France
| | - Florence Garnier
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France.,Institut Jacques Monod, UMR 8621 CNRS-Université Paris Diderot, Paris Cedex 13, France.,Biology Department, Université Versailles St-Quentin, Versailles, France
| |
Collapse
|
4
|
Bizard AH, Yang X, Débat H, Fogg JM, Zechiedrich L, Strick TR, Garnier F, Nadal M. TopA, the Sulfolobus solfataricus topoisomerase III, is a decatenase. Nucleic Acids Res 2019; 46:861-872. [PMID: 29253195 PMCID: PMC5778498 DOI: 10.1093/nar/gkx1247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/03/2022] Open
Abstract
DNA topoisomerases are essential enzymes involved in all the DNA processes and among them, type IA topoisomerases emerged as a key actor in the maintenance of genome stability. The hyperthermophilic archaeon, Sulfolobus solfataricus, contains three topoisomerases IA including one classical named TopA. SsoTopA is very efficient at unlinking DNA catenanes, grouping SsoTopA into the topoisomerase III family. SsoTopA is active over a wide range of temperatures and at temperatures of up to 85°C it produces highly unwound DNA. At higher temperatures, SsoTopA unlinks the two DNA strands. Thus depending on the temperature, SsoTopA is able to either prevent or favor DNA melting. While canonical topoisomerases III require a single-stranded DNA region or a nick in one of the circles to decatenate them, we show for the first time that a type I topoisomerase, SsoTopA, is able to efficiently unlink covalently closed catenanes, with no additional partners. By using single molecule experiments we demonstrate that SsoTopA requires the presence of a short single-stranded DNA region to be efficient. The unexpected decatenation property of SsoTopA probably comes from its high ability to capture this unwound region. This points out a possible role of TopA in S. solfataricus as a decatenase in Sulfolobus.
Collapse
Affiliation(s)
- Anna H Bizard
- Université Versailles St-Quentin, Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, 91405 Orsay Cedex, France
| | - Xi Yang
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| | - Hélène Débat
- Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 75013 Paris, France
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA
| | - Terence R Strick
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florence Garnier
- Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 75013 Paris, France
| | - Marc Nadal
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| |
Collapse
|
5
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
6
|
Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Nucleic Acids Res 2017; 45:12425-12440. [PMID: 29040737 PMCID: PMC5716173 DOI: 10.1093/nar/gkx927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/14/2022] Open
Abstract
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.
Collapse
Affiliation(s)
- Céline Ralec
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Mélanie Lemor
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Tom Killelea
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
7
|
Kinetic insights into the temperature dependence of DNA strand cleavage and religation by topoisomerase III from the hyperthermophile Sulfolobus solfataricus. Sci Rep 2017; 7:5494. [PMID: 28710489 PMCID: PMC5511271 DOI: 10.1038/s41598-017-05837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022] Open
Abstract
All cellular organisms encode type IA topoisomerases which catalyze DNA topological changes essential for DNA transactions. However, the kinetics of the reaction catalyzed by these enzymes remains poorly characterized. Here we measured the rapid kinetics of template binding, cleavage and religation by Sso topo III, a type IA topoisomerase from the hyperthermophilic archaeon Sulfolobus solfataricus, by using a novel FRET/PIFE-based method in a stopped-flow spectrometer. We show that Sso topo III bound the template rapidly, and the rate of binding was 2–3 orders of magnitudes higher than that of template cleavage at 25 °C. The rate of template cleavage was favored over that of template religation by the enzyme, and was more so at lower temperatures (25–55 °C). Significant template cleavage [(2.23 ± 0.11) × 10−3 s−1] was observed while little religation was detectable at 25 °C. This is consistent with the presence of a higher activation energy for template religation (41 ± 5 kcal·mol−1) than that for template cleavage (32 ± 1 kcal·mol−1). Our results provide a kinetic interpretation for the ability of Sso topo III to relax negatively supercoiled DNA only at higher temperature and offer clues to the adaptation of the reaction mechanisms of thermophilic enzymes to high temperature.
Collapse
|
8
|
Chu Y, Zhu Y, Chen Y, Li W, Zhang Z, Liu D, Wang T, Ma J, Deng H, Liu ZJ, Ouyang S, Huang L. aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism. Mol Cell Proteomics 2016; 15:2908-23. [PMID: 27329856 DOI: 10.1074/mcp.m115.057778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Protein methylation is believed to occur extensively in creanarchaea. Recently, aKMT, a highly conserved crenarchaeal protein lysine methyltransferase, was identified and shown to exhibit broad substrate specificity in vitro Here, we have constructed an aKMT deletion mutant of the hyperthermophilic crenarchaeon Sulfolobus islandicus The mutant was viable but showed a moderately slower growth rate than the parental strain under non-optimal growth conditions. Consistent with the moderate effect of the lack of aKMT on the growth of the cell, expression of a small number of genes, which encode putative functions in substrate transportation, energy metabolism, transcriptional regulation, stress response proteins, etc, was differentially regulated by more than twofold in the mutant strain, as compared with that in the parental strain. Analysis of the methylation of total cellular protein by mass spectrometry revealed that methylated proteins accounted for ∼2/3 (1,158/1,751) and ∼1/3 (591/1,757) of the identified proteins in the parental and the mutant strains, respectively, indicating that there is extensive protein methylation in S. islandicus and that aKMT is a major protein methyltransferase in this organism. No significant sequence preference was detected at the sites of methylation by aKMT. Methylated lysine residues, when visible in the structure, are all located on the surface of the proteins. The crystal structure of aKMT in complex with S-adenosyl-l-methionine (SAM) or S-adenosyl homocysteine (SAH) reveals that the protein consists of four α helices and seven β sheets, lacking a substrate recognition domain found in PrmA, a bacterial homolog of aKMT, in agreement with the broad substrate specificity of aKMT. Our results suggest that aKMT may serve a role in maintaining the methylation status of cellular proteins required for the efficient growth of the organism under certain non-optimal conditions.
Collapse
Affiliation(s)
- Yindi Chu
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,
| | - Yuling Chen
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Wei Li
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Tongkun Wang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Haiteng Deng
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Zhi-Jie Liu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,; **iHuman Institute,Shanghai Tech University, Shanghai, China
| | - Songying Ouyang
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,;
| | - Li Huang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
9
|
Ahmad M, Xue Y, Lee SK, Martindale JL, Shen W, Li W, Zou S, Ciaramella M, Debat H, Nadal M, Leng F, Zhang H, Wang Q, Siaw GEL, Niu H, Pommier Y, Gorospe M, Hsieh TS, Tse-Dinh YC, Xu D, Wang W. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 2016; 44:6335-49. [PMID: 27257063 PMCID: PMC4994864 DOI: 10.1093/nar/gkw508] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3β differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3β proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3β-polyribosome association requires TDRD3, which directly interacts with Top3β and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.
Collapse
Affiliation(s)
- Muzammil Ahmad
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Yutong Xue
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- RNA Regulation Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Weiping Shen
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Wen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PeKing University, Beijing 1000871, China
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Maria Ciaramella
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples 80131, Italy
| | - Hélène Debat
- Institut Jacques Monod, CNRS-Université Paris Diderot-UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex, France
| | - Marc Nadal
- Institut Jacques Monod, CNRS-Université Paris Diderot-UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex, France
| | - Fenfei Leng
- Department of Chemistry & Biochemistry, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quan Wang
- Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Grace Ee-Lu Siaw
- Institute of Cellular Organistic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hengyao Niu
- Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Myriam Gorospe
- RNA Regulation Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Tao-Shih Hsieh
- Institute of Cellular Organistic Biology, Academia Sinica, Taipei 11529, Taiwan Department of Biochemistry, Duke University Medical Center, Durham, NC 73532, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry & Biochemistry, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PeKing University, Beijing 1000871, China
| | - Weidong Wang
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
11
|
Identification and characterization of a highly conserved crenarchaeal protein lysine methyltransferase with broad substrate specificity. J Bacteriol 2012; 194:6917-26. [PMID: 23086207 DOI: 10.1128/jb.01535-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate protein using S-adenosyl-l-methionine (SAM) as the methyl donor. aKMT, a non-SET domain protein, is highly conserved among crenarchaea, and distantly related homologs also exist in Bacteria and Eukarya. aKMT was active over a wide range of temperatures, from ~25 to 90 °C, with an optimal temperature at ~60 to 70 °C. Amino acid residues Y9 and T12 at the N terminus appear to be the key residues in the putative active site of aKMT, as indicated by sequence conservation and site-directed mutagenesis. Although aKMT was identified based on its methylating activity on Cren7, the crenarchaeal chromatin protein, it exhibited broad substrate specificity and was capable of methylating a number of recombinant Sulfolobus proteins overproduced in Escherichia coli. The finding of aKMT will help elucidate mechanisms underlining extensive protein lysine methylation and the functional significance of posttranslational protein methylation in crenarchaea.
Collapse
|
12
|
Valenti A, De Felice M, Perugino G, Bizard A, Nadal M, Rossi M, Ciaramella M. Synergic and opposing activities of thermophilic RecQ-like helicase and topoisomerase 3 proteins in Holliday junction processing and replication fork stabilization. J Biol Chem 2012; 287:30282-95. [PMID: 22722926 DOI: 10.1074/jbc.m112.366377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ family helicases and topoisomerase 3 enzymes form evolutionary conserved complexes that play essential functions in DNA replication, recombination, and repair, and in vitro, show coordinate activities on model recombination and replication intermediates. Malfunctioning of these complexes in humans is associated with genomic instability and cancer-prone syndromes. Although both RecQ-like and topoisomerase 3 enzymes are present in archaea, only a few of them have been studied, and no information about their functional interaction is available. We tested the combined activities of the RecQ-like helicase, Hel112, and the topoisomerase 3, SsTop3, from the thermophilic archaeon Sulfolobus solfataricus. Hel112 showed coordinate DNA unwinding and annealing activities, a feature shared by eukaryotic RecQ homologs, which resulted in processing of synthetic Holliday junctions and stabilization of model replication forks. SsTop3 catalyzed DNA relaxation and annealing. When assayed in combination, SsTop3 inhibited the Hel112 helicase activity on Holliday junctions and stimulated formation and stabilization of such structures. In contrast, Hel112 did not affect the SsTop3 DNA relaxation activity. RecQ-topoisomerase 3 complexes show structural similarity with the thermophile-specific enzyme reverse gyrase, which catalyzes positive supercoiling of DNA and was suggested to play a role in genome stability at high temperature. Despite such similarity and the high temperature of reaction, the SsTop3-Hel112 complex does not induce positive supercoiling and is thus likely to play different roles. We propose that the interplay between Hel112 and SsTop3 might regulate the equilibrium between recombination and anti-recombination activities at replication forks.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Morales R, Sriratana P, Zhang J, Cann IKO. Methanosarcina acetivorans C2A topoisomerase IIIα, an archaeal enzyme with promiscuity in divalent cation dependence. PLoS One 2011; 6:e26903. [PMID: 22046402 PMCID: PMC3202574 DOI: 10.1371/journal.pone.0026903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022] Open
Abstract
Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and Cd(2+)). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586) and a C-terminal (587-752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+) binding of the enzyme is also provided.
Collapse
Affiliation(s)
- Raymond Morales
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Palita Sriratana
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Jing Zhang
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Isaac K. O. Cann
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
15
|
Li X, Guo L, Deng L, Feng D, Ren Y, Chu Y, She Q, Huang L. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control. J Genet Genomics 2011; 38:253-9. [PMID: 21703549 DOI: 10.1016/j.jgg.2011.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 11/17/2022]
Abstract
Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly than the wild-type strain, especially in a nutrient-poor medium. Flow cytometry analysis revealed changes of the mutant in growth cycle characteristics including an increase in proportion of cells containing either more than two genome equivalents or less than one genome equivalent in exponentially-growing cultures. As shown by fluorescence microscopy, a fraction of mutant cells in the cultures were drastically enlarged, and at least some of the enlarged cells were apparently capable of resuming cell division. The mutant also shows a different transcriptional profile from that of the wild-type strain. Our results suggest that the enzyme may serve roles in chromosomal segregation and control of the level of supercoiling in the cell.
Collapse
Affiliation(s)
- Xiyang Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bizard A, Garnier F, Nadal M. TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties. J Mol Biol 2011; 408:839-49. [PMID: 21435345 DOI: 10.1016/j.jmb.2011.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 01/02/2023]
Abstract
Whereas reverse gyrase is considered as a strong marker of thermophily, the function of this peculiar type IA topoisomerase still remains to be elucidated. The archaeon Sulfolobus solfataricus encodes two reverse gyrases, TopR1 and TopR2. This duplication seems to be important because most of Crenarcheota exhibit two copies of reverse gyrase. However, to date, while TopR1 has been well characterized, no characterization of TopR2 has been reported. In this study, we describe for the first time the activity of S. solfataricus TopR2 that appears as a new reverse gyrase. Indeed, in spite of the sequence similarities between TopR1 and TopR2, we evidence unexpected great differences between the two enzymes. While TopR1 exhibits ATP-independent relaxation activity, TopR2 does not, and its activity is strictly dependent on the presence of ATP. Whereas TopR1 is a distributive topoisomerase, TopR2 exhibits an amazing high intrinsic processivity compared to all the topoisomerases studied so far. TopR2 is able to introduce a very high number of positive superturns in DNA, while TopR1 generates weakly positively supercoiled DNA. Finally, TopR2 behaves differently from TopR1 when incubated at different assay temperatures. All the results presented in this study indicate that TopR1 and TopR2 have, in vitro, different activities suggesting different functions in vivo.
Collapse
Affiliation(s)
- Anna Bizard
- Université Versailles Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Université Paris-Sud, Bât. 409, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
17
|
Xiong B, Burk DL, Shen J, Luo X, Liu H, Shen J, Berghuis AM. The type IA topoisomerase catalytic cycle: A normal mode analysis and molecular dynamics simulation. Proteins 2008; 71:1984-94. [DOI: 10.1002/prot.21876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Nadal M. Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie 2007; 89:447-55. [PMID: 17316953 DOI: 10.1016/j.biochi.2006.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 12/28/2006] [Indexed: 01/01/2023]
Abstract
Reverse gyrase was discovered more than twenty years ago. Recent biochemical and structural results have greatly enhanced our understanding of their positive supercoiling mechanism. In addition to new biochemical properties, a fine tuning of reverse gyrase regulation in response to DNA damaging agents has been recently described. These data give us a new insight in the cellular role of reverse gyrase. Moreover, it has been proposed that reverse gyrase has been implicated in genome stability.
Collapse
Affiliation(s)
- Marc Nadal
- Equipe Virologie Moléculaire et Microbiologie, Laboratoire de Génétique et de Biologie Cellulaire, CNRS UMR 8159, Université de Versailles St-Quentin-en-Yvelines, Bâtiment Buffon, 78 035 Versailles, France.
| |
Collapse
|
19
|
Forterre P, Gribaldo S, Gadelle D, Serre MC. Origin and evolution of DNA topoisomerases. Biochimie 2007; 89:427-46. [PMID: 17293019 DOI: 10.1016/j.biochi.2006.12.009] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
The DNA topoisomerases are essential for DNA replication, transcription, recombination, as well as for chromosome compaction and segregation. They may have appeared early during the formation of the modern DNA world. Several families and subfamilies of the two types of DNA topoisomerases (I and II) have been described in the three cellular domains of life (Archaea, Bacteria and Eukarya), as well as in viruses infecting eukaryotes or bacteria. The main families of DNA topoisomerases, Topo IA, Topo IB, Topo IC (Topo V), Topo IIA and Topo IIB (Topo VI) are not homologous, indicating that they originated independently. However, some of them share homologous modules or subunits that were probably recruited independently to produce different topoisomerase activities. The puzzling phylogenetic distribution of the various DNA topoisomerase families and subfamilies cannot be easily reconciled with the classical models of early evolution describing the relationships between the three cellular domains. A possible scenario is based on a Last Universal Common Ancestor (LUCA) with a RNA genome (i.e. without the need for DNA topoisomerases). Different families of DNA topoisomerases (some of them possibly of viral origin) would then have been independently introduced in the different cellular domains. We review here the main characteristics of the different families and subfamilies of DNA topoisomerases in a historical and evolutionary perspective, with the hope to stimulate further works and discussions on the origin and evolution of these fascinating enzymes.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, UMR8621, Université Paris-Sud 11, Bat. 400-409, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
20
|
Chen L, Huang L. Oligonucleotide cleavage and rejoining by topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus: temperature dependence and strand annealing-promoted DNA religation. Mol Microbiol 2006; 60:783-94. [PMID: 16629677 DOI: 10.1111/j.1365-2958.2006.05133.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso topo III) is optimally active in DNA relaxation at 75 degrees C. We report here that Sso topo III-catalysed DNA cleavage and religation differed significantly in temperature dependence: the enzyme was most active in cleaving ssDNA containing a cleavage site at 25-50 degrees C, but was efficient in rejoining the cleaved DNA strand only at higher temperatures (e.g. > or = 45 degrees C). The failure of Sso topo III to rejoin the cleaved DNA strand efficiently appeared to be responsible for the inability of the enzyme to relax negatively supercoiled DNA at low temperature (e.g. 25 degrees C). Intriguingly, Sso topo III facilitated DNA annealing although it showed higher affinity for ssDNA than for dsDNA. Religation of the DNA strand cleaved by Sso topo III was drastically enhanced when the DNA was allowed to anneal to a complementary non-cleaved oligonucleotide, presumably as a result of destabilization of the interaction between the enzyme and the cleaved strand through the formation of duplex DNA. A region in the non-cleaved strand corresponding to a sequence containing six bases on the 5' side and two bases on the 3' side of the cleavage site in the cleaved strand was crucial to the annealing-promoted religation. However, the annealing-promoted religation was relatively insensitive to mismatches in this region and the region conserved for oligonucleotide cleavage, except for that at the 5' end of the broken strand. These results suggest that Sso topo III is well suited for a role in DNA rewinding, whether it leads to homoduplex or heteroduplex formation.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
21
|
Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M. Reverse Gyrase Recruitment to DNA after UV Light Irradiation in Sulfolobus solfataricus. J Biol Chem 2004; 279:33192-8. [PMID: 15190074 DOI: 10.1074/jbc.m402619200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage triggers a complex biological response concerning not only repair systems but also virtually every cell function. DNA topoisomerases regulate the level of DNA supercoiling in all DNA transactions. Reverse gyrase is a peculiar DNA topoisomerase, specific to hyperthermophilic microorganisms, which contains a helicase and a topoisomerase IA domain that has the unique ability to introduce positive supercoiling into DNA molecules. We show here that reverse gyrase of the archaean Sulfolobus solfataricus is mobilized to DNA in vivo after UV irradiation. The enzyme, either purified or in cell extracts, forms stable covalent complexes with UV-damaged DNA in vitro. We also show that the reverse gyrase translocation to DNA in vivo and the stabilization of covalent complexes in vitro are specific effects of UV light irradiation and do not occur with the intercalating agent actinomycin D. Our results suggest that reverse gyrase might participate, directly or indirectly, in the cell response to UV light-induced DNA damage. This is the first direct evidence of the recruitment of a topoisomerase IA enzyme to DNA after the induction of DNA damage. The interaction between helicase and topoisomerase activities has been previously proposed to facilitate aspects of DNA replication or recombination in both Bacteria and Eukarya. Our results suggest a general role of the association of such activities in maintaining genome integrity and a mutual effect of DNA topology and repair.
Collapse
Affiliation(s)
- Alessandra Napoli
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|